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Abstract 

Advances in scheduling theory have given designers 

of control systems greater flexibility over their choice of 

timing requirements. This could lead to systems 

becoming more responsive, more flexible and more 

maintainable. However, experience has shown that 

engineers find it difficult to exploit these advantages due 

to the difficulty in determining the “real” timing 

requirements of systems and therefore the techniques 

have delivered less benefit than expected. Part of the 

reason for this is that the models used by engineers 

when developing systems do not allow for emergent 

properties such as timing. This paper presents an 

approach and framework for addressing the problem of 

identifying an appropriate and valid set of timing 

requirements and their corresponding control 

parameters based on a combination of static analysis 

and simulation.

1 Introduction

This paper addresses the perennial problem of how to 
identify an appropriate and valid set of timing 
requirements for a hard real-time system. Over the 
years, research on real-time systems has evolved 
techniques which provide greater flexibility in 
scheduling whilst still providing a means for 
guaranteeing that timing requirements are met [1, 6]. 
The increased flexibility was expected to give many 
benefits, including more efficient use of resources and 
simpler maintenance of schedules when changes to the 
control software are made. In addition, maintaining 
schedules is often a costly and error prone manual 
process, so these techniques have the potential to offer 
significant economic as well as engineering benefit. 

However, experience has shown that engineers find it 
difficult to exploit this increased flexibility, and the 
techniques have delivered less benefit than expected. 
Based on our own experience and that of others in 
industry [2, 6, 10], a key reason is an absence of 
information about the true timing requirements which 
are needed to make best use of the approaches. In many 
cases current systems are developed with simple timing 
requirements, such as a timing margin to be achieved. 
(A timing margin is the amount of usable spare capacity 
available.) In other cases the timing requirements are 
largely historic, and are simply expressed in terms of 
iteration rates which have been proven effective in 
previous designs. Despite the changing contexts between 
systems, this strategy is normally successful because the 
requirements are over conservative, e.g. update rates 
specified are much faster than needed. Even where more 
modern control law design environments are used (e.g. 

Matlab/Simulink [3]), the control models are often 
produced assuming a particular computational model. 
For example a 50 ms cycle/20Hz bandwidth is chosen 
because there is a regular clock tick in the system with a 
period of 25 ms (i.e. 40 Hz) and therefore it is easier to 
release tasks at a harmonic of this frequency. 

Other techniques such as Shannon’s sampling theroem 
[5] place an upper bound on the sampling period. When 
the sampling theorem is used, an actual sampling period 
still needs to be selected as well as other timing 
attributes such as the deadline of the sampling task, 
period and deadline of the actuator task, and the 
maximum separation time between data capture and 
sensor actuation. 

A major contributor to the situation that has arisen is 
because both the research and practical use of control 
theory and scheduling theory have largely been carried 
out in isolation [4]. Thus for example, work on how 
advanced control regimes, such as H  [5], might ease 
the integration issues between control and software, 
have received little attention. Other pressures include the 
move towards model-based development that places 
greater onus on capturing evidence within the actual 
models and including low-level implementation details 
within the models, i.e. emergent properties such as 
timing.  

This paper presents an approach and framework for 
addressing the problem of identifying an appropriate and 
valid set of timing requirements in order that the best 
use can be made of the advances in scheduling theory. 
The paper is an extension to previous work [15] that 
adds greater traceability back to the system’s objectives 
using an argumentation technique to target the 
evaluation used in the framework, and for evaluation 
purposes using Jitterbug to perform static analysis [11] 
and the use of scenario-based assessment to determine 
the extent to which the system copes with other 
situations - e.g. changes to the system, errors in models 
and measurements, and random failures. 

The approach taken is to first establish the objectives 
of importance (based on argumentation techniques used 
in the critical systems domain) and then use component-
based models that allow for emergent properties of 
systems (in this case timing) so that the models are more 
representative of how an actual system would actually 
behave. Then, a genetic algorithm is used to explore the 
design space in-order to identify timing requirements 
and corresponding control parameters which enable 
objectives such as control stability to be achieved, thus 
deriving and validating the requirements against more 
realistic properties of the control system. When valid 
combinations of parameters are found, the framework 
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produces evidence that the solution is appropriate in a 
traceable manner via static analysis and test. 

The advantage of using genetic algorithms instead of 
traditional model-based design approaches, such as 
frequency domain loop shaping [5], include it allows 
many properties and effects to be considered at the same 
time and their demands on the system to be traded-off 
against one another [9]. 

