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Abstract:  

Though there is a very large literature examining whether energy use Granger causes 

economic output or vice versa this literature is fairly inconclusive. Almost all existing studies 

use relatively short time series or panels with a relatively small time dimension. Additionally, 

many recent papers continue to use what seem to be misspecified models. We apply Granger 

causality and cointegration techniques to a Swedish time series data set on energy and 

economic growth spanning 150 years to test whether increases in energy use and energy 

quality have driven economic growth. We show that these techniques are very sensitive to 

variable definition, choice of additional variables in the model, and sample periods. All of the 

following appear to make a finding that energy causes growth more likely: using multivariate 

models, defining variables to better reflect their theoretical definition, using larger samples, 

and including appropriate structural breaks. However, it is also possible that the relationship 

between energy and growth has changed over time and that results from recent smaller 

samples reflect this. Energy prices have a significant causal impact on both energy use and 

output.  
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1. Introduction 

Does growth in energy availability and use cause economic growth? Or does economic 

growth drive increasing energy consumption? There is a very large literature investigating 

these questions but it is fairly inconclusive (Stern, 2011). In this paper, we investigate these 

questions by applying Granger causality and cointegration techniques to a dataset covering 

150 years of Swedish economic history. This is the longest time series that has been used in 

the large literature on causality between energy and economic growth. We show that these 

techniques are very sensitive to variable definition, choice of additional variables besides 

energy and output, and sample periods used. All of the following appear to make a finding 

that energy causes growth more likely: using multivariate models, defining variables to better 

reflect their theoretical definition, using larger samples, and including appropriate structural 

breaks. However, it is also possible that the relationship between energy and growth has 

changed over time and that results from recent smaller samples reflect this. Also, energy 

prices have a significant causal impact on both energy use and output.  

Granger causality and cointegration methods have been extensively used to test for causal 

relations between the time series of energy, GDP, and other variables from the late 1970’s on 

(Kraft and Kraft, 1978; Ozturk, 2010). Early studies relied on Granger causality tests on 

unrestricted vector autoregressions (VAR) in levels of the variables, while more recent 

studies tend to use cointegration methods as the key variables are likely to be non-stationary 

and stochastically trending. Studies can also be distinguished by whether they use a bivariate 

or a multivariate framework.  

The results of early studies that tested for Granger causality using a bivariate model were 

generally inconclusive (Stern, 1993). Where there were nominally significant results, they 

mostly indicated that causality runs from output to energy. However, results differed across 

time periods, the countries investigated etc. Most economists believe that capital, labor, and 

technological change play a significant role in determining output, yet early studies implicitly 

assumed that energy is the only input to production. If this is not true, it will lead to omitted 

variables bias and in the case of stochastically trending variables non-cointegration and hence 

spurious and often sample dependent regression results (Stern and Common, 2001). In 

addition, all the samples used were small, which have higher inherent sampling variability, 

leading Stanley et al. (2010) to argue that we should simply discard most small sample 
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studies when reviewing an empirical literature. These factors may explain the very divergent 

nature of both the early literature and much of the more recent literature. 

In order to address the first of these issues, Stern (1993) tested for Granger causality in a 

multivariate setting using a VAR model of GDP, capital, and labor inputs, and a Divisia 

index of energy use in place of energy use measured in heat units. When both the multivariate 

approach and the quality adjusted energy index were employed, he found that energy Granger 

caused GDP.  

Yu and Jin (1992) conducted the first cointegration study of the energy-GDP relationship. 

Again, the results of subsequent research differ according to the regions, time frames, number 

of variables, and the definitions of inputs and outputs used. Stern (2000) estimated a 

cointegrating VAR for the variables included in Stern (1993). The analysis showed that there 

is a cointegrating relation between the four variables and that energy Granger causes GDP 

either unidirectionally or possibly through a mutually causative relationship. Warr and Ayres 

(2010) replicate this model for the U.S. using their measures of exergy and useful work in 

place of Stern’s Divisia index of energy use. They find both short and long run causality from 

either exergy or useful work to GDP but not vice versa. Oh and Lee (2004) and Ghali and El-

Sakka (2004) apply Stern’s (1993, 2000) methodology to Korea and Canada, respectively, 

coming to exactly the same conclusions, extending the validity of Stern’s results beyond the 

United States. Lee and Chang (2008) and Lee et al. (2008) use panel data cointegration 

methods to examine the relationship between energy, GDP, and capital in 16 Asian and 22 

OECD countries over a three and four decade period respectively. Lee and Chang (2008) find 

a long-run causal relationship from energy to GDP in the group of Asian countries while Lee 

et al. (2008) find a bi-directional relationship in the OECD sample. Taken together, this body 

of work suggests that the inconclusive results of earlier work are possibly due to the omission 

of non-energy inputs. By contrast, in recent bivariate panel data studies, Joyeux and Ripple 

(2011) find causality flowing from income to energy consumption for 56 developed and 

developing economies, while Chontanawat et al. (2008) find causality from energy to GDP to 

be more prevalent in the developed OECD countries compared to the developing non-OECD 

countries in a panel of 100 countries. 

Other researchers have estimated multivariate VAR models that also include energy prices. 

Hamilton (1983) and Burbridge and Harrison (1984) found that changes in oil prices 

Granger-cause changes in GNP and unemployment whereas oil prices are exogenous to the 

system. More recently, Blanchard and Gali (2008) used VAR models of GDP, oil prices, 
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wages, and two other price indices, to argue that the effect of oil price shocks has reduced 

over time. Hamilton (2009a) deconstructs their arguments to show that past recessions would 

have been mild or have merely been slowdowns if oil prices had not risen. Furthermore, he 

argues that the large increase in the price of oil that climaxed in 2008 was a major factor in 

causing the 2008-2009 recession in the US. However, because it is hard to substitute other 

inputs for energy, the short-run elasticity of demand for oil and other forms of energy is low 

and the main short-run effects of oil prices are expected to be through reducing spending by 

consumers and firms on other goods, services, and inputs rather than through reducing the 

input of energy to production (Hamilton, 2009a; Edelstein and Killian, 2009). Therefore, 

models using oil prices in place of energy quantities may not provide much evidence 

regarding the effects of energy use itself on economic growth. 

Using a panel vector error correction model (VECM) model of GDP, energy use and energy 

prices for 26 OECD countries (1978-2005), Costantini and Martini (2010) find that in the 

short-run energy prices cause GDP and energy use and that energy use and GDP are mutually 

causative. However, in the long run they find that GDP growth drives energy use and energy 

prices. Other researchers who model a cointegrating relation between GDP, energy, and 

energy prices for individual countries produce mixed results. For example, Glasure (2002) 

finds very similar results to Costantini and Martini (2010) for Korea, while Masih and Masih 

(1997) and Hondroyiannis et al. (2002) find mutual causation in the long run for Korea and 

Taiwan and Greece respectively. Following Stanley et al. (2010), we should probably put 

most weight on the largest sample study – that of Costantini and Martini (2010) - concluding 

that these models identify a demand function relationship where in the long run GDP growth 

drives energy use. 

Until very recently, all papers in this literature examined annual time series of a few decades 

at most, which is a small sample size for time series analysis, though researchers have also 

used panel data to try to increase statistical power. Two recent papers use much longer time 

series.1 Vaona (2012) tests for causality between Malanima’s (2006) data on Italian energy 

use and GDP from 1861 to 2000 using the Toda and Yamamoto (1995) procedure, the 

Johansen cointegration test, and Lütkepohl et al.’s (2004) cointegration test that allows for a 

                                                        
1 The downside of using larger samples is that it potentially increases heterogeneity. The data generating process 
may change over time for long time series and vary across countries in the case of panel data. Though both 
Stern and Kander (2012) and Vaona (2012) allow for structural breaks in the deterministic time trend, other 
parameters may also change. Similarly, though panel data studies allow for country effects, other parameters 
may also vary across countries. 
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shift in the mean of the process at an unknown time. Vaona disaggregates energy into 

renewable and non-renewable energy but only estimates bivariate VARs. The causality tests 

find mutual causation between non-renewable energy and GDP and from one measure of 

renewable energy to GDP. While the standard Johansen procedure does not find cointegration 

between GDP and non-renewable energy, the Lütkepohl et al. approach does find 

cointegration with a structural break in 1947.  

