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Abstract—We investigate methods for detection of rapid work-
load increases (load spikes) for cloud workloads. Such rapid
and unexpected workload spikes are a main cause for poor
performance or even crashing applications as the allocated
cloud resources become insufficient. To detect the spikes early
is fundamental to perform corrective management actions, like
allocating additional resources, before the spikes become large
enough to cause problems. For this, we propose a number of
methods for early spike detection, based on established techniques
from adaptive signal processing. A comparative evaluation shows,
for example, to what extent the different methods manage to
detect the spikes, how early the detection is made, and how
frequently they falsely report spikes.

I. INTRODUCTION

In this paper we investigate the problem of online early
detection of spikes in cloud workloads. Unanticipated changes
in workload characteristics can potentially lead to service
slowdown and might end in service-failure due to insufficient
resource allocation. For this reason, having the ability to early
detect build up of workload spikes is beneficial for making
proactive resource management decisions.

Workload spike detection is complicated by the fact that
no coherent definition of spikes exists: what appears to be
a spike for one application might be considered normal
workload for another application. This makes any attempt
to characterize spikes harder. Spikes manifest themselves by
sudden changes in a workloads statistical properties. This can
include changing mean, variance and autocorrelation structure.
The events responsible for generating spikes can either be
internal to the application, or due to an exogenous influence.
Their occurrence can be well-known in advance, such as the
Olympic games, or completely unexpected events such as
sensational news. In the current work, we focus on the early
detection of spikes considered to be unanticipated in cloud
workloads.

Detection and identification of spikes is tightly coupled to
workload modeling. We adopt the view that spikes are to be
seen as significant deviations in any aspect of a workload
from a model-based prediction of said workload. Models might
already be readily available for some workloads, or may be
derived as part of designing spike detection algorithms. In this
paper we employ the latter approach. The view that spikes are
considered deviations from a model implies that the problem
of detecting spikes is heavily application dependent: while
a large sudden burst in traffic for one application could be

considered a spike, if it occurs regularly due to some well-
understood reason, it could probably be modeled and therefore
not be considered a spike.

In this paper we consider online workload spike detection
using adaptive signal processing techniques. We derive a
number of workload models that are coupled with a stopping
rule for detecting the onset of a spike and evaluate them using
the well-known and publicly available FIFA 1998 World Cup
workload [1], shown in Figure 1. Of special interest is the
ability to detect the onset of a spike as early as possible, thus
leaving enough time to mitigate the effects of it. We explore
the tradeoff between the ability to correctly detect large traffic
increases as spikes and how prone the detectors are to generate
false alarms when no spike is present. Also explored is the
tradeoff between how early detections can be made, and the
number of false alarms generated. We conclude that these are
tradeoffs that need to be carefully considered by an application
owner, as for example some applications can withstand a fairly
large fraction of undetected spikes, while it can only make use
of a detection if it arrives well in time.

II. RELATED WORK

Previous efforts have been made on the topic of modeling
and characterizing workloads and spikes, see [2], [3], [1]. [3]
classifies spikes into volume spikes (sudden increase in the
total workload of a system) and data spikes (sudden increase
in demand of a certain object). Spikes are characterized using
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Fig. 1. Workload data from the FIFA 1998 World Cup.



seven statistical parameters, and modeled into four different
phases: increase, plateau, decrease and normal. In our previous
work, [4], we show how slow variations in the Wikipedia
workload can be modeled using B-splines in order to extract
the seasonality and trend in the workload. In [5], the authors
employ an approach where exponential smoothing is used for
workload prediction and hot spot detection.

In [6] the authors analyze the accuracy of different existing
models for predicting workload spikes, continue by developing
a new model, and finally present a novel metric for assessing
the prediction accuracy of said model. [7] introduces the
concept of characterizing burstiness in time series of workload
arrivals using the index of dispersion. In [8], [9] the authors
describe how the index of dispersion can be used to model and
parametrize bursty workloads when investigating service times
in multi-tier applications. [10] presents Fasttrack, a dynamic
resource provisioning solution for multi-tiered applications
that estimates the index of dispersion and utilizes it for
determining when the workload is entering and exiting a bursty
state.