The work presented here is intended for use in a range 
of control problems, but is illustrated with the PID 
(Proportional Integral Differential) control approach [5]. 

The rest of the paper is structured as follows. Section 2 
gives further background on the control techniques to be 
used in the context of this work. It also provides a 
technical motivation (as opposed to the “economic” 
motivation outlined above) for seeking a systematic 
approach to deriving timing requirements. Section 3 
gives an overview of an argument that assesses the 
desirable properties of a control system scheduled on a 
computer and evolves an experimental method to show 
the properties are met. Section 4 presents the 
framework, and the costs of evaluating the requirements. 
Section 5 contains a case study which have been used to 
evaluate the approach, as well as presenting a discussion 
of how the resulting timing requirements may be used. 
Finally, section 6 gives a summary and suggests possible 
future developments for the work. 

2 Background and Motivation 

All scheduling approaches require a minimum set of 
information about timing requirements so that an 
appropriate scheduler can be produced. For most 
scheduling approaches the minimum set of information 
is the deadline and period of tasks [6, 7]. This section 
explains why these requirements are important in the 
context of PID loops and how they can be generated by 
considering basic control properties. 
2.1 PID Loop 

The main purpose of a PID loop is to ensure the 
response to inputs is sufficiently fast whilst maintaining 
the stability, accuracy and limits on data. Figure 1 
depicts a typical PID loop used to control the operation 
of a plant as part of a control system. The Figure shows 
the key aspects and components of the controller – e.g. 
there is only one input and one output. 

In its simplest form, a continuous ideal domain 
representation, the output of the PID loop is the plant 
input. The control system input is the difference between 
the input demand (denoted by I), which is the desired 
plant state, and the plant’s actual output (denoted by O)
and it is referred to as the error, (denoted by E). The 
continuous and discrete forms of the PID loop are given 
in Equation 2 and Equation 4 (current sample denoted 
by k) respectively. 

)()()( tItOtE Equation 1 

dt

tdE
KdttEKtEKtO DIP

)(
)()()( Equation 2 

)()()( kIkOkE Equation 3 

)1()()()()(
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kEkEKjEKkEKkO D

k

j
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In the computer-based approach, the Input Demand

(e.g. pilot stick position) and the Actual Plant Output

(e.g. aircraft’s flap position) are usually analogue 
signals. The computer performs the rest of the 
processing in the digital domain. Converters are used to 
sample the analogue signals, e.g. to produce the Error

input, and then converted back to analogue values at the 
output. Converting back to an analogue signal is often 
referred to as digital to analogue conversion, de-
sampling or actuation. In order to give better control 
over jitter, the functionality that needs to be performed 
in software is normally split into three separate tasks – 
sampling, calculation and actuation [4, 6, 7]. 

Controller

Plant

T(s)

Integration
Gain

(K
I
)

Gain

(K
p
)

Differentiation
Gain

(K
D
)

+

Plant

Input

Error

(E)

Input

Demand

(I)
+_

Actual

Plant

Output

(O)

+

Load

Disturbance

Sensor

D(s)

Sampling

Signal

+

Measurement

Disturbance

A/D D/A

De-sampling

Signal

Figure 1 – Typical PID Loop 

In industrial practice it is common for a controller to be 
developed as a continuous system based on the system’s 
response in the frequency domain. Often modelling 
packages or special purpose plant simulations are used 
to validate the requirements. If a computer-based 
implementation is to be used, then once the requirements 
have been established in the continuous domain they are 
converted to the discrete domain. Typically the 
conversion involves calculating the PID loop gains (KP,
KI, KD) based on the assumption that a constant 
sampling period is used. This means the conversion is 
performed based on an idealised model of the computer 
system. The conversions for the PID loop gains are give 
in Table 1. In other words the conversion uses 
unrealistic assumptions, e.g. infinite processing 
bandwidth and zero jitter in sampling the inputs (jitter is 
the variation in time when an action occurs between one 
cycle of the controller and the next). In addition, “real” 
systems have errors through effects such as 
measurement disturbance, load disturbance and plant 
error. These are also represented in Figure 1. 