Stern and Kander (2012) estimate a model using 150 years of energy, gross output, labor, and 

capital data for Sweden. The model has two equations – a nonlinear constant elasticity of 

substitution production function for the logarithm of gross output and an equation for the 

logarithm of the ratio of energy costs to non-energy costs. Two specifications are estimated – 

one assumes that the rate of technological change was constant over the 150-year period and 

the other allows the rate to differ in each 50-year period. Using Choi and Saikkonen’s (2010) 

non-linear cointegration test they find that the latter model cointegrates but the former does 

not. This implies that there is a causal relationship between the variables, but the direction of 

causality is unknown. The current paper investigates this issue using the same data set.  

 

2. Granger Causality Testing 

As is well known, correlation alone does not imply causation and so, without additional 

information, simple static regression analysis of observational data can only be used to 

estimate the partial correlations between variables or to compactly represent the joint 

probability distribution (Chen and Pearl, 2012). In this context, researchers must use theory 

to establish potential causal mechanisms (Heckman, 2008; Gerring, 2010), determine if 

variables are truly exogenous, and ensure that there are no confounding omitted variables. If, 

the classical regression conditions do hold true, then the static regression model can be 

interpreted causally. More sophisticated techniques including Granger causality testing, 

instrumental variables regression, and the potential outcomes framework (Ferraro and 

Hanauer, 2011) can be used to determine causal relationships under weaker conditions, 

though some assumptions are still needed. 

Granger causality testing has been the most common approach to determining the causal 

validity of energy-output models. A variable x is said to Granger cause another variable y if 

past values of x help predict the current level of y given all other appropriate information. 
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This definition is based on the concept of causal ordering. Two variables may be 

contemporaneously correlated by chance but it is unlikely that the past values of x will be 

useful in predicting y, given all the past values of y and other relevant information, unless x 

does actually cause y in a philosophical sense. Similarly, if y in fact causes x, then given the 

past history of y it is unlikely that information on x will help predict y. However, where a 

third variable, z, drives both x and y, and is omitted from the conditioning information, x 

might still appear to drive y though there is no actual causal mechanism directly linking the 

variables. The simplest test of Granger causality requires estimating the bivariate VAR: 

 

yt = β1,0 + β1,i
i=1

p

∑ yt− i + β1,p + j
j=1

p

∑ xt− j + ε1t       (1) 

 

xt = β2,0 + β2,i
i=1

p

∑ yt− i + β2,p + j
j=1

p

∑ xt− j + ε1t       (2) 

where p is the number of lags that adequately models the dynamic structure so that the 

coefficients of further lags of variables are not statistically significant and the error terms ε 

are white noise but may be correlated across equations. Deterministic time trends can also be 

added to the model. If the p parameters 

 

β1,p + j  are jointly significant, then we can reject the 

null that x does not Granger cause y. Similarly, if the p parameters 

 

β2,i are jointly significant 

then the null that y does not Granger cause x can be rejected. There are several other variants 

of this Granger causality test including the Sims (1972) causality test and the Toda and 

Yamamoto (1995) procedure discussed below. 

Sargent (1979) and Sims (1980) introduced the VAR modeling approach as a method of 

carrying out econometric analysis with a minimum of a priori assumptions about economic 

theory (Qin, 2011). The VAR model generalizes the model given by equations (1) and (2) to 

a multivariate setting. Though a VAR cannot, due to limits on degrees of freedom, include all 

variables that may be causally related to the principal variable under investigation, some 

attempt can be made to include as many as possible. Standard multivariate Granger causality 

tests are identical to that described above except that there are lags of additional variables in 

the regression. The advantage of multivariate Granger tests over bivariate Granger tests is 

that they can help avoid spurious correlations. This is through adding additional variables that 

may be responsible for causing y or whose effects might obscure the effect of x on y 

(Lütkepohl, 1982; Stern, 1993). There may also be indirect channels of causation from x to y, 
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which VAR modeling could uncover. Tests can also be constructed to exclude the lags of 

variables from multiple equations (Sims, 1980). 

Of course, failure to reject the null hypothesis that x does not cause y, does not necessarily 

mean that there is in fact no causality. A lack of sensitivity could be due to a misspecified lag 

length, insufficiently frequent observations (Granger, 1988), too small a sample (Wilde, 

2012), omitted variables bias (Lütkepohl, 1982), or nonlinearity (Sugihara et al., 2012). 

When some or all of the variables are non-stationary, a standard Granger causality test on a 

VAR in levels is invalid as the distribution of the test statistic is not the standard chi-square 

distribution (Ohanian, 1988; Toda and Phillips, 1993). This means that the significance levels 

reported in the early studies of the Granger-causality relationship between energy and GDP 

may be incorrect, as both variables are generally integrated series. If there is no cointegration 

between the variables then the causality test should be carried out on a VAR in differenced 

data, while if there is cointegration, standard chi-square distributions apply when the 

cointegrating restrictions are imposed (Toda and Yamamoto, 1995). Toda and Yamamoto 

(1995) developed a modification of the standard Granger causality test on the variables in 

levels that is robust to the presence of unit roots. This method, described in detail below, adds 

additional lagged variables to the vector autoregression that are not restricted in the Granger 

causality test. Clarke and Mirza (2006) show that, despite the additional parameters, this 

approach shows little loss of power compared to the alternative of testing the restrictions on a 

VECM that imposes cointegrating restrictions. The latter can result in severe over-rejection 

of the null of non-causality due to the pre-testing for cointegration involved in its 

construction. Bauer and Maynard (2012) suggest an alternative approach where only one 

extra lag of the variable being tested for exclusion is added. This procedure is robust to a 

wide array of data generating processes including structural breaks in the explanatory 

variables but not to I(2) variables. They find that the reduction in parameters increases power 

across the data generating processes that they test in a Monte Carlo exercise. 

Nonlinear Granger causality testing procedures exist, such as the frequently used Hiemstra 

and Jones (1994) approach. The latter has been applied to test for nonlinear causality between 

energy and output (Chiou-Wei et al., 2008) but is not applicable to non-stationary data and 

has several other shortcomings (Hassani et al., 2010). Chiou-Wei et al. (2008) difference 

their data in order to apply the test, but this throws away the information on the long-run 

relationship between the variables. Hassani et al. (2010) present a method based on singular 
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spectrum analysis that they claim can cope with non-stationary series. Another kernel-based 

approach is developed by Sun (2008). However, these methods remain experimental or little 

used as yet and we do not use them in this paper. 

 

3. Data 

Some background on the Swedish economy will be useful for interpreting the data and the 

econometric results discussed below. Swedish industrialization and modern economic growth 

took off roughly around 1850 (Greasley et al., 2013), which is also the starting year for the 

analysis in this paper. Sweden went from being one of the poorest European economies in the 

early nineteenth century to one of the richest 150 years later.  

Sweden is a small open economy and exports have constituted a great part of its economic 

success. Natural resources, such as the charcoal-based Swedish bar iron were the traditional 

export good and completely dominated Swedish exports until the mid-nineteenth century. 

The upswing in industrial growth in Western Europe in the 19th Century, led to an expansion 

in Swedish exports in three staple goods – bar iron, wood, and oats. In order to connect 

Sweden’s vast natural resources with the international market, state-sponsored railways were 

initiated and built starting in the 1850s. From the1890s, the focus shifted towards new 

enterprises, which were closely related to the so-called Second Industrial Revolution. This 

meant that scientific knowledge and more complex engineering skills replaced the earlier 

dependence on natural resources. The electrical motor became especially important and new 

companies such as ASEA (later ABB) were formed that combined engineering skills with the 

large supply of hydropower in Sweden (Schön, 2008). 

Compared to many other industrialized nations, Sweden’s energy system was never very 

dominated by coal, but rather went from dependence on firewood in 1850 (roughly 75 per 

cent of energy according to Gales et al. 2007) to becoming relatively dependent on primary 

electricity. Sweden is well endowed with hydropower resources and great advances were 

made in the electricity infrastructure from the 1910s to the 1950s. The national electrical grid 

was integrated in the 1930s and the technology of high voltage transmission made it possible 

to supply industries with electricity at lower prices and with great regularity. In 2000, 

primary electricity constituted around 30 per cent of the energy consumed in the country, half 
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of which came from nuclear energy and half from hydropower (Gales et al. 2007). Reliance 

on oil came only after the Second World War.  