III. METHODS

For doing online spike detection in cloud workloads, we
use in this paper a commonly employed technique in adaptive
signal processing: combining a model of the system or signal
of interest, here the workload, with a stopping rule that
signals whenever it detects that a system change has occurred.
In particular, we employ the one-model approach described
in [11]. In this approach, the workload measurements yt,
t = 0, 1, . . . , are compared to the one-step ahead predicted
output ŷt|t−1 of a model that has been derived. If the model
correctly captures the dynamics of the workload, taking the
difference between the workload and prediction will result in
the residuals

εt = yt − ŷt|t−1 (1)

looking like a white noise sequence, i.e. as a sequence of
independent, identically distributed (often Gaussian) random
variables. If, at any point in time, an event takes place that
changes the system in such a manner that the model is
no longer able to correctly describe the system behavior,
this will show up as a change in the characteristics of the
residuals (changing mean, variance, autocorrelation, etc.). In
accordance with [11], the residuals are used for deriving a
so-called distance measure st = f(εt), which is then used in
conjunction with a stopping rule for detecting when a change
has taken place. The particular choice of distance measure
depends on the type of change that we are interested in
detecting. Some common choices include using the residuals
directly, i.e. st = εt, which is useful for detecting changing
means, and the squared residuals, st = ε2t , which is useful for
detecting changes in variance.

The rest of this section is devoted to describing the stopping
rule and the adaptive filter models used in this paper. Also
described is a time aggregation technique of the workload data
that two of the proposed approaches make use of.

A. Stopping rule - CUSUM test

The idea behind using stopping rules for change detection is
simple: by monitoring critical aspects of interest of the system
under investigation, we sound an alarm when these aspects
exceed a threshold. Here we have adopted the well-known
CUSUM test [12], which can be considered a special case of
the sequential probability ratio test [13]. In the CUSUM test,
the distance measure sequence st is cumulatively summed up
(hence the name CUSUM – cumulative sum) to calculate the
test statistic gt until the sum hits a preset threshold h, at which
time point an alarm is raised and the sum is reset to zero.
During the calculation, gt is bounded from below, so if at
any time point gt < 0, it will also then be reset to zero. If
the distance measure st used is the residuals εt themselves,
and the workload model used is correct so that the residuals
become a white noise sequence, gt will undergo a random
walk. This will lead to gt crossing the threshold h spuriously
even though no change has taken place, leading to false alarms.
For this reason, a drift term ν is used in the calculation of gt
to slowly push it back to zero. Algorithm 1 outlines pseudo
code for the CUSUM test used in the paper. Both the threshold
h and drift term ν are concerned with determining the speed
and robustness of the detector. For example, a careful choice
of ν should ensure that gt is kept small enough to not cross
the threshold randomly, but still allow for gt to cross the
threshold when a change has taken place. On the other hand,
a large robustness to spurious alarms can come at the cost of
relative large delays before a detection is made. This tradeoff
is problem-specific and in Section IV, we explore it for a
particular workload.

To avoid too frequent alarming, we implement a hanging
window approach. When an alarm is fired, any subsequent
detections during the duration of the hanging window length
are ignored. When the hanging window expires, the next
detection can trigger a new alarm. Another possible solution
that is often employed to avoid too frequent alarming is to
raise an alarm only if two or more detections during a short
time period are made.

Algorithm 1 CUSUM test
1: Input: drift ν, threshold h
2: Output : alarm times
3: g0 ← 0
4: for t = 1 to T do
5: gt ← max(gt−1 + st − ν, 0)
6: if gt > h then
7: gt ← 0
8: alarm← 1

B. Time aggregation of workload data

For modeling purposes, choosing a high enough sampling
rate for a signal is crucial for fully capturing the dynamics
of the workload. On the other hand, a high sampling rate
comes with the drawback of increased noise levels and the
need for increased model complexity, e.g. in order to describe



workload pattern variations on an hourly basis we require a
higher model complexity if new measurements arrive every
second, as opposed to every ten minutes.

In order to keep noise levels and model complexity low
while still making use of a higher sampling rate, we propose
an approach where we, apart from using the actual workload
measurements yt also construct the more coarsely-granulated
measurement sequence {yHk } by aggregating the measure-
ments in bins of size ts:

yHk =

k·ts∑
i=s

yi (2)

where s = (k− 1) · ts +1. From this new sequence we derive
fairly simple models that can capture the general workload
dynamics. In Figure 2 we show the effect of aggregating
measurements on a more coarsely-granulated timescale.
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Fig. 2. The effect of aggregating workload measurements on a more coarsely-
granulated timescale. Left: the original measurement sequence and residuals
when calculating one-step ahead prediction using an AR model. Right: same
as left, but for data aggregated on a more coarsely-grained timescale. It is
apparent that the effect on the residuals from the spike is more prominent in
the latter case.