Parameter in 

Continuous Domain 

Discretisation Formula for a 

Sampling Period of T 

KP KP

KI T.KI

KD
T

KD

Table 1 – Conversion from Continuous to Discrete  

The approach presented in this paper addresses this 
shortcoming by taking into account the constraints of 
real computer systems, and thus enables valid and 
realistic requirements to be produced. To explain how 
this is done the rest of this section explains in more 
detail the relationship between computational properties 
such as jitter and control properties such as stability. 
2.2 Scheduling Properties 

It is, of course, essential that the sampling, core 
functions and de-sampling tasks are executed in that 
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order. Other work, e.g. [6], has shown how to specify 
and control the precedence of functionality for a PID 
loop to ensure that these requirements are met. More 
importantly for our discussions in this paper, sampling 
and de-sampling will be subject to jitter due to limits on 
the accuracy of clocks, and the interference of other 
software running on the processor. Thus the true 
sampling times will vary, and the simple assumptions of 
fixed and precise iteration rates used in validating the 
control model will not be representative of the 
computations which occur in practice. Jitter can be 
calculated using the results of response time analysis 
that gives best-case [14] and worst-case response times 
[6]. 

Figure 2 presents properties for a typical transaction of 
a control loop that can be controlled by the scheduler. 
The three tasks are sensor capture, calculation and 
actuation output. The Figure shows: 

how each task has jitter comprising both release and 
execution jitter as well as an invariant in its 
execution time, 
there is jitter on both sensor capture (referred to as 
sampling jitter) and actuation (referred to as de-
sampling jitter), 
a task must be completed before the next task in the 
transaction starts its execution so that the next task 
can use fresh data,  
the response time of a transaction is equal to the 
time between the release of the first task and the 
completion of the last task (the worst-case response 
time for a transaction must be less than its 
deadline), and 
the period of a task is the time between two 
consecutive earliest releases. 

release jitter
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task

execution

jitter of

sensor task

release jitter

of calculation

task

execution jitter

of calculation

task

release jitter

of actuator

task

execution jitter
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time of actuator

task

Invariant in

tasks'
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Figure 2 - Scheduling Properties for a Transaction 

2.3 Control and Scheduling Interactions 

The previous section defined our scheduling model and 
its associated terms. The only events that are important 
for control are sampling and actuation. When assessing 
the system’s control performance, it is assumed the three 
tasks shown in Figure 2 meet their timing requirements. 
For both sampling and actuation we assume the event 
occurs at the end of the execution of the relevant task. 
We define a number of parameters, which specify the 
timing requirements over the sampling and actuation. 
These are defined in Equation 5 - Equation 10, where 
SENS and ACT refer to the sensor task and actuation 
task, J refers to jitter, D to deadline, BCRT to best-case 
response time, WCRT to worst-case response time, 
BCET to best-case execution time and S to separation 
between actuation and sampling. It should be noted that 
for idealised cases where JS and/or JA are zero stability 
analysis is significantly simplified. For all other cases, 

Jitterbug can be used where the distributions for JS and 
JA are known. 

Requirements derived purely from the control model 
without allowing for computational effects caused by 
scheduling and execution are invalid. More seriously, 
they are also inappropriate as they can lead to instability, 
and other undesirable properties, e.g. lack of 
responsiveness. 

The classic definition of stability in general terms is 
that a system is stable if bounded inputs return outputs 
that remain bounded for all time [5]. The stability of the 
system is related to the frequency response of the control 
system (and hence the calibration settings for the control 
loop) as well as the other properties discussed. From a 
scheduling perspective, only the responsiveness and size 
of the errors can be controlled since the gain is a 
functional property of the control software. 
Sampling 
jitter (JS) SENSS JJ Equation 5 

Separation 
(S) SENSACT RTRTS Equation 6 

Actuation 
jitter (JA) ACTA JJ Equation 7 

Minimum 
Separation SENSACTMIN WCRTBCRTS Equation 8 

Maximum 
Separation

SENSACTMAX BCRTWCRTS
Equation 9 

Deadline 
)()( MAXJMAXJ

BCETBCETSD

SA

SAMIN Equation 10

3 Linking Requirements to an Argument 

When a control system is being developed as part of a 
critical application, the traditional approach is to design 
the system and then thoroughly evaluate it to provide 
evidence for its safety argument. By following this 
technique, it is intended that the results obtained from 
the framework become more focussed. 