During the interwar period, when the rest of Europe was torn by world wars and depression, 

the Swedish economy fared relatively well. The post-war period saw rapid economic growth 

in all of Europe, and Sweden was no exception. In addition, this period also saw the 

cementation of the "Swedish Model" for the welfare state. The “Swedish Model” at this time 

was said to build on two main pillars: one the public responsibility for social security and the 

other regulation of labor and capital markets. As long as the export sectors grew, the model 

worked well. However, in the 1970s and early 1980s Sweden was hit by the oil crisis and 

faced subsequent problems with structural adjustment of the economy. Industries such as 

steel works, pulp and paper, shipbuilding, and mechanical engineering ran into crisis and the 

Swedish Model started to disintegrate. The labor and capital markets became deregulated and 

the expansion of public sector services came to an end. During the last decades of the 

twentieth century, Swedish economic policy converged to European norms and this 

facilitated the Swedish application for membership and final entrance into the European 

Union in 1995 (Schön, 2010). 

The data we use is identical to that used by Stern and Kander (2012) where a full description 

can be found. The energy data comes from Kander (2002) and the other data from the 

Swedish historical national accounts (Krantz and Schön, 2007). The variables considered in 

our models and tests are: Gross output (GRO), GDP, capital (K), labor (L), heat content of 

primary energy (HE), Divisia index of primary energy (DE),2 the Divisia energy price index 

deflated by the GDP deflator (PE), and the oil price in Swedish Krona deflated by the GDP 

deflator (PO). The reason for looking at the price of oil is that it is more exogenous than the 

energy price index. However, the series only starts in 1885. We transform all variables into 

logarithms. We use the Divisia energy index to take into account the increased productivity 

of energy over time due to the shift from coal and biomass to oil, natural gas, and primary 

electricity (Stern and Kander, 2012). 

                                                        
2 The heat content of primary energy is simply the total joules of the various forms of energy used in the 
economy before combustion of some fossil fuel and biomass to produce secondary electricity. Most electricity is 
primary (from nuclear, hydropower etc.) in Sweden. Divisia indexation computes a “volume index” of energy 
input taking into account shifts between fuels with different productivities or “quality” as reflected in their 
prices (see Stern, 2010).  
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The quality of the data, especially of the energy quantity data, is better for more recent 

decades. Therefore, we carry out unit root and causality tests for 1900-2000 and 1950-2000 

sub-periods as well as for the full 150-year period. 

Figure 1 presents the time paths of the key quantity variables. As all the variables are strongly 

trending they are highly correlated. Fluctuations and changes in the trend slope also appear to 

be correlated. Figure 2 compares the growth rates of the Divisia energy index (which is less 

volatile than heat units of energy series) and GDP. The two series are strongly correlated in 

the mid 20th Century. In the 19th Century the energy series is much less volatile than the GDP 

series and the reverse is true in the late 20th Century. The reason for this is that the 19th 

Century data are dominated by renewable energy and the way that this data was constructed 

from the original sources did not put a focus on annual fluctuations (Stern and Kander, 2012). 

The decline in energy’s cost share as the 20th Century progressed might explain the change in 

relative volatilities over the course of the century.  

The simple correlation between the rates of change in Figure 2 is 0.49, which is highly 

statistically significant (t = 6.89). The correlation between the rates of change is suggestive of 

a functional relationship but the direction of causation and the role of other variables are not 

indicated. 

Figure 3 shows the two price series - the real price of oil and the Divisia energy price index 

deflated by the GDP deflator. Oil is relatively expensive compared to the average energy 

carrier and its price is also much more volatile. In particular, the 1st and 2nd World Wars 

generated massive price spikes and a smaller spike follows the oil crisis of the 1970s. These 

two series are strongly correlated (r = 0.56). The direction of causation between these two 

series is pretty certain – oil prices are one component of the energy price index and are 

largely driven by global oil prices and exogenous disruptions such as the World Wars. 
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4. Econometric Methods 

4.1. Unit Root Tests 

First we test for unit roots assuming that are no structural breaks using the Phillips and Perron 

(1988) test (PP), which has a null of a unit root and the Kwiatkowski et al. (1992) test 

(KPSS), which has a null of stationarity. For the variables in log levels we estimate the 

following regression: 

 

yt = α + βt + γyt−1 + εt          (3) 

where y is the log of the variable of interest. The null hypothesis is that yt contains a unit root 

and so γ = 1. The PP test is a modified t-statistic for γ = 1. The alternative hypothesis is that yt 

is trend stationary with slope β. For the first differences we estimate: 

 

∆yt = α + γ∆yt−1 + ut          (4) 

so that the alternative hypothesis is levels stationarity. We use the default four lags to 

compute the standard errors used in the PP test statistic by the RATS procedure unitroot.src. 

We also test for unit roots assuming the presence of structural breaks. We assume both that 

the timing of the structural breaks is known – the breakpoints used by Stern and Kander 

(2012) - using Park and Sung’s (1994) unit root test and that the timing is unknown, a priori, 

using the tests developed by Lee and Strazicich (2003, 2004). We use the latter only on the 

full 1850-2000 sample. Park and Sung’s (1994) tests modify (3) and (4) to allow for breaks in 

the intercept and trend and to create test statistics that are invariant to the location of the 

breakpoints. Park and Sung (1994) provide the distribution of these test statistics for one or 

two breakpoints. Like Lee and Strazicich’s test, Park and Sung’s test allows for a structural 

break under the null hypothesis. For the log levels the alternative hypothesis we use is trend 

stationarity with breaks - Lee and Strazicich’s “break” model – while for the first differences 

of logs the alternative is levels stationarity with breaks - Lee and Strazicich’s “crash” model. 

We used the RATS procedure lsunit.src to compute the Lee and Strazicich tests and we wrote 

the code for the Park and Sung test ourselves in RATS. 

4.2. Granger Causality Tests 
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For all VAR models, including the cointegration models discussed in the next subsection, we 

select the optimal lag length, p, using the Akaike Information Criterion considering a 

maximum of four lags (Schwert, 1989). We use the Toda and Yamamoto (1995) procedure 

for testing for causality in the possible presence of unit roots and non-cointegration. We add 

additional lags of all variables to account for possible unit roots in the time series and 

compute the Wald test statistic for excluding only the first p lags of the variable of interest 

from the relevant equation. The model we estimate is: 

 

yt = γ j∆t jt + δ j t jt( )
j= 0

n

∑ + Π iyt− i
i=1

p

∑ + Π i+ p yt− p− i
i=1

d

∑ + εt      (5) 

where d is the maximal order of integration in the data and n is the number of structural 

breaks in the data. yt is the vector of m variables modeled in the VAR in year t and

 

εt  is the 

corresponding vector of disturbances. 

 

γ j  and 

 

δ j  are m x 1 vectors and the 

 

Π i are m x m 

matrices of regression coefficients. There are n-1 structural breaks.

 

t0 is a simple linear time 

trend and, therefore its first difference, 

 

∆t0, is a constant term. For j > 0,

 

∆t j is equal to zero 

up to and including the year of the structural break and unity after it. This means that the 

slope of the time trend in period j is 

 

δk
k= 0

j

∑  and similarly for the level of the intercept in period 

j. This formulation of the trend and intercept components is intended to allow for a linear 

time trend in the long-run relationship if the model is cointegrated, as well as drift terms in 

the short run dynamics while allowing both to undergo structural change. This trend is 

intended to model a possible unobserved technology trend. It is not intended to allow for a 

shift in the mean of the series and, therefore, it differs from the formulation of the 

deterministic components in Joyeux (2007). 

Though parameter estimates are identical whether the system is estimated using OLS or a 

seemingly unrelated regression estimator (SUR), following Toda and Yamamoto (1995) and 

Clarke and Mirza (2006) we test the restrictions on the system of equations as a whole rather 

than using the traditional F-test on a single equation. To test whether variable yj causes 

variable yk , where the superscripts indicate individual variables in the vector y, we need to 

test that 

 

Π1
kj = Π2

kj = ...= Π p
kj = 0, where 

 

Π i
kj  is the element of the matrix 

 

Π i  in the kth row 

and jth column. We stack the matrices in (5) into a single matrix . 

