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ABSTRACT whereay, wi = 27 f%, Bk, andn, denote the (complex) amplitude,
frequency, damping coefficient (with respect to therent trans-
mitted pulse), and theompoundor echo train, damping coefficient
for the kth spectral line, respectively; additionally,s a design pa-
rameter (due to operator choice of pulse repetition intglaad is
thus known. Common approaches for estimating the parasiiter
this form of data is to sum the echoes, thereby destroyindiniee
details resulting from the echo train decay (and causingaa i
the estimates), and then use classical approaches such perth
odogram or the matrix pencil [1, 2]. An alternative approaeis
taken in [3], where a least-squares (LS) based algorithrmestir
mating all the unknown parameters in (2) was proposed. Soch a
estimate is formed using a gradient or grid-based seardhthbn
requires a careful initialization of the various paramgtem often
Index Terms— Parameter estimation; damped sinusoids; subnon-trivial task. As the search can often not be well iniitiedl, this
space techniques; multidimensional signal processingRN@MR  also implies that the resulting algorithm can be computetiiy de-
manding, especially when the data consists of severalrgpéoes.
1. INTRODUCTION AND DATA MODEL In this paper, we propose a computationally efficient ESP#3ed
algorithm, termed the echo train ESPRIT (ET-ESP), whicluires
Spectral estimation is a classical problem which has foypdliga-  no prior knowledge of typical parameter values, needing knbw-
tion in a wide variety of fields, such as astronomy, medicadm ledge of the number of present spectral lin&s, a number that is
ing, radar, and spectroscopic techniques (for examplesauchag-  generally known in these applications. Furthermore, weihice
netic resonance, NMR, and nuclear quadrupole resonanc®)NQ the corresponding Cramér-Rao lower bound (CRB) for thélera
Subspaced-based estimators form an important class afapes-  at hand and examine the performance of the proposed algotish
timation methods that have proven to be useful for estimatib  ing numerical simulations.
both damped and undamped sinusoidal signals (see, e.®])[1, Some words on the notation: hereafter, we denot&kbyz},
Even though much work has been done on the estimation of dhmpeX ™, X diag{x}, and[X]; x, the real part ofz, the transpose of
and undamped sinusoids, there are only a few algorithmsndeal X, the conjugate, or Hermitian, transposeXofthe diagonal matrix
with structured data models able to fit data produced by ntagne with the vectorx along the diagonal, and thek-th element ofX,
and quadrupolar resonance techniques. Such measuremefs a respectively.
ten resulting from the use of pulse spin-locking (PSL) segas,
which will then induce a fine structure into the signals. TI&P
sequence consists of a preparatory pulse and a train ofusifag 2. THE ECHO TRAIN ESPRIT ALGORITHM
pulses, where the time between two consecutive refocusilsgpis
27, as illustrated in Fig. 1. As discussed in [3, 4], the sigealiting  Let (2) be expressed as
from a PSL excitation can be well modeled as

The pulse spin-locking sequence is a common excitationesexgu
for magnetic resonance and nuclear quadrupole resonagiealsi
with the resulting measurement data being well modeled aaira t
of exponentially damped sinusoidals. In this paper, wevdean
ESPRIT-based estimator for such signals, together withctinee-
sponding Cramér-Rao lower bound. The proposed estinsomm-
putationally efficient and only requires prior knowledgetw num-
ber of spectral lines, which is in general available in thesid-
ered applications. Numerical simulations indicate thatgloposed
method is close to statistically efficient, and that it céfan attractive
approach for initialization of existing statistically efent gradient
or search based techniques.