An objective of our work is to collect evidence at the 
model level that is valid with respect to the final system, 
i.e. allowing for emergent properties within the model. 
The remaining evidence must then be collected from the 
final system. This strategy means that any evidence 
collected about the behaviour of the system using the 
model is directly related to the evidence needed to 
justify the integrity of the final system. This is a 
significant departure from current practice where most 
of the evidence is gathered about the final system. The 
benefits of achieving this strategy are considered 
enormous, these include; more systematic reuse, lower 
cost of verification facilities and a later commitment to 
target hardware. It is recognised that some information 
(e.g. execution times) can only be found on the target 
but the impact of this should be kept to a minimum. 

The argument presented here has been produced using 
Goal Structuring Notation (refer to section 3.1 for an 
overview) to establish and justify an appropriate 
methodology. 
3.1 Overview of the Goal Structuring Notation 

The Goal Structuring Notation (GSN) [13] - a 
graphical argumentation notation - explicitly represents 
the individual elements of any safety argument 
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(requirements, claims, evidence and context) and 
(perhaps more significantly) the relationships that exist 
between these elements (i.e. how individual 
requirements are supported by specific claims, how 
claims are supported by evidence and the assumed 
context that is defined for the argument). The principal 
symbols of the notation are shown in Figure 3 (with 
example instances of each concept). 

The principal purpose of a goal structure is to show 
how goals (claims about or objectives of the system) are 
successively broken down into sub-goals until a point is 
reached where claims can be supported by direct 
reference to available evidence (solutions). As part of 
this decomposition, using the GSN it is also possible to 
make clear the argument strategies adopted (e.g. 
adopting a quantitative or qualitative approach), the 
rationale for the approach (assumptions, justifications) 
and the context in which goals are stated (e.g. the system 
scope or the assumed operational role). For further 
details on GSN see [13]. 

System can
tolerate single

component
failures

Sub-systems
are independent

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1
A/J

Goal Solution Strategy
Assumption /

Justification

All Identified
System Hazards

Context
Undeveloped Goal

(to be developed)
Developed Goal

ChildGoal

Child Goal

ParentGoal

Figure 3 – Principal Elements of GSN 

3.2 Top-Level Argument that the System Meets its 

Objectives 

For reasons of space, only the top-level argument is 
given in this paper. The top-level argument is presented 
in Figure 4. The assumption A0001 in the argument 
identifies the following primary objectives to be met by 
the system as a minimum are: 

stability margin – the stability margin is specified in 
invariant systems in terms of the minimum return 
difference [5]. A margin is chosen to ensure the 
system is not at risk of being unstable. More 
generally, it is the distance from the instability point 
on a Nyquist plot [5]. 
actuator limits – the maximum allowable output. 
This limit is often chosen to prevent damage to 
components or give rise to system hazards. 
settling time – given a step response as an input, the 
time taken for the output to reach and stay within 
X% of the final value. Both X and the time taken 
are specified to ensure the system is suitably 
responsive to stimuli. 
maximum error – the maximum allowable error at a 
given time between the intended output and the 
actual output is specified to ensure the output is 
always within a bounded range. This objective 
covers effects due to both slew rate and overshoot. 

The strategy for satisfying these goals is to split the 
evidence gathering into two parts; obtaining evidence 
that is gathered at the model level (goal G0002), and 
obtaining evidence that the model is then transformed 
correctly into a final system (goal G0003). This strategy 
is justified by drawing on an analogy with current 

practice whereby requirements are validated and then it 
is verified the implementation meets the requirements – 
J0001. The proposed strategy is a significant departure 
from current practice where most of the evidence is 
gathered about the final system. The key challenges are 
capturing assumptions of the model and ensuring these 
are representative of the final system – assumption 
A0004. In particular most models do not account for the 
non-functional properties of the system. 

The goal that the model is correctly transformed into 
an implementation (goal G0003) is left undeveloped 
here since other work has addressed this problem [12]. It 
is recognized that whilst implementing what is contained 
in the models some new properties may emerge (e.g. 
timing requirements related to interaction with specific 
hardware) and changes to requirements may be 
necessary. Any changes should be incorporated back 
into the model so that it can be checked whether the 
previously gathered evidence is invalidated. This 
approach is preferred so that evidence gathered while 
implementing the system can be used purely to reinforce 
the evidence gathered at the model level. 