 

Π = vec Π1,Π2,...,Π p +d[ ]
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Then define R as a selector matrix so that 

 

RΠ = vec Π1
kj ,Π2

kj ,...,Π p
kj[ ]. The null hypothesis can 

now be expressed as 

 

RΠ = 0 and the Wald test statistic is: 

 

W = ˆ Π 'R' R ˆ V R'[ ]−1
R ˆ Π          (6) 

where hats indicate estimated parameters and 

 

ˆ V  is the estimated covariance matrix of Π 

using the standard formula for seemingly unrelated regressions with one iteration of GLS. 

The test statistic is distributed asymptotically as chi-square with p degrees of freedom. 

4.3. Cointegration Modeling 

Finally, we test for cointegration using the Johansen procedure allowing for both 

deterministic trends and deterministic trends with structural breaks using the methodology of 

Johansen et al. (2000). The purpose of this analysis is to see if there is a difference between 

linear cointegration analysis and the Stern and Kander’s (2012) non-linear cointegration 

analysis as well as to test for the direction of causality in the cointegration framework.3 We 

estimated the VECM models using E-Views implementing the structural breaks and 

associated cointegration tests using code provided by David Giles.4 

 

5. Results 

5.1. Unit Root Tests 

Table 1 presents the results of the Phillips-Perron (PP) and Park and Sung (PS) unit root tests, 

Table 2 the Lee and Strazicich (LS) unit root tests, and Table 3 the KPSS unit root tests. 

Looking first at the PP tests on the log levels, the null of a unit root cannot be rejected for any 

                                                        
3 Testing for causality using a t-test on the adjustment parameters is not a formally appropriate test (Clarke and 
Mirza, 2006) but one that is widely used in the literature. First, the cointegration test is a pre-screening 
procedure. If cointegration is found between two variables then there must be Granger causality in at least one 
direction between them (Engle and Granger, 1987). Second, the correct causality test should jointly restrict the 
long-run coefficient of the variable in question, the adjustment parameter, and the associated first differences in 
the appropriate equation. Despite this, we report these tests for some cointegrated models with this strong 
“health warning”. 

4 The files - relating to the “Cointegrated at the hips” blogpost - are available at: 
http://davegiles.blogspot.com.au/p/code.html. 

http://davegiles.blogspot.com.au/p/code.html
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series when for either the complete period 1850-2000 or either of the sub-periods.5 However, 

we can reject the unit root null for all the differenced series except for capital in the two sub-

periods. Allowing for structural breaks in 1900 and 1950 (PS tests) does not change this 

picture substantially. Neither does allowing endogenous selection of the breakpoints (LS 

tests, Table 2). Capital appears to be a possibly I(2) series and the other series I(1). 

The KPSS test (Table 3) easily rejects the null of trend stationarity for all the variables in log 

levels in all time periods. For the first differences of the variables, we cannot reject the null of 

levels stationarity for any variable for the full sample or the 1900-2000 subsample. However, 

levels stationarity can be rejected for several variables in the 1950-2000 period. Therefore the 

Toda-Yamamoto test appears to need up to two extra lags. 

The endogenous breakpoints (Table 2) differ across variables and the levels and first 

difference specifications. We also found that the number of lags included in the procedure 

affected the choice of breakpoint. We also carried out LS tests with a single structural break 

(Lee and Strazicich, 2004) and three structural breaks. These resulted in a different selection 

of breakpoints that also varied across variables. Looking at Table 2, the obvious break in the 

energy quantity series following the oil price shock in the early 1970s only shows up in the 

first differences for DE and PE as well as for GDP and K. In levels these series have breaks 

in the early- or mid- 1960s, which are not at all visible in the data (Figure 1). Given the 

disagreement across these tests we use exogenous breakpoints – the 1900 and 1950 

breakpoints used by Stern and Kander (2012) and 1916 (First World War) and 1973 (Oil 

Crisis) breakpoints, which are apparent in the energy series.  

5.2. Toda-Yamamoto Causality Tests 

We start by estimating and testing the simple bivariate model for GDP and the heat content of 

primary energy. Each equation also includes a constant and a simple linear time trend as a 

proxy for technological change. We find (first two columns of Table 4) that GDP causes 

energy use but not vice versa in each sub-period. When we replace the heat content of energy 

with the Divisia index we find that there is causality from energy to GDP in the full sample 

(p=0.015) and causality from GDP to energy in the 1950-2000 subsample but no causality in 

                                                        
5 This contrasts with the finding of International Monetary Fund (2011, 91-92) that real oil prices from 1875 to 
2010 are I(0). Our Swedish price series appears much less volatile in the short-run than their US dollar real oil 
price series. On the other hand, Hamilton (2009b) argues that real oil prices follow a random walk with no drift. 
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either direction for the 1900-2000 sub-period. This shows the sensitivity of bivariate tests to 

the definition of variables. 

Next, we estimate a multivariate VAR for GDP, capital, labor, and Divisia energy. This 

shows causality from energy to GDP for the full period (p=0.031) and for 1900 to 2000 

(p=0.037). But for the 1950-2000 period GDP causes energy (p=0.000). When GDP is 

replaced with gross output, energy causes output in the full period and output causes energy 

in the 1950-2000 period at the 10% significance level while there is no causation in either 

direction in the 1900-2000 subsample. So these multivariate results are also somewhat 

ambiguous. 

The final two columns of the table allow for a trend break in 1900 and 1950. This mostly 

does not change the results. However, it does reduce the significance of energy in the full 

period in all three models with the Divisia energy index and dramatically reduces the 

significance of GDP in the full period in the first model. 

Table 5 shows the results of estimating VARs including GDP and the quantity and price of 

energy. The Divisia price index Granger causes energy use in all samples. GDP causes 

energy use in the 1950-2000 subsample but the significance level is much lower in the full 

sample and the 1900-2000 subsample. So there is only tentatively a demand function 

relationship in these data in the full sample. The Divisia price index Granger causes GDP in 

the full period and in the 1900-2000 sub-period. The quantity of energy has no significant 

effect on GDP. In the full sample, the Divisia price index is, however, endogenous with 

respect to energy quantity (p=0.019) and GDP (p=0.053) but this relationship does not hold 

in the sub-samples though GDP causes prices in the 1950-2000 subsample (p=0.072). 

Next, we replace the price of energy by the price of oil and the Divisia energy quantity index 

by the heat equivalent of energy. The price of oil is clearly exogenous as we would expect. 

The other main differences are that GDP causes energy in all samples and price does not 

cause energy use in the 1950-2000 subsample. There is also more evidence of causation from 

energy to GDP. 

When a trend with structural breaks is used the results are very similar. The main difference 

is that now GDP causes Divisia energy in each sample so that there is stronger support for the 

demand function interpretation. 
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We also added capital and labor to these latter models to produce a composite of the Table 4 

and Table 5 models. The results were very similar to the models in Table 5. The price of 

energy plays the dominant role in the models and capital and labor are mostly insignificant. 

We also estimated all the models with structural breaks in 1916 and 1973 instead of 1900 and 

1950. The results were similar with generally lower significance levels. 

5.3. Linear Cointegration Analysis 

We estimate vector error correction models for capital, labor, energy, and output measuring 

energy using either heat units or the Divisia index and output using GDP or gross output. We 

also estimate models with and without linear trends in the cointegration space and with and 

without structural breaks. Finally, some models include the Divisia energy price index and 

others do not. We assume that all variables are I(1). The results of the Johansen trace statistic 

tests for the number of cointegrating vectors are presented in Tables 6-11 and coefficient 

estimates for some of the models that passed the cointegration tests are presented in Tables 

12 and 13. 

The models in both Tables 6 and 7 are estimated for two specifications of the deterministic 

components: under the assumption of an unrestricted constant term in the VAR but no linear 

trends in the cointegrating relation (denoted as case 3 in Juselius, 2006, p.100) and under the 

assumption that there is a linear trend in the cointegration space (denoted as case 4 in 

Juselius, 2006). In tables 8 to 11 we allow for structural breaks in the intercept and in the 

linear trend of the cointegration relation and so we only estimate the models that allow for 

linear trends (the case 4 model). Each model uses 2 lags in the levels as suggested by the 

Akaike information criterion. 

