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ABSTRACT

The pulse spin-locking sequence is a common excitation sequence
for magnetic resonance and nuclear quadrupole resonance signals,
with the resulting measurement data being well modeled as a train
of exponentially damped sinusoidals. In this paper, we derive an
ESPRIT-based estimator for such signals, together with thecorre-
sponding Cramér-Rao lower bound. The proposed estimator is com-
putationally efficient and only requires prior knowledge ofthe num-
ber of spectral lines, which is in general available in the consid-
ered applications. Numerical simulations indicate that the proposed
method is close to statistically efficient, and that it offers an attractive
approach for initialization of existing statistically efficient gradient
or search based techniques.

Index Terms— Parameter estimation; damped sinusoids; sub-
space techniques; multidimensional signal processing; NQR; NMR

1. INTRODUCTION AND DATA MODEL

Spectral estimation is a classical problem which has found applica-
tion in a wide variety of fields, such as astronomy, medical imag-
ing, radar, and spectroscopic techniques (for example nuclear mag-
netic resonance, NMR, and nuclear quadrupole resonance, NQR).
Subspaced-based estimators form an important class of spectral es-
timation methods that have proven to be useful for estimation of
both damped and undamped sinusoidal signals (see, e.g., [1,2]).
Even though much work has been done on the estimation of damped
and undamped sinusoids, there are only a few algorithms dealing
with structured data models able to fit data produced by magnetic
and quadrupolar resonance techniques. Such measurements are of-
ten resulting from the use of pulse spin-locking (PSL) sequences,
which will then induce a fine structure into the signals. The PSL
sequence consists of a preparatory pulse and a train of refocusing
pulses, where the time between two consecutive refocusing pulses is
2τ , as illustrated in Fig. 1. As discussed in [3, 4], the signal resulting
from a PSL excitation can be well modeled as

ym,t = xm,t + wm,t, (1)

wherem = 0, . . . ,M − 1 denotes the echo number, andt =
t0, . . . , tN−1 the local time within each echo, witht = 0 denot-
ing the center of the current pulse, and where we assume uniform
sampling intervals within each echo. Moreover,wm,t is an additive
circular symmetric white Gaussian i.i.d. noise with varianceσ2, and

xm,t =

K
∑

k=1

αk exp (iωkt− βk|t− τ | − (t+ 2τm)ηk) , (2)
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whereαk, ωk = 2πfk, βk, andηk denote the (complex) amplitude,
frequency, damping coefficient (with respect to thecurrent trans-
mitted pulse), and thecompound, or echo train, damping coefficient
for thekth spectral line, respectively; additionally,τ is a design pa-
rameter (due to operator choice of pulse repetition interval) and is
thus known. Common approaches for estimating the parameters for
this form of data is to sum the echoes, thereby destroying thefiner
details resulting from the echo train decay (and causing a bias in
the estimates), and then use classical approaches such as the peri-
odogram or the matrix pencil [1, 2]. An alternative approachwas
taken in [3], where a least-squares (LS) based algorithm foresti-
mating all the unknown parameters in (2) was proposed. Such an
estimate is formed using a gradient or grid-based search, but then
requires a careful initialization of the various parameters, an often
non-trivial task. As the search can often not be well initialized, this
also implies that the resulting algorithm can be computationally de-
manding, especially when the data consists of several spectral lines.
In this paper, we propose a computationally efficient ESPRIT-based
algorithm, termed the echo train ESPRIT (ET-ESP), which requires
no prior knowledge of typical parameter values, needing only know-
ledge of the number of present spectral lines,K, a number that is
generally known in these applications. Furthermore, we introduce
the corresponding Cramér-Rao lower bound (CRB) for the problem
at hand and examine the performance of the proposed algorithm us-
ing numerical simulations.

Some words on the notation: hereafter, we denote byRe{x},
XT, XH , diag{x}, and[X]l,k, the real part ofx, the transpose of
X, the conjugate, or Hermitian, transpose ofX, the diagonal matrix
with the vectorx along the diagonal, and thel, k-th element ofX,
respectively.