Finally, goal G0002 is decomposed into three parts; 
capturing evidence a particular design meets the 
system’s objectives, searching for an appropriate design 
and that a suitable framework is used. The results of the 
decomposition of these objectives is discussed in the 
following sections. 
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Figure 4 – Top Level Argument that the Control 

System Meets its Objectives 

3.3 Gathering Evidence that the System’s Objectives 

are Met 

In the rest of the arguments, it is determined that the 
evidence is captured in two phases, simulation and static 
analysis. Simulation can provide detailed evaluation 
over a range of scenarios (e.g. changes and failures), 
while the main area in which static analysis provides 
conclusive results for control systems is in showing that 
the system is stable across all scenarios. The majority of 
evidence is to be gathered by simulation with static 
analysis used to provide independent confirmation of the 
results obtained. In many situations it is the results from 
the static analysis that is considered to be of paramount 
importance. Jitterbug is used to provide static analysis 
that incorporates the effects of jitter and latency [11]. 

Jitterbug is a MATLAB toolbox that allows the user to 
compute a quadratic performance index for a linear 
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control system with timing variations [11]. It can also be 
used to analyze frequency-domain properties of the 
closed-loop system. In this paper, Jitterbug is used to 
compute the stability margin of a controller with 
sampling jitter and actuation jitter. 

The simulation evidence to be gathered is split across 
the objectives taken from the arguments with timing 
behaviour added to recognise the system is to be 
executed on a computer which introduces time 
variations. The evidence for the objectives is collected 
as follows. 
1. evaluate measurement disturbance rejection – over 

the range of scenarios identified, add noise at the 
sensor and check that the system meets all other 
requirements. 

2. evaluate steady state response – over the range of 
scenarios identified, measure the difference (i.e. 
error) between the actual response and the ideal 
response and ensure any error is less than the 
maximum specified. 

3. evaluate transient response – using step responses, 
measure the settling time and maximum error to 
check whether the requirements are met. 

4. evaluate plant sensitivity – over the range of 
scenarios identified, vary the plant model to the 
maximum that the system is intended to tolerate, 
and check whether the requirements are met. Plant 
variation is discussed further in section 4.2. 

5. evaluate temporal sensitivity – over a range of 
periods, determine valid timing requirements which 
lead to the system meeting its objectives. 

The simulation evidence to be gathered is to be 
collected in the following input scenarios. Based on 
experience, these scenarios are considered 
comprehensive especially when it is considered static 
analysis is also performed. 
1. input step response – provides a constant amplitude 

across the entire bandwidth of the system. 
2. load step response – ensures plant disturbances are 

rejected by the system. 
3. ramp response – ensures that the system can cope 

with the specified rate of change without the 
maximum allowable error being exceeded. 

4. parabolic response – allows the response of the 
system to be evaluated at a range of frequencies. 

5. random response – allows the system to be 
evaluated with little effort and still provides useful 
data. 

6. representative response – allows the system to be 
evaluated using scenarios taken, and maybe 
modified, from similar systems or from predictions 
of how the system may be used. 

7. noise – for the other options, it is relevant that 
sensor noise of a specified level can be added to 
simulate real world effects. 

8. plant variations – for the other options, it is relevant 
that variations in the plant model are examined to 
show the sensitivity of the system to component 
tolerances, design changes and mechanical wear. 

3.4 Exploring the Design Space 

Heuristic search techniques were chosen to explore the 
design space to find the best combination of variables to 
satisfy the previously stated objectives. These methods 
can be broadly split into two areas: Partial Assignment 
Search and Total Assignment Search. 

Partial assignment search requires evaluation of the 
system when not all variables have a value, which is 
unsuitable in our case since we cannot simulate or 
perform static analysis with an incomplete parameter 
set. This leaves total assignment search (also called local 
search). There are many suitable approaches in this area, 
but simulated annealing and genetic algorithms have 
been successfully applied to engineering problems in 
control. 

Simulated annealing requires only a fitness function, 
whereas a genetic algorithm requires a representation of 
the data in a suitable form, and genetic operators such as 
crossover and mutation in addition to the fitness 
function. However, genetic algorithms are less sensitive 
to changes in the evaluation function, since the 
individuals are ranked according to their fitness, and the 
set of fitness values are discarded. In our case, defining 
a suitable representation, and mutation and crossover is 
trivial. Simulated annealing sometimes determines the 
probability of performing moves from the magnitude of 
the fitness, and hence finding a suitable fitness function 
becomes more difficult. For this reason, we chose to use 
a genetic algorithm. 

When performing the optimisation, it is assumed the 
period is constant across the tasks in a particular control 
loop but the maximum jitter may be different for sensor 
and actuator tasks. 