As seen in Table 6, the null hypothesis of no cointegration cannot be rejected at the 5% 

significance level in any model for either the full sample or the two subsamples. However, 

for the model with the Divisia index of energy and gross output allowing for a trend in the 

cointegration relation, we come very close to rejection of the null of non-cointegration at 5% 

levels in the full sample (the trace statistic of 62.7 is very close to the critical value of 62.99). 

At the 10% significance level the null of non-cointegration can be rejected while the 

hypothesis of at most one cointegrating relation cannot be rejected. Of course, more than one 

false rejection at the 10% level would be expected when 24 tests are carried out. 
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The models in Table 7 are the same as in Table 6 except that the price of energy is included 

alongside the other four variables. In the full sample, we can formally reject the null of zero 

cointegrating vectors for two of the eight models at the 10% level, while several of the 

models are very close to being significant at the 10 % level. Taking the low power of the 

Johansen test into account, this could suggest at least one cointegration relation. In the 1950-

2000 subsample, we can reject the null of non-cointegration at either the 5% or 10% level for 

all models with a trend in the cointegration space despite the expected low power of the test 

in a sample of this size. 

We also test for cointegration in the presence of a trend that is allowed to change slope every 

50th year. Johansen et al. (2000) derive the formulae for simulating the asymptotic 

distribution in the presence of structural breaks. We use the critical values that correspond to 

the model that Johansen et al. (2000) call the Hl(r) test, which means that we assume a 

structural change in both the unrestricted constant and the slope of the trend in the 

cointegration relation. The distribution of the critical values depends on the proportion of the 

way through the sample that the break occurs. The new critical values were calculated using 

the code described and supplied by Giles and Godwin (2011). Table 8 presents the trace test 

statistics and the critical values for this test with structural breaks in 1900 and 1950 for the 

model without energy prices. Adding structural breaks every 50th year does not increase the 

rate of rejection of the null hypothesis of non-cointegration. On the contrary, the null 

hypothesis of no cointegration cannot be rejected in any model. In Table 9 we add energy 

prices to this model but the results stay the same: the null hypothesis of zero cointegration 

relations cannot be rejected. 

Still, allowing for a structural break in the trend every 50th year is arbitrary. In Table 10 we 

conduct a similar analysis with the four variables from the production function framework 

but allow for structural breaks in 1916 and 1973 instead of 1900 and 1950. As seen from the 

table, the null hypothesis of no cointegration can now be rejected at the 10 % level in the 

model in which Divisia energy and gross output were used together with capital and labor. 

This finding indicates that both the definition of variables and the choice of structural breaks 

in the cointegration relation can have an important effect on the results. In Table 11 we add 

energy prices to the analysis in Table 10. We are now able to reject the null of no 

cointegration in all the models, but the test still only suggests at most one cointegration 

relation. In conclusion, the Johansen test for cointegration in a multivariate setting in a linear 
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model only picks up a long-run cointegrating relationship between the variables in cases 

where the structural breaks in the long-run relations are carefully chosen and the variables 

carefully defined.  

In Tables 12 and 13 we report estimates of the cointegrating vector, β, and the adjustment 

parameters, α, for the models where we find cointegration in Tables 7 and 11. In Table 7 we 

found one cointegrating vector at at least the 10% significance level for each model we tested 

for the 1950 to 2000 period. We found cointegration at at least the 10% significance level for 

all models in Table 11, which cover the entire 1850-2000 period allowing for two structural 

breaks. We rejected non-cointegration in further isolated cases but do not report further 

results for those models, which might simply be cases of Type 1 error. We normalized the 

estimates of the cointegrating vectors on the energy variable and do not report the constant 

term or any of the trend terms for the model with structural breaks. 

Capital is not significant in any of the long-run relationships in Table 12 but energy prices are 

highly significant in each, and labor, output, and the trend term are highly significant for the 

first two models. Output, energy, prices, and the time trend have the expected signs. If we 

interpret the labor variable as a proxy for population then the output variable can be 

interpreted as the effect of income per capita, while the labor variable is the effect of 

increasing population while reducing income per capita. Therefore, the effect of population 

alone is the sum of these two elasticities. For the first two models income per capita has a 

greater than unit elasticity while the implied elasticity of population is rather small but 

positive. The elasticity of demand with respect to prices is very inelastic (0.28 to 0.38). 

Energy use declines autonomously at a rate of 1.4% to 1.8% per annum. The models for 

Divisia energy show much lower but less precisely estimated income per capita elasticity and 

a close to unit implied population elasticity. The elasticity of energy demand with respect to 

prices is less inelastic (0.64 to 0.73) and the autonomous rate of reduction of energy use is 

lower too. 

The adjustment parameter, α, is highly significant and negative for energy as expected in 

each model in Table 12, implying that energy is endogenous. Output has a significant 

adjustment parameter at the 5 or 10% level in the first three models but not in the fourth. 

Only one other variable in one model – the energy price in the third model has an adjustment 

parameter that is significant at the 10% level. These causality test results conform well to our 

findings using the Toda-Yamamoto test in Tables 4 and 5. 
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The results in Table 13 are much harder to interpret, probably because most variables are 

now endogenous. Capital is only significant in the third model, while prices are only 

significant in the first. Population now has a net negative effect on energy use, which is not 

intuitive, while the income elasticity varies from 0.59 to 0.81. In the first two models all 

variables apart from capital are endogenous. In the final two models the adjustment 

coefficient for output is also insignificant. The results for the final model results are similar to 

the causality tests for the most similar model in Table 5 except that here energy prices do not 

cause energy use. 

 

6. Discussion and Conclusions 

Review of the literature on the time series analysis of energy and economic growth shows 

that multivariate models that include capital and perhaps labor inputs and/or improved 

measures of the energy input tend to find causality from energy to GDP. Results are more 

mixed for bivariate models. Models with oil prices, energy, and output tend to find that in the 

long-run GDP growth drives energy use while energy prices are exogenous at least in the 

short-run. 

As we would expect, most of the Swedish time series variables investigated are strongly 

trending and all have stochastic trends. As a result there are strong correlations among them, 

which do not necessarily say anything about causality. 

A simple bivariate energy and GDP VAR model found causation from GDP to energy but 

this was reversed in the full sample period when we used a Divisia index of energy. But we 

found causality from GDP to energy in the 1950-2000 subsample and no causality in the 

1900-2000 subsample. A multivariate model that included capital and labor inputs also 

showed causality from energy to GDP in the 1850-2000 and 1900-2000 samples but from 

GDP to energy in the 1950-2000 sample. These results for the most recent period are 

intriguing because Stern and Kander (2012) find that the contribution of energy to economic 

growth was much greater in the 19th and early 20th Centuries than in the late 20th Century. As 

the cost share of energy fell its relative contribution to production fell too. 

The only other long-term study of energy-growth causality (Vaona, 2012) found mutual 

causation between non-renewable energy and GDP and from one measure of renewable 
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energy to GDP using bivariate models. Non-cointegration between GDP and renewable 

energy could only be rejected when a structural break was allowed. 

Our VAR models of GDP, energy quantity, and energy prices mostly find that energy prices, 

and particularly oil prices, are exogenous, that prices have a more significant impact on GDP 

than energy quantities, and that GDP and energy prices drive energy use. But the significance 

of the effect of energy prices on GDP was also attenuated in the 1950-2000 period. 

We find that the Granger causality technique is very sensitive to variable definition, choice of 

additional variables in the model, and sample periods. Better results can be obtained by using 

multivariate models, defining variables to better reflect their theoretical definition, and by 

using larger samples. A lot fewer significant relationships were found in the 1950-2000 

sample than in the two longer samples. Of course, it is hard to know if that is due to the 

smaller sample size or to changes in the nature of the relationship over time. It is likely that 

IV and other causal techniques also are subject to similar vagaries of specification. 