2. THE ECHO TRAIN ESPRIT ALGORITHM

Let (2) be expressed as

xm,t =

K
∑

k=1

cm,kz
t
k (3)

with

cm,k
△
=

{

αk exp(−βkτ ) · exp(−2ηkτm) for t < τ

αk exp(βkτ ) · exp(−2ηkτm) for t ≥ τ
, (4)

zk
△
=

{

exp(iωk) · exp(βk − ηk) for t < τ

exp(iωk) · exp(−βk − ηk) for t ≥ τ
; (5)

where it should be noted thatzk is not a function ofm, as all echoes
share the same poles. Reminiscent of [5], the noise-free data for each
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Fig. 1. The PSL sequence.

echom is then stacked into the (Hankel) matrix

Xm =











xm,t0 xm,t1 · · · xm,t
L′

−1

xm,t1 xm,t2 · · · xm,t
L′

...
...

...
xm,tL−1

· · · · · · xm,tN−1











∈ C
L×L′

(6)

whereL′ = N−L+1. This (noise-free) echo data matrix may then
be collected, and partitioned, as

X =
[

X0 · · · XM−1

]

= S
[

C0T
T · · · CM−1T

T
]

(7)

whereS ∈ C
L×K , [S]l,k = z

tl−1

k , T ∈ C
L′×K , [T]l′,k = z

t
l′−1

k ,
Cm = diag{[cm,1 . . . cm,k]}, and wherecm,k is given by (4).
Thus,S andT may be factored from eachXm as in (7) due tozk in
(5) being independent ofm. Forming the singular value decomposi-
tion (SVD) ofX, i.e.,

X = UΣV
H , (8)

it may be noted by comparing (7) and (8) thatS andU will span
the same subspace. Regrettably, onlyym,t, i.e., the noise-corrupted
measurements of (2) are available, instead necessitating the forming
of Ym andY from ym,t similarly to (6) and (7).

Typically, magnetic resonance measurements may be obtained
as either one or two-sided signals. For scenarios when measure-
ments of both the expanding and the decaying part of the signal are
available, so-called two-sided echoes, as is illustrated in Fig. 1, one
may partition each echo into two parts, based on (4) and (5), such
that one part is formed fromt < τ and the other fromt ≥ τ . Thus,

ym =
[

ym,t0 · · · ym,tN−1

]T △
=

[

y
(+)
m

y
(−)
m

]

, (9)

where the superscriptsy(+)
m andy(−)

m have been introduced to de-
note the expanding (t < τ ) and decaying (t ≥ τ ) parts ofym, re-
spectively. One then formsY(+) using onlyy(+)

m , and similarly for
Y(−). The following estimation is then performed independentlyfor
Y(+) andY(−); accordingly, one gets two independent estimates
for each parameter, i.e.,γ̂(+)

k andγ̂(−)
k . These are then combined to

form the estimatêγk = 1
2
γ̂
(+)
k + 1

2
γ̂
(−)
k , whereγk representsβk,

ηk, ωk, as appropriate.
Alternatively, for cases when only one-sided echoes are avail-

able, i.e., when one only obtains measurements for the decaying part
y
(−)
m , for t ≥ τ , the analysis is analogous, although with appropri-

ate changes dictated by (4)-(6). In order to simplify the notation, we
omit the superscript(−) in the following.

Proceeding with either forms of measurements, letX↑ denote
the operation of removing the bottom-most row of the matrixX,
and similarly letX↓ denote removal of the top-most row. Then, it is
easily seen thatS↓ = S↑Z, where

Z = diag {[z1, . . . , zK ]} , (10)

and henceU↓ = U↑Ω, whereΩ andZ are related by a similar-
ity transformation and thus have the same eigenvalues. Using the
measured data, the SVD ofY is formed, yielding

Y = ÛΣ̂V̂
H +W, (11)

whereΣ̂ denotes the matrix formed from theK largest singular val-
ues andÛ andV̂ denote the matrices formed by the corresponding
singular vectors. The residual term,W, contains the noise. The
total-least squares (TLS) estimateΩ̂ of Ω may then be formed from

Û
↓ = Û

↑
Ω, (12)

and we may obtain estimates of theK poles{ẑk}Kk=1 from the eigen-

values ofΩ̂. Using (5), we then find̂ωk = ∠ẑk and ̂βk + ηk =
− log |ẑk|. With the estimated poles, one may then, for each echo
m, write











ẑt01 · · · ẑt0K
ẑt11 · · · ẑt1K
...

...
...