4 Modelling Approach and Framework for 

Evaluating Timing Requirements 

For the purpose of this work, no specific scheduling 
approach is assumed. Instead, it is assumed that the 
“scheduling problem” can be divided into two parts: 
devising a set of timing requirements and verifying that 
a chosen schedule meets those requirements. There are 
several solutions to the latter problem, e.g. [1, 6], so for 
the purposes of this paper, we consider this to be a 
solved problem, and focus on the issue of generating 
requirements. Our approach seeks to build on the 
capability of existing tools for developing control laws, 
and to exploit the power of genetic algorithms to explore 
the “design space” produced by the interplay of task 
periods, deadlines and jitter as well as the loop gains 
(KP, KI, KD). 

There are four significant parts to the framework that 
has been developed in MATLAB [3]: 
1. Evaluating the PID Operation 
2. Searching the design space 
3. Determining a valid set of timing requirements by 

stepping through a range of periods and tuning the 
other timing parameters alongside those of the PID 
loop. 

4. Generating a detailed log (with figures) by 
documenting the analysis of the solution at each 
period. 
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The following subsections discuss each of these parts 
in more depth. 
4.1 Evaluating the PID Operation 

The MATLAB model for simulating a discrete PID 
control loop is shown in Figure 1. The key elements here 
are that the gains of the PID loop are programmable, and 
that the timing of the sensor and actuation is controlled 
by the representative sampling signal. The purpose of 
the signal is to simulate the jitter on when actions 
(sampling and actuation) occur as shown in Figure 2. 
That is, the signal is used to control when signals are 
converted from the continuous to the discrete domain 
and vice versa. The signal is generated such that one 
sampling event and one actuation event occur within 
each period, and in the correct order. If time 0 is the 
beginning of the period, the sampling event occurs at 
time , where  is a random value in the range (0, JS]
and JS is the maximum possible sampling jitter 
according to Equation 10. The falling edge occurs at 
time +S+ , where S is the minimum separation, and 
is a random value in the range [0, JA). The distribution of 
 and  is uniform. The sampling signal is fed into 

Jitterbug since Jitterbug needs stochastic knowledge of 
timing behaviour in-order to evaluate stability via static 
analysis. As discussed in section 3.3, simulation is also 
employed to evaluate the performance. 

Figure 1 shows three inputs to the system. Input and 
load disturbance are used to simulate various scenarios 
(refer to Table 4 for details), and the measurement 
disturbance is used to test the effects of noise on the 
system. The level of noise is a parameter of the 
framework. Varying degrees of noise can be added to 
the simulations. This simulation model is used to 
explore the performance of the control system with a 
given set of parameters, e.g. values for KP, KI, KD, JS, JA,
SMIN, etc. 
4.2 Allowing for Plant Variations 

The framework uses a transfer function to model the 
plant, and if required a second transfer function to model 
the sensor (otherwise the signal is passed through the 
simulated sensor block unchanged). The transfer 
function represents a linear model of the plant. A plant 
model is never 100% accurate because modelling 
introduces inaccuracies and the plant may have non-
linear characteristics that can’t be accurately represented 
in a linear model. Internal factors such as component 
tolerances and mechanical wear also alter the behaviour 
of the system. It is also common for plants to change 
their behaviour based on external factors such as 
temperature and altitude. To account for these 
inaccuracies and online variations, the system is 
evaluated with variations of the transfer function. 
 Plant model Sensor model 
Nominal

model 

50

1
)(

s
sD

Model

with other 

variables 50
)(

s

c
sD

Table 2 – Example Models with Additional Variables 

In order to vary the transfer function, the framework 
allows variables to be added to it. Each of these 
additional variables has a nominal value, which form the 
nominal model if substituted into the transfer function. 
Table 2 shows an example of plant and sensor models 
with and without additional variables, and Table 3 
shows the nominal, minimum and maximum values for 
the variables a, b and c. Normally the sensor model is 
incorporated within the plant model in which case c

would be zero. 
To account for plant variation requires one additional 

parameter - the number of steps to be taken between the 
minimum and maximum of each variable. For example, 
a variable with minimum of 3 and a maximum of 7, 
where the number of steps is set to 5, would iterate 
through values {3,4,5,6,7}. The number of plant 
variations considered is NSteps, where N is the number of 
variables, so the framework evaluates every 
permutation. The nominal model is also evaluated, so it 
need not be one of the variations. Each of the variations 
is subjected to the same tests, as summarised in , as the 
nominal model. 