We also estimated VECM models using the Johansen procedure allowing for both simple 

linear trends and time trends with structural breaks in the long-run relations. We found that a 

model that both includes energy prices in addition to output and the three factors of 

production and has structural breaks in 1916 and 1973 allows us to find at least one 

cointegrating vector. We also found cointegration for the 1950-2000 subsample for models 

with energy prices and a simple linear trend. Directions of causality in the long-run relations 

of the VECM models quite closely matched those found with the Granger causality tests. The 

long-run relationship seems to identify an energy demand model. However, VECMs that do 

not include energy prices and have no structural breaks or structural breaks at other times 

only find cointegration for a few specifications, which could simply be explained by type 1 

error.  

This is in contrast to the findings of Stern and Kander (2012) who estimate a static non-linear 

production function model. They found that when arbitrary structural breaks in the time trend 

every fifty years that represent a varying rate of technological change are allowed, the null of 

cointegration could not be rejected by the Choi and Saikkonen (2010) non-linear 

cointegration test. But when a constant rate of technological change was assumed the null 

was rejected. This suggests that the long-run relationship between energy and output is in fact 

non-linear due to the low elasticity of substitution between energy and other inputs. Perhaps 
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including energy prices in the model is a proxy for the changes in cost shares in the non-

linear model. 
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Table 1. Phillips and Perron and Park and Sung Unit Root Tests 
 

Variable Form Log Levels First 
Differences of 
Logs 

Log Levels First 
Differences of 
Logs 

H0 Unit Root Unit Root Unit Root Unit Root 

H1 Trend 
Stationary 

Levels 
Stationary 

Trend 
Stationary 

Levels 
Stationary 

1850-2000 No Structural Breaks 1850-2000 with Structural 
Breaks in 1900 and 1950 

GRO -2.03 -13.15 -3.18 -13.86 
GDP -2.15 -12.26 -2.72 -12.36 

K -1.19 -3.52 0.24 -3.08 
L -0.87 -9.89 -3.15 -11.87 

HE -2.50 -15.71 -4.08 -15.96 
DE -1.83 -12.59 -2.60 -11.99 
PE -2.52 -13.23 -4.00 -13.85 
PO -2.55 -7.40 -2.66 -8.26 
1900-2000 No Structural Breaks 1900-2000 with Structural 

Break in 1950 
GRO -1.93 -9.16 0.15 -7.66 
GDP -1.60 -8.80 0.10 -7.08 

K -0.73 -2.27 0.30 -1.70 
L -0.85 -6.91 -0.05 -7.59 

HE -2.17 -12.92 -1.81 -11.59 
DE -0.48 -10.63 -0.94 -8.65 
PE -1.45 -10.18 -2.02 -7.79 
PO -2.39 -6.93 -2.28 -7.47 

1950-2000  
GRO -0.99 -4.48   
GDP -1.14 -3.75   

K -0.02 -1.02   
L -1.90 -3.60   

HE -1.28 -7.32   
DE -1.10 -6.75   
PE -1.67 -4.53   
PO -2.65 -5.22   

Notes: For definition of variables see the main text. For the price of oil the first 
observation is for 1885. Values significant at the 5% level are in bold. For the 
trend stationarity tests the critical value for the Phillips-Perron test at the 5% level 
is -3.45. For the Park and Sung test the critical values are -4.15 for one structural 
break and -4.75 for two structural breaks. For the levels stationarity tests the 
critical value for Phillips-Perron is -2.89 while for the Park and Sung tests they are 
-3.33 and -3.72. 
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Table 2. Lee and Strazicich Unit Root Tests  
 

Variable 
Form 

Log Levels First Differences of Logs 
 

H0 Unit Root Unit Root 
 

H1 Trend Stationary, “Break” Levels Stationary, “Crash” 
 

 
Test Statistic 

Breakpoint 
1 

Breakpoint 
2 Test Statistic 

Breakpoint 1 Breakpoint 2 

GRO 
-3.97 

1882 1961 -6.26 1890 
1945 

GDP 
-4.16 

1882 1961 -5.44 1904 
1970 

K -4.12 1925 1962 -3.61 1934 1974 
L 

-3.55 
1885 1936 -5.61 1890 

1942 
HE 

-5.14 
1948 1978 -5.45 1923 

1980 
DE 

-3.60 
1912 1959 -6.22 1945 

1973 
PE 

-4.86 
1912 1965 -5.75 1928 

1973 
PO 

-4.76 
1910 1950 -5.90 1921 

1941 
Notes: For definition of variables see the main text. For the price of oil the first observation is for 
1885. Values significant at the 5% level are in bold. Exact critical values for the trend stationarity 
test depend on the location of the breakpoints and vary from -5.59 to -5.74. For the levels 
stationarity test the critical value is -3.84. 
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Table 3. KPSS Unit Root Tests 
 

Variable Log Levels Log First Differences 
H0: Levels 
Stationary 

H0: Trend 
Stationary  

H0: Levels 
Stationary 

H0: Trend 
Stationary  

1850-2000 
GRO 3.10 0.58 0.23 0.08 
GDP 3.11 0.50 0.15 0.09 

K 3.09 0.37 0.19 0.18 
L 3.08 0.46 0.39 0.06 

HE 3.04 0.37 0.08 0.08 
DE 3.02 0.59 0.41 0.26 
PE 2.65 0.26 0.09 0.09 
PO 0.73 0.17 0.07 0.04 

1900-2000 
GRO 2.12 0.22 0.09 0.09 
GDP 2.12 0.21 0.12 0.11 

K 2.12 0.28 0.31 0.31 
L 2.01 0.45 0.31 0.06 

HE 2.06 0.21 0.10 0.10 
DE 2.09 0.25 0.30 0.21 
PE 1.64 0.26 0.17 0.07 
PO 0.63 0.19 0.06 0.06 

1950-2000 
GRO 1.09 0.27 0.53 0.10 
GDP 1.08 0.27 0.48 0.10 

K 1.09 0.29 0.97 0.10 
L 0.83 0.20 0.12 0.05 

HE 0.91 0.26 0.59 0.07 
DE 0.93 0.28 0.82 0.08 
PE 0.26 0.22 0.35 0.07 
PO 0.75 0.19 0.33 0.08 

Notes: For definition of parameters and variables see the main text. Values significant at 
the 5% level are in bold. For the price of oil the first observation is for 1885. 
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Table 4. Causality Tests: Production Function Models 
 

 Simple Time Trend Time Trend with Structural 
Breaks 

Model Period Energy  
->  
GDP 

GDP  
->  
Energy 

Energy  
->  
GDP 

GDP  
->  
Energy 

Bivariate GDP 
& HE 

1850-
2000 

0.0123 
(0.994) 

8.8298 
(0.012) 

0.0341 
(0.853) 

0.6819 
(0.409) 

1900-
2000 

1.7882 
(0.181) 

10.341 
(0.001) 

1.8056 
(0.179) 

9.0543 
(0.003) 

1950-
2000 

0.3247 
(0.850) 

14.343 
(0.001) 

  

Bivariate GDP 
& DE 

1850-
2000 

5.8844 
(0.015) 

0.5195 
(0.471) 

6.3337 
(0.042) 

3.0376 
(0.219) 

1900-
2000 

1.4505 
(0.228) 

0.2129 
(0.644) 

4.6809 
(0.096) 

0.9316 
(0.394) 

1950-
2000 

0.2742 
(0.872) 

10.1098 
(0.006) 

  

Multivariate 
GDP, DE, K, L 

1850-
2000 

6.9394 
(0.031) 

1.4469 
(0.485) 

5.3801 
(0.068) 

2.8490 
(0.241) 

1900-
2000 

6.5671 
(0.037) 

0.9707 
(0.615) 

4.3018 
(0.116) 

0.9894 
(0.372) 

1950-
2000 

2.0888 
(0.719) 

19.5444 
(0.000) 

  

Multivariate 
GRO, DE, K, L 

1850-
2000 

6.6914 
(0.035) 

0.9950 
(0.498) 

5.7733 
(0.056) 

0.4030 
(0.668) 

1900-
2000 

3.0552 
(0.217) 

2.2524 
(0.325) 

2.8161 
(0.245) 

1.4682 
(0.480) 

1950-
2000 

9.7121 
(0.045) 

18.1519 
(0.001) 

  

Notes: All variables are in log levels and all equations include a constant and a time 
trend as specified. Statistics are chi-square statistics for excluding the first p lags of the 
variable listed first in the equation of the variable listed second. Significance levels in 
parentheses. Structural breaks are in the trend and intercept in 1900 and 1950. 
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Table 5. Causality Tests: Demand Function Models 
 