K
Ym,t = Tm,t + Wm,t, (1) Tm,t = Z Cm,k’zlz (3)
wherem = 0,...,M — 1 denotes the echo number, ahd= =
to,...,tn—1 the local time within each echo, with= 0 denot-  ,:ith
ing the center of the current pulse, and where we assumeromifo
sampling intervals within each echo. Moreovet, ; is an additive o [ exp(—Bir) - exp(—2nerm) fort <7
circular symmetric white Gaussian i.i.d. noise with vades?, and e 2 4 AR PO P40 . (9
ak exp(BrT) - exp(—2n,Tm)  fort >
K
Tt = Z ag exp (iwgt — Be|t — 7| — (t +2m)nk),  (2) 2 exp(iwg) - exp(Br —nr)  fort <r 5)
k=1 exp(iwg) - exp(—Br — k) fort > 71’

This work was supported in part by the Swedish Research dpQacl . . )
Trygger's foundation, and the European Research CourRiC(Erant agree-  Where it should be noted tha is not a function ofn, as all echoes
ment numbers 228044 and 261670). share the same poles. Reminiscent of [5], the noise-fregfoia¢ach



Proceeding with either forms of measurements X8t denote

/ the operation of removing the bottom-most row of the malXix
= 2 M o and similarly letX* denote removal of the top-most row. Then, it is
5 easily seen thas* = S'Z, where
- T
g /Em\ Z = diag {[z1, ..., 2K]}, (20)
Echo
o IPANEES and hencdUt = U'TQ, whereQ andZ are related by a similar-
| B . ity transformation and thus have the same eigenvalues. gukim

e measured data, the SVD &f is formed, yielding
_ Y =UxV? 4w, (11)
Fig. 1. The PSL sequence.
where3: denotes the matrix formed from th¢ largest singular val-
. . . ues andU andV denote the matrices formed by the corresponding
echorn is then stacked into the (Hankel) matrix singular vectors. The residual tery, contains the noise. The

total-least squares (TLS) estimabeof © may then be formed from

Tm,tg Tm,ty " Tm,tpr_q
xm,tl xm,tQ e Tty ’ 2. 2.
X, = ) _ et (e) Ut =0TQ, (12)
. . ~ K .
Tty o Tmins and we may obtain estimates of thepoles{ ;. };,—, from the eigen-

) S _ values of€2. Using (5), we then findy, = /2 and By + nx =
wherel” = N — L+ 1. This (noise-free) echo data matrix may then _ g |2, |. With the estimated poles, one may then, for each echo

be collected, and partitioned, as m, write
X = |Xo - Xum- s s
[Xo M-1] o . s ot _—

= S[CeT" -+ Cu_1T7] @) AL 3} Cm.2 Yty
. . . . = . (13)
whereS € C**K 8], = 211, T € C¥ %K [T],, = 2, : ; ; . :
C,, = diag{[cm,1 ... Cm,k]}, and where,, ; is given by (4). aNCU o BN emk Ym,tn_y
Thus,S andT may be factored from eacX,,, as in (7) due tay, in
(5) being independent ofi. Forming the singular value decomposi- which forms a regular LS problem fc{rcm k}k .- Using (4), we

tion (SVD) of X, i.e., simplify the notation by introducingx 2 v exp(8:7) and then,

X =UzVZ, 8) for each spectral liné = 1, ..., K, one may form the following LS
problem for the estimation df. }r_,
it may be noted by comparing (7) and (8) tt&tand U will span

the same subspace. Regrettably, aply:, i.e., the noise-corrupted log |0,k | 1 —27-0
measurements of (2) are available, instead necessitagnfgtming . — |- . {bg |dk q (14)
of Y., andY from y,,,. similarly to (6) and (7). Nk ’

Typically, magnetic resonance measurements may be obtaine log [énr—1,k| 1 =2r-(M-1)
as either one or two-sided signals. For scenarios when measu Mot
ments of both the expanding and the decaying part of thelsigpa  Wheré{ém«},,—, denote the LS solution to (13). The LS solution
available, so-called two-sided echoes, as is illustratefg. 1, one 0 (14)is readily ‘found as

may partition each echo into two parts, based on (4) and (&) s

that one part is formed from< 7 and the other from > 7. Thus, 3 [(M — 1) M log [émi| — 23 M) mlog |5m,k|]
Nk = .
r o [yt ' MM = D)(M +1)
Ym = [ym,to ymatN—I:I = ?Z) ) 9) . - (15)
Ym Using (5) and (15), one may then also estimateas