ẑ
tN−1

1 · · · ẑ
tN−1

K





















cm,1

cm,2

...
cm,K











=











ym,t0

ym,t1

...
ym,tN−1











(13)

which forms a regular LS problem for{cm,k}
K

k=1. Using (4), we

simplify the notation by introducingdk
△
= αk exp(βkτ ) and then,

for each spectral linek = 1, . . . ,K, one may form the following LS
problem for the estimation of{ηk}

K

k=1







log |ĉ0,k|
...

log |ĉM−1,k|






=







1 −2τ · 0
...

...
1 −2τ · (M − 1)







[

log |dk|
ηk

]

, (14)

where{ĉm,k}
M−1
m=0 denote the LS solution to (13). The LS solution

to (14) is readily found as

η̂k =
3
[

(M − 1)
∑M−1

m=0 log |ĉm,k| − 2
∑M−1

m=0 m log |ĉm,k|
]

τM(M − 1)(M + 1)
.

(15)
Using (5) and (15), one may then also estimateβ̂k as

β̂k = − (η̂k + log |ẑk|) . (16)

Finally, given the estimates
{

β̂k, ω̂k, η̂k
}K

k=1
, an estimate ofαk,

k = 1, . . . ,K, may be formed from (1) using a maximum likelihood
algorithm, which in this case coincides with the LS solution. Due to
space limitations, the reader is referred to, e.g., [3, 6]) for the details.

3. DERIVATION OF THE CRAM ÉR-RAO BOUND

We proceed to form the Cramér-Rao Bound (CRB) for the problem
at hand, stacking the data from each measurement echo as

y = x+w, (17)



where

x =
[

xT
0 · · · xT

M−1

]T
∈ C

NM×1, (18)

xm =
[

xm,t0 · · · xm,tN−1

]T
∈ C

N×1, (19)

w =
[

w0,t0 · · · wM−1,tN−1

]T
∈ C

NM×1. (20)

In order to simplify the notation, let

ξm,t

k

△
= exp (iωkt− βk|t− τ | − (t+ 2τm)ηk) , (21)

so that

xm,t =

K
∑

k=1

αkξ
m,t

k . (22)

The CRB is given as CRB(γ) = [FIM(γ)]−1, where FIM(γ) de-
notes the Fisher information matrix given the unknown (vector) pa-
rametersγ, with

γ = [a1, · · · , aK , b1, · · · , bK , ω1, · · · , ωK ,

β1, · · · , βK , η1, · · · , ηK ]T, (23)

whereak = |αk| andbk = ∠αk. The CRB for a particular unknown
γi is then obtained as the(i, i)-th element of the CRB matrix, i.e.,
CRB(γi) = [CRB]ii. From the Slepian-Bang’s formula [1], it is
known that

FIM(γ) =
2

σ2
Re

{

(

∂x

∂γ

)H (

∂x

∂γ

)

}

(24)

where the derivatives may be found as

∂xm,t

∂ak

= exp(ibk)ξ
m,t

k ,
∂xm,t

∂βk

= −|t− τ |αkξ
m,t

k ,

∂xm,t

∂bk
= iαkξ

m,t

k ,
∂xm,t

∂ηk
= −(t+ 2τm)αkξ

m,t

k ,

∂xm,t

∂ωk

= itαkξ
m,t

k . (25)

Reminiscent of the presentation in [7], these derivatives may be ex-
pressed on matrix form as∂xm/∂γ = QmP, where

Qm
△
=

[

ΞmΘ iΞmΘ iΞ̃mΘ − Ξ̂mΘ − Ξ̌mΘ
]

,

P
△
= diag {[I Λ Λ Λ Λ]} ∈ R

5K×5K ,

Ξm
△
=







ξm,t0
1 · · · ξm,t0

K

...
. . .

...
ξ
m,tN−1

1 · · · ξ
m,tN−1

K






,

Ξ̃m
△
= T̃Ξm, Ξ̂m

△
= T̂Ξm, Ξ̌m

△
= ŤΞm,

Θ
△
= diag

{[

eib1 , · · · , eibK
]}

,

Λ
△
= diag {[a1, · · · , aK ]} ,

T̃
△
= diag {[t0, · · · , tN−1]} ,

T̂
△
= diag {[|t0 − τ |, · · · , |tN−1 − τ |]} ,

Ť
△
= diag {[(t0 + 2τm), · · · , (tN−1 + 2τm)]} .