Model Period Energy  
->  
GDP 

Price 
->  
GDP 

GDP  
->  
Energy 

Price 
->  
Energy 

GDP  
->  
Price 

Energy  
->  
Price 

GDP, DE, PE, 
Simple Trend 

1850-
2000 

1.2242 
(0.542) 

29.131 
(0.000) 

4.5628 
(0.102) 

12.775 
(0.002) 

5.8744 
(0.053) 

7.9718 
(0.019) 

1900-
2000 

6.5279 
(0.163) 

26.418 
(0.000) 

6.3804 
(0.172) 

31.402 
(0.000) 

3.699 
(0.448) 

6.2954 
(0.178) 

1950-
2000 

0.5031 
(0.777) 

2.4693 
(0.290) 

11.458 
(0.003) 

13.787 
(0.001) 

5.2602 
(0.072) 

1.5143 
(0.469) 

GDP, HE, PO, 
Simple Trend 

1850-
2000 

2.4696 
(0.116) 

10.465 
(0.001) 

5.8271 
(0.016) 

7.5631 
(0.006) 

0.0148 
(0.903) 

0.2500 
(0.617) 

1900-
2000 

3.3500 
(0.187) 

7.5522 
(0.023) 

5.7254 
(0.057) 

7.4194 
(0.024) 

1.1222 
(0.571) 

2.5951 
(0.273) 

1950-
2000 

3.3911 
(0.066) 

2.6685 
(0.102) 

11.187 
(0.001) 

1.5898 
(0.207) 

0.0008 
(0.977) 

0.0730 
(0.787) 

GDP, DE, PE, 
Trend with 2 
Structural Breaks 
(1900, 1950) 

1850-
2000 

2.4803 
(0.289) 

28.691 
(0.000) 

9.2418 
(0.010) 

11.133 
(0.004) 

4.7681 
(0.092) 

5.5780 
(0.061) 

1900-
2000 

7.7194 
(0.102) 

28.025 
(0.000) 

15.590 
(0.004) 

31.645 
(0.000) 

5.785 
(0.216) 

9.2770 
(0.055) 

GDP, HE, PO, 
Trend with 2 
Structural Breaks 
(1900, 1950) 

1850-
2000 

2.1269 
(0.145) 

9.5089 
(0.002) 

7.0704 
(0.008) 

8.5365 
(0.003) 

0.0228 
(0.880) 

0.0450 
(0.832) 

1900-
2000 

2.6338 
(0.268) 

5.9331 
(0.051) 

7.3232 
(0.026) 

10.641 
(0.005) 

0.3808 
(0.827) 

0.7989 
(0.671) 

Notes: All variables are in log levels and all equations include a constant and a linear time 
trend. The test statistics are F statistics with p-values given in parentheses 
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Table 6. Johansen Test for Cointegration, No Structural Breaks 

 

 Unrestricted constant 
Unrestricted constant & linear trend in 

cointegration space 

Variables 

# CI 
vectors 
under 

H0 
Trace 
stat 

5 % 
Crit. 
Val 

10 % 
Crit. 
Val. 

Concl
usion 

Trace 
stat 

5 % 
Crit. 
Val. 

10 % 
Crit. 
Val. Conclusion 

1850-2000 
GRO, HE, 

K, L 
0 37.43 47.21 44.49 H0 47.98 62.99 60.08 H0 

≤ 1 18.98 29.80 27.06 H0 26.09 42.92 39.75 H0 
GDP, HE, 

K, L 
0 33.02 47.21 44.49 H0 43.95 62.99 60.08 H0 

≤ 1 16.20 29.39 27.06 H0 24.73 42.92 39.75 H0 

GRO, DE, 
K, L 

0 41.04 47.21 44.49 H0 62.70 62.99 60.08 
Reject H0 

@ 10%  
≤ 1 18.69 29.79 27.06 H0 29.76 42.44 39.75 H0 

GDP, DE, 
K, L 

0 39.29 47.21 44.49 H0 55.93 62.99 60.08 H0 
≤ 1 20.03 29.79 27.06 H0 32.56 42.92 39.75 H0 

1900-2000 
GRO, HE, 

K, L 
0 34.73 47.21 44.49 H0 43.55 62.99 60.08 H0 

≤ 1 14.90 29.80 27.06 H0 20.89 42.92 39.75 H0 
GDP, HE, 

K, L 
0 32.37 47.21 44.49 H0 41.56 62.99 60.08 H0 

≤ 1 17.05 29.39 27.06 H0 21.38 42.92 39.75 H0 
GRO, DE, 

K, L 
0 38.79 47.21 44.49 H0 54.18 62.99 60.08 H0 

≤ 1 17.28 29.79 27.06 H0 29.38 42.44 39.75 H0 
GDP, DE, 

K, L 
0 31.21 47.21 44.49 H0 48.98 62.99 60.08 H0 

≤ 1 15.98 29.79 27.06 H0 25.99 42.92 39.75 H0 
1950-2000 

GRO, HE, 
K, L 

0 31.49 62.99 60.08 H0 47.44 62.99 60.08 H0 
≤ 1 17.60 42.92 39.75 H0 27.48 42.92 39.75 H0 

GDP, HE, 
K, L 

0 32.91 62.99 60.08 H0 53.54 62.99 60.08 H0 
≤ 1 18.79 42.92 39.75 H0 27.73 42.92 39.75 H0 

GRO, DE, 
K, L 

0 30.39 62.99 60.08 H0 48.03 62.99 60.08 H0 
≤ 1 16.24 42.44 39.75 H0 27.85 42.44 39.75 H0 

GDP, DE, 
K, L 

0 31.06 62.99 60.08 H0 50.06 62.99 60.08 H0 
≤ 1 17.16 42.92 39.75 H0 27.93 42.92 39.75 H0 
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Table 7. Johansen Test for Cointegration, No Structural Breaks, Energy Price Included 
 

 Unrestricted constant 
Unrestricted constant & linear trend 

in cointegration space 

Variables 

# CI 
vectors 
under 

H0 
Trace 
stat 

5% 
Crit. 
Val 

10% 
Crit. 
Val. 

Conc-
lusion 

Trace 
stat 

5% 
Crit. 
Val. 

10% 
Crit. 
Val. 

Conc-
lusion 

1850-2000 

GRO, HE, 
K, L, PE 

0 68.34 69.81 65.81 
Reject H0 

@ 10%  83.7 88.8 84.38 H0 
≤ 1 39.46 47.85 44.49 H0 50.04 63.88 60.08 H0 

GDP, HE, 
K, L, PE 

0 63.90 69.81 65.81 H0 81.65 88.8 84.38 H0 
≤ 1 34.16 47.85 44.49 H0 50.75 63.88 60.08 H0 

GRO, DE, 
K, L, PE 

0 61.88 69.81 65.81 H0 81.65 88.8 84.38 H0 
≤ 1 29.90 47.85 44.49 H0 43.93 63.88 60.08 H0 

GDP, DE, 
K, L, PE 

0 66.77 69.81 65.81 
Reject H0 

@ 10%  83.72 88.8 84.38 H0 
≤ 1 31.94 47.85 44.49 H0 47.57 63.88 60.08 H0 

1900-2000 

GRO, HE, 
K, L, PE 

0 65.63 69.81 65.81 
Reject H0 

@ 10%  76.13 88.8 84.38 H0 
≤ 1 33.65 47.85 44.49 H0 43.65 63.88 60.08 H0 

GDP, HE, 
K, L, PE 

0 66.73 69.81 65.81 
Reject H0 

@ 10% 80.44 88.8 84.38 H0 
≤ 1 33.64 47.85 44.49 H0 46.68 63.88 60.08 H0 

GRO, DE, 
K, L, PE 

0 59.49 69.81 65.81 H0 80.96 88.8 84.38 H0 
≤ 1 31.27 47.85 44.49 H0 46.75 63.88 60.08 H0 

GDP, DE, 
K, L, PE 

0 61.08 69.81 65.81 H0 82.38 88.8 84.38 H0 
≤ 1 31.90 47.85 44.49 H0 48.64 63.88 60.08 H0 

1950-2000 

GRO, HE, 
K, L, PE 

0 65.21 69.81 65.81 H0 86.40 88.8 84.38 
Reject H0 

@ 10% 
≤ 1 38.30 47.85 44.49 H0 53.88 63.88 60.08 H0 

GDP, HE, 
K, L, PE 

0 63.82 69.81 65.81 H0 87.59 88.8 84.38 
Reject H0 

@ 10% 
≤ 1 37.17 47.85 44.49 H0 54.80 63.88 60.08 H0 

GRO, DE, 
K, L, PE 

0 67.20 69.81 65.81 H0 93.08 88.8 84.38 
Reject H0 

@ 5% 
≤ 1 33.91 47.85 44.49 H0 59.34 63.88 60.08 H0 

GDP, DE, 
K, L, PE 

0 65.30 69.81 65.81 
Reject H0 

@ 10%  91.26 88.8 84.38 
Reject H0 

@ 5% 
≤ 1 32.90 47.85 44.49 H0 58.81 63.88 60.08 H0 
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Table 8. Johansen Test for Cointegration, Structural Breaks in 1900 and 1950 
 

Model 

# CI 
vectors 
under 

H0 
Trace 

statistic 
5% Crit. 