Algorithm 2 Modified CUSUM test
1: Input: drift ν, threshold h
2: Output : alarm times
3: gprev ← 0
4: for k = 1 to K do
5: g0 ← 0
6: for t = 1 to ts do
7: gt ← max(gt−1 + st + gprev − ν, 0)
8: gprev ← 0
9: if gt ≥ h then

10: gt ← 0
11: alarm← 1
12: else if t = ts then
13: gprev ← gt

C. Adaptive filter models

What different workload modeling techniques should have
in common is the ability to provide a model that encompasses
the dominating features of the workload while being agnostic
to features that are not considered important for the task at
hand. Here we present a number of workload models based
on adaptive filtering methods.

1) Auto-regressive modeling using time aggregation (AR-
TA): in the first approach, we make use of the time aggregation
technique described in section III-B and estimate an auto
regressive (AR) model of order p using the coarsely-granulated
data. This gives a model on the form:

yHk = φ0 +

p∑
i=1

φiy
H
k−i + ek (3)

where et is white noise. The parameters φ = [φ0, . . . , φp]
are estimated using ordinary least squares over a sliding time
window of size wl and re-estimated every time step in the
coarsely-granulated timescale. The one-step ahead prediction
of the workload using this model is:

ŷHk|k−1 = φ0 +

p∑
i=1

φiy
H
k−i (4)

The one-step ahead prediction on the coarsely-granulated
timescale is then up sampled to the finer timescale at which
workload measurements arrive using linear interpolation. The
combination of two time scales allows us to predict, using the
coarsely-granulated timescale, the general direction in which
the workload is heading and compare that to the behavior of
the workload on the finer timescale. If a spike is building
up, the incoming workload measurements will start deviating
from the prediction. The modified CUSUM test outlined in
Algorithm 2 is used for detection purposes. In Section IV we
investigate the sensitivity of this approach to particular choices
of the window length wl and time aggregation level ts.

2) Double exponential smoothing using time aggregation
(DS-TA): in the second approach, we combine the time
aggregation technique with a double exponential smoothing
model for computing the one-step ahead prediction. The
model assigns exponentially decreasing weights over time to
the measurements and takes into account the trend of the
workload. The smoothed data Sk and trend bk for the coarsely-
granulated measurements yHk at time instant k > 1 is estimated
as

Sk = αyHk + (1− α)(Sk−1 + bk−1) (5)
bk = β(Sk − Sk−1) + (1− β)bk−1 (6)

where α is a data smoothing factor, 0 < α < 1, and β is the
trend smoothing factor, 0 < β < 1. We initialize S1 = yH1
and b1 = yH1 − yH0 .

The one-step ahead prediction is given by

ŷHk|k−1 = Sk−1 + bk−1 (7)

As for AR-TA, the one-step ahead prediction is up sampled
to the finer-granulated timescale using linear interpolation. The



procedure for detecting spikes is also identical to that for AR-
TA.

3) Low-pass filtered differentiation (Diff ): the next approach
implicitly assumes that the workload will change fairly slowly.
By differentiating the workload measurements, we can esti-
mate the rate of change in the workload. During normal traffic,
the rate of change will be distributed around zero. In contrast,
during a spike we expect the mean rate of change to transiently
increase to a positive number, a fact that is exploited for spike
detection. Since differentiating measurements often gives a
noisy result, we improve the signal-to-noise ratio by low-
pass filtering the differentiated signal using a second order
Butterworth filter before feeding it to the CUSUM detector.
This allows us to more robustly detect when the rate of change
is deviating from zero.

4) Constant mean (CM): the final approach takes a fairly
agnostic view of the workload by using a model that simply
assumes a constant workload mean:

ŷt = θ + et (8)

where θ is the workload mean and et white noise. The one-step
ahead prediction then simply becomes

ŷt|t−1 = θ (9)

The mean θ is estimated online using recursive least squares as
new measurements become available. In order to still allow for
some slow variation in the mean when computing the estimate,
a forgetting factor λ that puts exponentially decreasing weight
on old data is used. During a spike, the measurements will
significantly deviate from the estimated long term mean,
leading to the residuals εt = yt − ŷt|t−1 no longer being
distributed around zero. The residuals are then used in the
CUSUM test to detect spikes.