Variable Nominal value Minimum Maximum

a 1 0.95 1.05 

b 0 5 5

c 1 0.9 1.1 

Table 3 – Example Values for Additional Variables 

Simulation input 

scenario

Parameters 

Load step disturbance Size of step 
Input demand step 
disturbance 

Size of step (equal to above) 

Ramp response Gradient of the input demand 
Parabolic response Frequency of sine input demand 
Random response Variance of the random signal 

which forms the input demand 
User-specified Time series data which forms the 

input demand of the simulation 

Table 4 – List of Simulation Scenarios 

4.3 Searching the design space 

It is possible to use PID loop gains in the discrete 
domain that were originally established in the 
continuous domain but first they must be transformed 
using relationships based on the sampling period in the 
continuous domain and the discretisation formula. In the 
context of our approach, the relationships are as shown 
in Table 1. However in the framework produced, an 
option is to tune the actual gains for any given period 
and/or deadline. In section 4.3, a genetic algorithm was 
chosen for the purpose of optimising performance. The 
fitness function used in conjunction with the genetic 
algorithm allows many properties and effects to be 
considered at the same time and their demands on the 
system to be traded-off against one another. 

If the search is successful in meeting the requirements, 
a valid set of timing parameters will be evolved 
alongside the controller parameters. The search is not 
considered to be successful if the timing requirements 
are invalid compared to the assumptions selected, e.g. if 
the deadline is greater than the period. To reduce the 

50)1000(
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number of variables in the search, JA is determined from 
JS  using an expression provided by the user, for example 
JA= 2J +1, and the best-case execution times of the 
actuator and sensor tasks are assumed to be zero which 
is the worst-case scenario. Hence based on Equation 5 
through Equation 10, the variables involved in the 
search are JS, SMIN, KP, KI and KD.

The fitness function evaluates the system as described 
in section 4.1 and returns a score dependent on the 
success in the various tests described there. 

The inputs of the fitness function are: 
1. The individual to be evaluated – values of JS, SMIN,

KP, KI and KD.
2. The range of the actuator – i.e. the largest range of 

output allowed from the controller. 
3. The settling time following a load step or input 

demand step, along with the maximum allowed 
error after the settling time has expired. 

4. The maximum allowed error during the whole 
simulation, under all the scenarios in Table 4. 

5. The period of the sensor capture task – i.e. the 
sampling period. It is assumed that other tasks in the 
transaction have a rate that is equal to the sensor 
capture task’s rate. 

6. The timing requirements SMIN, JS and JA as defined 
in Equation 5 to Equation 10. 

7. The length of the simulation – this should be 
appropriate for the system. 

8. The level of measurement disturbance noise applied 
under all the scenarios in Table 4. 

9. Target value for the stability margin (distance from 
the instability point on a Nyquist plot [5]) as 
computed by Jitterbug [11]. 

10. Plant and sensor models, and the appropriate 
information about their variables, described in 
section 4.2. 

11. Those related to the input scenarios in Table 4. 
Score 

range 

Description 

[1, 2) Testing actuator limits without jitter (with set-
point and load step simulations) 

[2, 3) Testing settling time without jitter (with set-point 
and load step simulations) 

[3, 4) Testing maximum error without jitter (with set-
point and load step simulations) 

[4, 5) Computing stability margin with jitter [11] 
[5, 6) Simulating whole range of scenarios (Table 4)

without jitter and checking maximum error and 
settling time 

[6, 11) Repeating the above tests with random jitter 
[11, 12) Repeating all the tests for score range [1, 11) for 

each of the system variants specified by the user 
[12, ) Additional score, higher for longer deadlines 

Table 5 - Scoring in the fitness function 

The fitness function determines a score as illustrated in 
Table 5. Each score indicates complete success in the 
lower categories, hence a score above twelve indicates 
that the solution meets all the requirements. All 
simulations are performed with measurement noise 
added. For a solution to be considered it must pass all 
the individual tests. During the evaluation, if no design 
solution can be found that passes all tests then the 
designer should evaluate whether the system’s 

requirements can be relaxed or whether a change can be 
made to the search limits (e.g. range of periods). 

For space reasons, full details of the genetic algorithm 
used are not provided – e.g. cost function, mutations. 
4.4 Determining Valid Timing Parameters 

Before the evaluation, the user, via a provided 
interface, defines the limits for the period of individual 
activities within the system (e.g. sampling of signals) 
and the size of steps taken between the limits (e.g. 
periods between zero and ten might be evaluated in steps 
of one, resulting in search and evaluation being 
performed at 0, 1, 2, ·· , 9, 10). For each of these periods 
the set of deadlines, and hence the maximum deadline, 
are determined for which the control system meets its 
objectives, e.g. stability. 