where the superscriptg,’ andy!,’ have been introduced to de- Br = — (N +1og |2x) - (16)
note the expanding. (< 7) and decaying#( > 7) parts ofy,, re- X«
sp(ec)tlvely One then form¥ *) using onlyy',”, and similarly for Finally, given the estimate{Bk@mﬁk} , an estimate oy,
k=
¥<+) Thde‘f{czllo)wmg esélmaltlon Is ther; pttarforméed mdgpetndeznly ted , K, may be formed from (1) usmg a maximum likelihood
an accordingly, one ge S two Independent estimates, Igonthm wh|ch in this case coincides with the LS solutibuie to

¢ (+)
for each parameter, i. eY and¥,, These are then combined to gpace limitations, the reader is referred to, e.g., [3,@]jtie details.
form the estlmateyfg = ,i” + 'yk where'yk representsly,
Nk, wi, &S appropriate. _ 3. DERIVATION OF THE CRAM ER-RAO BOUND

Alternatively, for cases when only one-sided echoes ar#é-ava

able, i.e., when one only obtains measurements for the deppgrt o proceed to form the Cramér-Rao Bound (CRB) for the prable
yi ), fort > 7, the analysis is analogous, although with appropri-at hand, stacking the data from each measurement echo as

ate changes dictated by (4)-(6). In order to simplify theation, we

omit the superscript™ in the following. y=x+w, (17)



where

x = [xI - x_]"ecMx (18)
Xm = I:xm,tg xm,thl}T € (CNXI, (19)
wo = [w(),to waLtN,JT e CVMX1 - (20)
In order to simplify the notation, let
et 2 exp (iwkt — Bi|t — 7| — (L + 2Tm)nk) , (21)
so that
K
T = > oy (22)
k=1

The CRB is given as CRB/) = [FIM(v)]~!, where FIM~) de-
notes the Fisher information matrix given the unknown (e8gpa-
rametersy, with

E. be w17 oo

7:[@17...704(7[)17.. , WK,

ﬁ17"'7ﬁK77717"'777K]T7 (23)

whereay, = |ax| andb, = Zay. The CRB for a particular unknown
v, is then obtained as thg, i)-th element of the CRB matrix, i.e.,
CRB(v,) = [CRBJ;;. From the Slepian-Bang’s formula [1], it is

known that

FIM(v) = (24)

H
2 Red (2X) (&
o2 1020% oy
where the derivatives may be found as

8xm,t axm,t

dar — exp(ibg )&, 9B —[t = larg",
8xm,t . m, axm,t m,
8—bk :ZOékfgk tv 8—77k = 7(t+27’m)0&k€k t,
amm,t . m,
a—wk = Ztakgk t. (25)

Reminiscent of the presentation in [7], these derivativay tre ex-
pressed on matrix form &, /9y = Q. P, where

Q. £ [=.0 .0 &,.0 -E£,.0 —éme],
P 2 diag{[l A A A A]}cR¥K
e o

=, 2 : :
m,t‘ — m,t N —
! N-—-1 gK N-—-1

E, 2 TE., & 2 TE., E. 2 TE.,

e = dlag{[eibl, ,eltx },

A £ diag{las, - ,ax]},

T £ diag{lto, tv-1]},

S yAN .

T = dlag{“to 7T|7"’ 7|tN*1 77—”}7

T £ diag {[(to + 27m),- -+, (tn—1 + 27m)]}.

Stacking the derivatives from each echg yields9x /9~y = QP,

where .’
Q=[Qf Q4] eCNMxeK (26)

Table 1. Parameters for simulated data

% 1 2 3 7]
7. (Hz) 00329 00122 0.0049 -0.0232
Bk (Hz) ~ 0.0202 0.0077 0.0053 0.0035
me (1073)  0.1811 0.2647 0.2130 0.2221
|| 120 500 430  3.65

Zay, (rad)  0.4591 -2.8045 0.0661 -1.9922

The FIM thus becomes

FIM(~) = %PRe {QHQ}P 27)
implying that
CRB(y) = U;P’l [Re {QHQ}] Tlp (28)
Letting
r2 [QRe{QHQ}T1 (29)

yields the further simplified expression for the sought CRBs

CRB(ax) = [Txrai/SNRy (30)
CRB(by) = [T)(k+x)(k+ 1) /SNR (31)
CRB(wk) = [T (k425 (kr2r) /SNR, (32)
CRB(Bk) = [T'](k+3x)(kt3x)/SNRy (33)
CRB(nk) = [T](k+4x)(k+45)/SNRe, (34)

where SNR = aj /o?.