In addition to the approaches described here, we consider
also the approach in [10] where the index of dispersion,
commonly used in networking for describing burstiness, is
used for detecting the onset and end of a workload burst.
Adopting their notation, the index of dispersion for a stationary
process {Xn} is defined as

I = SCV

(
1 + 2

∞∑
k=0

ρk

)
(10)

where SCV is the squared coefficient of variation, and ρk the
lag-k autocorrelation coefficients. Estimation of the index of
dispersion can be carried out in different ways. In contrast to
the approach in [10], we perform the estimation using the fact
that for a stationary time series {Xn} it holds that the index
of dispersion can be put as

I =
V ar(X)

E(X)
(11)

i.e. the ratio of the variance of the stochastic process to its
mean. The estimation is then carried out by using measure-
ments of the workload during a sliding window of size j so

that the estimate becomes:

It =
σ̂2
j

µ̂j
(12)

where σ̂2
j and µ̂j denote the estimated variance and mean of

the workload using the measurements {Xt, . . . , Xt−j} in the
sliding window. In neuroscience Equation (12) is often referred
to as the Fano factor (FF), and is used for describing burstiness
in neural spike trains. For detecting spikes the estimate of the
index of dispersion is then paired with the algorithm in Figure
2 in [10].

IV. EVALUATION

To investigate the properties of the detectors described in
Section III we evaluate them using the well-known FIFA
World Cup 1998 workload, which consists of counts of re-
quests made to the web servers serving the official website
during the lead-up to and the final stages of the tournament.
The sampling rate of the workload is one minute. During data
preprocessing, we manually identify Ns = 19 spikes through-
out the workload duration. For each spike, we manually record
a starting time, ending time and duration of the spike. The
starting points in time are not picked according to a strict
definition, but rather to cover the complete rising phase of all
spikes. The ending times are consistently chosen to coincide
with the peak of each spike.

During evaluation we run the detectors online as if measure-
ments arrive sequentially. Tuning is done offline, representing
us having some a priori knowledge of the workload charac-
teristics. A set of different metrics appropriate for describing
the performance of the detectors are calculated a posteriori. If
an alarm is raised during one of the manually identified spike
intervals, we count that as a hit (true positive). An alarm raised
outside of the identified spike intervals is counted as a miss
(false positive). Note that this implies that alarms raised during
the decreasing phase of a spike are counted as misses, which
is natural since an alarm that late into a spike will probably be
useless from a proactive resource management point of view.
As is commonly done in pattern recognition, we calculate the
so-called precision and recall metrics, defined as

precision = 100× #hits
#hits +#misses

(13)

recall = 100× #hits
Ns

(14)

Using these metrics we can also calculate the F-score defined
as the harmonic mean of recall and precision:

F = 2× precision× recall
precision+ recall

Additionally, in order to capture the performance of the
detectors in terms of how early or late they detect a spike
when a hit is generated we define for each detector the average
time before peak (ATBP) as the average time interval between
the time point at which a hit is generated and the time point
at which the peak of the corresponding spike occurs. We



also calculate the difference between the peak workload level
during each correctly detected spike and the workload level at
the time of detection, and define the average relative change
(ARC) as the average ratio between said difference and the
peak workload level.

As also mentioned in Section III, we make use of a hanging
window to avoid too frequent alarming. We set this parameter
to 205 minutes, which coincides with the average length of
the manually identified spikes.

The rest of this section is organized as follows: firstly we
explore the sensitivity of the proposed approaches with respect
to different choices of the parameters available for tuning.
Secondly we investigate the performance of the detectors when
tuning them for a specific case.

A. Sensitivity and model parametrization

Here we present the results of an investigation into the
sensitivity in performance of the AR-TA detector for varying
parameters. For the sake of brevity we restrict ourselves to
this single case. Further investigations reveal that the results
here carry over also to the other proposed approaches.

First we investigate the detector behavior when varying the
time aggregation parameter ts and the size wl of the sliding
window used for parameter estimation. For this we fix the
order, threshold and drift parameters to p = 2, h = 7300 and
ν = 100. Note that among the other detectors considered, this
part of the analysis only applies to DS-TA as it is the only
one apart from AR-TA that makes use of the time aggregation
approach. In Figure 3 we show plots for the resulting recall
level, number of misses, F-score and ATBP. From this we
conclude that the results are insensitive to variations in window
size wl. For variations in time aggregation ts we note that
the recall level and F-score stay fairly constant, while there
is a general tendency for the number of misses and ATBP
to increase with increasing ts. This co-variation between the
number of misses and ATBP is repeatedly found throughout
our experimental investigations of different detectors.