The results of the searches can be displayed in various 
forms, to aid the user in picking the most appropriate. 
When selecting the most appropriate of the valid 
solutions, the user may prefer the longest period for 
which a solution was found, in order to reduce the 
utilization of the processor. Alternatively, the user may 
prefer the solution with the longest deadline to give a 
lower priority in order to improve schedulability when 
using a deadline monotonic priority ordering. 

Once the search has found individuals that satisfy the 
other requirements described in section 1.1, it attempts 
to maximise the transaction deadline 
4.5 Generating a log of safety evidence 

Upon finishing the search, the system repeats the 
evaluation of the best solution, recording details of 
scenarios evaluated, responses to stimuli, static analysis 
results and graphs in a log. The log contains evidence 
such the extensive simulations of the scenarios described 
in Table 4 under the effects of noise, jitter, latency and 
periodic execution, and results of stability analysis. Both 
static analysis and test via simulation are performed for 
many variations of the plant, to account for plant 
variation and/or uncertainty. 

5 Evaluation 

In this paper, a ball and beam example [8] is used to 
demonstrate the technique because it normally operates 
in an unstable fashion with stability only being possible 
with external control assistance. Therefore it represents 
an important, albeit rather smaller, class of systems, e.g. 
military fast jet flight control systems. 

theta

r

Figure 5 – Ball and Beam  

The plant (i.e. the ball and beam [8]) is illustrated in 
Figure 5, where the variable to be controlled is the 
position of a free-rolling ball on a beam. It can be 
mathematically represented by a second-order system 
using Equation 11. The controller output represents the 
angle of the gear, (s), and the variable under control is 
the position of the ball, r(s). The ball and beam is 
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unstable without control and as such is more difficult 
than examples where the control system is inherently 
stable. 

2

21.0

)(

)(

ss

sr Equation 11 

The system has been simplified so that it can be 
represented as a linear equation. It was linearized around 
the point where the angle of the beam is zero with 
respect to the horizontal, and also a linear approximation 
was made in the transmission from the gear to the beam. 

The evaluation was performed on a PC running Linux 
with an Athlon 700 MHz processor. The evaluation time 
for each period was approximately four hours. The 
results for the experiment are given in Figure 6. The 
results showed that the maximum deadline at a 
particular period increases until a period of 0.12 is 
reached. Beyond this period, the maximum deadline at a 
particular period falls until a period of 0.16 seconds after 
which no valid solutions could be found. 

Figure 6 - Deadline vs Period for the Ball and Beam 

5.1 Use of the Results 

The paper has presented a means by which timing 
requirements can be determined. The results obtained 
can be used in many ways. For instance on some 
projects, a decision may be made not to operate the 
system at the limits of its ability. For example, if at 
period T the maximum deadline shown to meet the 
criteria is D, then a deadline of 0.8D could be chosen in-
order to give a “safety” margin. Another way of 
ensuring the system is not operating at its limits is to 
input objectives into the framework objectives beyond 
that actually needed. This would mean the valid 
solutions that emerge would be on the safe side. 

Based on the assumption that a shorter period means 
we can have a longer deadline and vice versa, the results 
can be used to help make the system schedulable or 
scaleable. For instance dependent on the timing 
requirements associated with the rest of the system, then 
a larger period may be beneficial in helping reduce 
processor utilisation. On the other hand for systems with 
many tasks having short deadlines (making scheduling 
difficult unless the tasks are phased), it may be better to 
have a shorter period so that the deadline is longer.  

6 Summary and Future Work 

In this paper, a framework for deriving and evaluating 
the timing requirements for control systems has been 
presented. For a given control system, the framework 
automatically evaluates the effect of jitter, latency and 

period on control properties such as settling time and 
maximum error in order to derive the set of requirements 
that meet our criteria, including stability. In other words, 
it addresses in an integrated way the issue of evaluating 
the effectiveness of the control system, and the possible 
realisation of the controller on a computer system. The 
use of the approach has been illustrated for a ball and 
beam system that is unstable without external control. 

Future work could look at applying genetic algorithms 
across a number of control loop(s) and other tasks at the 
same time to find the optimum balance of timing 
requirements for scheduling and scalability. 
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