Val 
10% Crit. 

Val. Conclusion 
GRO, HE, 

K, L 
0 75.52 105.44 100.64 H0 

≤ 1 42.17 75.26 71.17 H0 
GDP, HE, 

K, L 
0 71.07 105.44 100.64 H0 

≤ 1 42.22 75.26 71.17 H0 
GRO, DE, 

K, L 
0 82.71 105.44 100.64 H0 

≤ 1 44.7 75.26 71.17 H0 
GDP, DE, 

K, L 
0 76.99 105.44 100.64 H0 

≤ 1 45.12 75.26 71.17 H0 
 
Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural 
breaks in 1900 and 1950 (v1=0.33, v2=0.66).  
 

 
Table 9. Johansen Test for Cointegration, Structural Breaks in 1900 and 1950, Energy 

Prices Included 
 

Model 

# CI 
vectors 
under 

H0 
Trace 

statistic 
5 % critical 

value 
10 % critical 

value Conclusion 

GRO, HE, 
K, L, PE 

0 111.37 139.37 133.9 H0 
≤ 1 76.26 105.44 100.64 H0 

GDP, HE, 
K, L, PE 

0 115.53 139.37 133.9 H0 
≤ 1 79.44 105.44 100.64 H0 

GRO, DE, 
K, L, PE 

0 108.1 139.37 133.9 H0 
≤ 1 71.71 105.44 100.64 H0 

GDP, DE, 
K, L, PE 

0 116.52 139.37 133.9 H0 
≤ 1 77.3 105.44 100.64 H0 

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural 
breaks in 1900 and 1950 (v1=0.33, v2=0.66).  
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Table 10. Johansen Test for Cointegration, Structural Breaks in 1916 and 1973 
 

Model 

# CI 
vectors 
under 

H0 
Trace 

statistic 
5 % critical 

value 
10 % critical 

value Conclusion 

GRO, HE, 
K, L 

0 89.92 102.6 97.8 H0 
≤ 1 54.05 72.96 68.7 H0 
≤ 2 24.84 48.64 43.7 H0 

GDP, HE, 
K, L 

0 95.44 102.6 97.8 H0 
≤ 1 53.63 72.96 68.7 H0 
≤ 2 20.19 48.64 43.7 H0 

GRO, DE, 
K, L 

0 101.49 102.6 97.8 
Reject H0 @ 

10%  
≤ 1 61.23 72.96 68.7 H0 
≤ 2 25.5 48.64 43.7 H0 

GDP, DE, 
K, L 

0 93.81 102.6 97.8 H0 
≤ 1 54.27 72.96 68.7 H0 
≤ 2 20.02 48.64 43.7 H0 

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural 
breaks in 1916, 1973 (v1=0.44, v2=0.82). 
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Table 11. Johansen Test for Cointegration, Structural Breaks in 1916 and 1973, Energy 
Prices Included 

 

Model 

# CI 
vectors 

under H0 
Trace 

statistic 
5 % critical 

value 
10 % critical 

value Conclusion 

GRO, HE, 
K, L, PE 

0 143.96 136.2 

 

130.74 Reject H0 @ 5%  
≤ 1 92.09 102.6 97.8 H0 
≤ 2 54.79 72.96 68.7 H0 

GDP, HE, 
K, L, PE 

0 145.13 136.2 

 

130.74 Reject H0 @ 5%  
≤ 1 96.81 102.6 97.8 H0 
≤ 2 58.21 72.96 68.7 H0 

GRO, DE, 
K, L, PE 

0 133.22 136.2 

 

130.74 Reject H0 @ 10%  
≤ 1 83.04 102.6 97.8 H0 
≤ 2 46.98 72.96 68.7 H0 

GDP, DE, 
K, L, PE 

0 140.75 136.2 

 

130.74 Reject H0 @ 5%  
≤ 1 92.01 102.6 97.8 H0 
≤ 2 55.16 72.96 68.7 H0 

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural 
breaks in 1916, 1973 (v1=0.44, v2=0.82). 
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Table 12. Parameter Estimates for Models in Table 7, 1950-2000 

 
Variables HE GRO K L PE Trend 
β    1.000 -1.12 -0.07 0.83 0.38 0.014 
  (-5.37) (-0.38) (2.98) (6.16) (4.01) 
       
α -1.34 -0.20 0.01 -0.03 0.41  
 (-5.93) (-2.23) (0.52) (-0.55) (1.42)  
       
Variables HE GDP K L PE Trend 
β    1.000 -1.09 -0.17 0.88 0.28 0.018 
  (-5.00) (-0.93) (2.87) (3.97) (4.60) 
       
α -1.25 -0.14 0.002 -0.035 0.42  
 (-6.25) (-1.77) (0.13) (-0.63) (1.61)  

 
Variables DE GRO K L PE Trend 
β    1.000 -0.45 -0.23 -0.57 0.73 0.007 
  (-1.47) (-0.83) (-1.39) (7.81) (1.28) 
       
α -0.44 -0.11 -0.02 -0.02 -0.31  
 (-3.28) (-1.85) (-1.34) (-0.61) (-1.74)  

 
Variables DE GDP K L PE Trend 
β    1.00 -0.41 -0.37 -0.43 0.64 0.010 
  (-1.45) (-1.54) (-1.08) (7.12) (1.98) 
       
α -0.51 -0.04 -0.02 -0.03 -0.28  
 (-3.7) (-0.59) (-1.23) (-0.62) (-1.42)  

 
t-statistics in parentheses 
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Table 13. Parameter Estimates for Models in Table 11, 1850-2000 

 
Variables HE GRO K L PE 
β    1.000 -0.59 0.16 1.62 0.18 
  (-3.71) (0.10) (4.72) (2.34) 
      
α -0.39 -0.18 -0.00 -0.07 0.29 
 (-4.88) (-3.32) (-0.44) (-2.94) (2.26) 
      
Variables HE GDP K L PE 
β    1.000 -0.76 0.22 1.97 -0.06 
  (-3.45) (1.70) (5.00) (-0.63) 
      
α -0.35 -0.16 -0.01 -0.07 0.29 
 (-4.73) (-4.06) (-1.31) (-3.89) (2.54) 

 
Variables DE GRO K L PE 
β    1.000 -0.78 -0.15 1.16 -0.01 
  (-6.89) (-2.06) (4.80) (-0.13) 
      
α -0.33 0.06 -0.01 -0.10 0.86 
 (-4.12) (-0.79) (-0.86) (-3.27) (5.03) 

 
Variables DE GDP K L PE 
β    1.00 -0.81 -0.13 1.65 -0.00 
  (-4.76) (-1.30) (5.44) (-0.20) 
      
α -0.26 -0.07 -0.01 -0.09 0.60 
 (-4.00) (-1.40) (-0.86) (-3.83) (4.36) 
      

 
t-statistics in parentheses 
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Figure 1. Quantity Variables: Sweden 1850-2000 

 

Figure 2. Growth Rates of GDP and Divisia Index of Energy Use 
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Figure 3. Energy Prices 
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