4. NUMERICAL EXAMPLES

The proposed algorithm was evaluated using simulated NQ& da
formed as to mimic the response signal from the explosive TNT
when excited using a PSL sequence. Such signals can be weil mo
eled as a sum of four damped sinusoidal signals, with thenpetexs

as detailed in Table 1 (see [6] for further details on thealignd the
relevant measurement setup). Based on the typical setupima

in [6], we useN = 256 measurements, fat/ = 32 echoes, with

7 = 164 andto, = 36, where the last two parameters are normalized
with the sampling frequency and are therefore unit-lesse dlgo-
rithm was evaluated using the normalized root mean squared e
(NRMSE), defined as:

(39)

wherex denotes the true parameter value andthe estimate of
this parameter. The signal-to-noise ratio (SNR) is defirsetla 2,
with o2 ando? denoting the power of the noise-free signal and the
noise variance, respectively. Moreover, we use= N /2, where

N denotes the number of samples of either the expanding orthe d
caying part of the echo. With the usedone obtains a symmetric
echo [6], so that.(t) = L(7) = 64. Fig. 2 shows the results
from P = 500 Monte-Carlo simulations for the fourth spectral line
(the performance for the other lines was similar). As is canm
for ESPRIT-based estimators, it can be noted that the ET4s8P
mate does not fully reach the CRB and is therefore not Stalbt
efficient. However, the difference is very small down to SNR =
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(a) NRMSE for estimates ¢34 and the CRB as given in (33).
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(c) NRMSE for estimates ofs and the CRB as given in (32).
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(b) NRMSE for estimates ofs and the CRB as given in (34).
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(d) NRMSE for estimates dfv4| and the CRB as given in (30).

Fig. 2. NRMSE given by the proposed estimator for different partanse compared with the respective CRB. Here, the NRMSE fsrigally
evaluated over 500 Monte-Carlo realizations, for symmedchoes, withV = 256 and M = 32.

dB (which corresponds te? ~ 6), before which the estimation er- [2] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimat

ror becomes very large. For SNR =5 dB, the estimation ermhf®
frequencyf, is about 0.2%, whereas for the damping coefficiéat,
and the damping coefficieniy, it is about 8% and 3%, respectively.
The amplitude errofau | is about 2%.

5. CONCLUSIONS

In this paper, we have derived an ESPRIT-based estimator al

the corresponding CRB for the data model detailing the sjpic

damped sinusoidal signals obtained in magnetic resonareg@e m

ing parameters of exponentially damped/undamped sinsigoid
noise,” IEEE Trans. Acoust., Speech and Signal Process.
38, no. 5, pp. 814-824, May 1990.

[3] A. Jakobsson, M. Mossberg, M. Rowe, and J. A. S. Smith,-“Ex

ploiting Temperature Dependency in the Detection of NQR Sig
nals,” IEEE Trans. Signal Processvol. 54, no. 5, pp. 1610—
1616, May 2006.

rﬂ] A. Gregorovi¢ and T. Apih, “TNT detection with 14N NQR:

surements when formed using PSL data sequences. The estimat

is computationally efficient and only requires the numbesiofi-
soids to be known, which is typically the case in the consder
applications. Via Monte-Carlo simulations, we have shohat the
algorithm is close to being statistically efficient for tgpl signal-
to-noise ratios. The proposed method offers an attracligenative
as a standalone estimator or as an initial estimator fonéuntefined
estimates based on gradient or search-based techniques.
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