Next we fix the order, time aggregation and window size
parameters to p = 2, wl = 10 and ts = 20 and vary the
detector parameters h and ν. The result of this experiment can
be seen in Figure 4. Here the tradeoffs between recall, number
of misses and how early spikes can be detected become clear.
Choosing low values of h and ν gives a high recall, while the
precision will suffer due to the large number of misses and
vice versa, choosing very large parameter values leads to a low
recall level and few misses. Again we observe the co-variation
between the number of misses and ATBP. The F-score exhibits
a tendency to increase with increasing parameter values.

The investigation presented here can form the basis of a
procedure for choosing appropriate parameters when designing
a detector for a workload. A first candidate set of parameters
can be identified by considering only parameters that yield an
F-score exceeding some specific level. From there we consider
the specific numbers for recall, number of misses and ATBP.
In the present case, Figure 4 reveal a band of parameters where
ATBP and the number of misses vary greatly while the recall

is constantly high. This leaves us with having to take into
consideration the tradeoff between the number of misses and
ATBP for the final particular choice of parameters.

B. Performance evaluation

Next we investigate the performance of the detectors de-
scribed in Section III. As was made clear in Section IV-A,
there is generally a tradeoff between a detectors recall level
and how prone it is to generate misses, at the same time there
is a tradeoff between the number of misses and the ATBP.

To evaluate the performance we use a scenario where we
find for each detector a set of parameters that correctly detects
all manually identified spikes while also generating a fairly low
number of misses (in this case 5). The parameters are found by
using a similar approach as for the sensitivity analysis: we first
fix the CUSUM parameters and manually identify appropriate
detector-specific parameters. These parameters are α, β (DS-
TA), cutoff frequency f for the low-pass filter (Diff), and the
forgetting factor λ (CM). Next h and ν are found using the
procedure outlined previously. Table IV-B show the parameters
found for the different detectors, along with the performance
attained for that choice of parameters. The adaptive filter based
detectors behave similarly for this case, with AT-TA providing
the highest ATBP and CM the highest ARC. We conclude that
for this particular scenario, we can design detectors that fulfill
the scenario goal while also providing a decent ATBP. Note
that the FF approach lacks any tunable parameter apart from
the window size j. This is the reason we cannot not match
its performance with the other approaches. It is therefore not
unexpected that it provides the worst performance in terms of
recall and precision in this case. Interestingly enough it has
the highest number for both ATBP and ARC. We attribute this
to its trigger happy nature.

Finally, in Figure 5 we show for a part of the workload
covering a spike the result of running the detectors using the
parameters described here and illustrate hits and misses for the
different detectors. The plot clearly shows how the FF detects
the spike early but is also prone to generate misses, whereas
the proposed methods detect the spike roughly at the same
time, while in some cases also generate some misses.

Method Recall Precision ATBP ARC Input Parameters

AR-TA 100 79.2 109.2 33.68 ts = 25 wl = 10
h = 7300 ν = 100

DS-TA 100 76.0 91.6 34.27
α = 0.2 β = 0.1
h = 3000 ν = 100
ts = 15

Diff 100 79.2 99 40.47 f = 0.02
h = 40 ν = 5

CM 100 79.2 101.9 44 λ = 0.95
h = 240 ν = 150

FF 89.47 31.12 133.4 51.5 j = 10

TABLE I
RESULTS FOR PERFORMANCE ANALYSIS
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Fig. 3. Result for AR-TA when varying wl and ts while h and ν are fixed.
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Fig. 4. Result for AR-TA when varying h and ν while wl and ts are fixed.
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Fig. 5. Hits and misses for the different detectors evaluated during and
after one of the spikes in the workload. Wide dotted vertical lines indicate
the manually identified spike interval. Alarms generated in the interval are
considered hits, while if outside as misses.

V. CONCLUSION

We derive and present detectors for cloud workload spikes
for online use. Our solutions rely on a combination of work-
load modeling using adaptive filtering techniques and the
CUSUM test. After evaluating our detectors on the FIFA
1998 World Cup workload we conclude that the proposed
solutions are viable for spike detection. Our investigation
reveals tradeoffs between being able to reliably detect all
spikes and generating false alarms, and between increased
detection time before each spikes peak and false alarms. These
tradeoffs must be considered when designing spike detectors
for cloud workloads. Future work will reveal the applicability
of the proposed approaches to other scenarios and workloads.
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