Stacking the derivatives from each echom, yields∂x/∂γ = QP,
where

Q =
[

QT
0 · · · QT

M−1

]T
∈ C

NM×5K . (26)

Table 1. Parameters for simulated data
k 1 2 3 4
fk (Hz) 0.0329 0.0122 0.0049 -0.0232
βk (Hz) 0.0202 0.0077 0.0053 0.0035
ηk (10−3) 0.1811 0.2647 0.2130 0.2221
|αk| 1.20 5.00 4.30 3.65
∠αk (rad) 0.4591 -2.8045 0.0661 -1.9922

The FIM thus becomes

FIM(γ) =
2

σ2
PRe

{

Q
H
Q
}

P (27)

implying that

CRB(γ) =
σ2

2
P

−1
[

Re
{

Q
H
Q
}]−1

P
−1. (28)

Letting

Γ
△
=

[

2Re
{

Q
H
Q
}]−1

(29)

yields the further simplified expression for the sought CRBs

CRB(ak) = [Γ]kka
2
k/SNRk (30)

CRB(bk) = [Γ](k+K)(k+K)/SNRk (31)

CRB(ωk) = [Γ](k+2K)(k+2K)/SNRk (32)

CRB(βk) = [Γ](k+3K)(k+3K)/SNRk (33)

CRB(ηk) = [Γ](k+4K)(k+4K)/SNRk, (34)

where SNRk = a2
k/σ

2.

4. NUMERICAL EXAMPLES

The proposed algorithm was evaluated using simulated NQR data,
formed as to mimic the response signal from the explosive TNT
when excited using a PSL sequence. Such signals can be well mod-
eled as a sum of four damped sinusoidal signals, with the parameters
as detailed in Table 1 (see [6] for further details on the signal and the
relevant measurement setup). Based on the typical setup examined
in [6], we useN = 256 measurements, forM = 32 echoes, with
τ = 164 andt0 = 36, where the last two parameters are normalized
with the sampling frequency and are therefore unit-less. The algo-
rithm was evaluated using the normalized root mean squared error
(NRMSE), defined as:

NRMSE =

√

√

√

√

1

P

P
∑

p=1

(

x̂p

x
− 1

)2

, (35)

wherex denotes the true parameter value andx̂p the estimate of
this parameter. The signal-to-noise ratio (SNR) is defined asσ2

sσ
−2,

with σ2
s andσ2 denoting the power of the noise-free signal and the

noise variance, respectively. Moreover, we useL = Ñ/2, where
Ñ denotes the number of samples of either the expanding or the de-
caying part of the echo. With the usedτ , one obtains a symmetric
echo [6], so thatL(+) = L(−) = 64. Fig. 2 shows the results
from P = 500 Monte-Carlo simulations for the fourth spectral line
(the performance for the other lines was similar). As is common
for ESPRIT-based estimators, it can be noted that the ET-ESPesti-
mate does not fully reach the CRB and is therefore not statistically
efficient. However, the difference is very small down to SNR =0
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(a) NRMSE for estimates ofβ4 and the CRB as given in (33).
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(b) NRMSE for estimates ofη4 and the CRB as given in (34).
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(c) NRMSE for estimates off4 and the CRB as given in (32).
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Fig. 2. NRMSE given by the proposed estimator for different parameters, compared with the respective CRB. Here, the NRMSE is empirically
evaluated over 500 Monte-Carlo realizations, for symmetric echoes, withN = 256 andM = 32.

dB (which corresponds toσ2 ≈ 6), before which the estimation er-
ror becomes very large. For SNR = 5 dB, the estimation error for the
frequencyf4 is about 0.2%, whereas for the damping coefficient,β4,
and the damping coefficient,η4, it is about 8% and 3%, respectively.
The amplitude error|α4| is about 2%.

5. CONCLUSIONS

In this paper, we have derived an ESPRIT-based estimator and
the corresponding CRB for the data model detailing the typically
damped sinusoidal signals obtained in magnetic resonance mea-
surements when formed using PSL data sequences. The estimator
is computationally efficient and only requires the number ofsinu-
soids to be known, which is typically the case in the considered
applications. Via Monte-Carlo simulations, we have shown that the
algorithm is close to being statistically efficient for typical signal-
to-noise ratios. The proposed method offers an attractive alternative
as a standalone estimator or as an initial estimator for further refined
estimates based on gradient or search-based techniques.
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