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Abstract: At Lund University an automated video analysis system is being 
developed that can be applied for studying the behaviour of road users in 
complex traffic environments. It is stressed that system must be capable of 
handling all the categories of road users, i.e. vehicles, pedestrians and 
cyclists. Common problems like detection and tracking of moving objects, 
occlusion by foreground objects, ground-plane co-ordinates estimation, 
smoothing of the scattered data and estimation of speed and acceleration 
profiles are discussed and some solution proposed. 
 
Keywords: Automated video analysis, road user behaviour, measurement 
method. 

 
 

INTRODUCTION 
 
Video recording is a commonly used tool for behavioural studies in road traffic ([18], [19], 
[1]). It provides many advantages, such as lower interference with the traffic processes than 
with a roadside observer, possibilities to make longer observation periods, store and review 
important situations, etc. 
 
Since the manual processing of video data is very resource-demanding work, there is a high 
demand for automation of this task. Even though a number of systems capable of automated 
video records processing and retrieval some traffic-related data have been developed ([13]), 
most often their application area is limited to the relatively simple traffic conditions and 
performed tasks (reading number plates, congestion detection, etc. – [5], [7], [12]). More 
advanced systems ([15], [4]) are still very focused on vehicle detection and ignore other road 
user categories. 
 
Currently at Lund University, Faculty of Engineering there is a system under development 
which is primarily aimed at studying the behaviour of road users in complex traffic 
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environments (e.g. congested urban conditions). The set goals for the fully developed system 
(a four-year project) are to be able to detect and follow all the categories of road users 
(including pedestrians and cyclists), identify and quantify their behaviour and analyse and 
interpret it in terms of safety and efficiency. After two years of project work the system is 
capable of detecting and tracking large-size objects (vehicles) with sufficiently high accuracy 
and detecting objects of smaller size. 
 
This paper addresses some methodological problems, encountered in the system development 
work, and discusses proposed solutions which were implemented. These problems are 
certainly common in the field and have been to some extent faced by developers of other 
similar systems; however, the discussion found in the literature seems to be quite 
unsystematic, often omitting the details and thus being unclear. We consider thus that our 
attempt to gather these problems in one paper may be quite valuable and can be an opening 
for further discussions on a higher level. 
 
For readability reasons we avoid using mathematical formulas in the text but refer instead to 
the special literature where more detailed description of the mentioned methods and 
procedures can be found. 
 
 
ROAD USER DETECTION AND TRACKING  
 
A classical solution for detection and tracking objects in a video sequence is to use 
foreground/background segmentation, which is a generalization of the background subtraction 
method. Several such methods exists and they all are based on the same principle of 
estimating the background and then deciding what parts of the image currently shows the 
background and what parts shows something else, the foreground. An example is given in 
Figure 1 where the algorithm [17], which uses a multimodal background model representing 
dynamic backgrounds such as trees swaying in the wind, has been tested. 
 
 

               
 

Figure 1. Foreground/background segmentation. To the left is the input image and to 
the right is the result after segmentation with the algorithm described in [17]. 
 
Once the foreground/background segmentation is done, adjacent foreground pixels can be 
clustered together into objects and then objects overlapping between adjacent frames can be 
clustered together into tracks. This becomes problematic when objects in the scene are close 
to each other and overlap in the image. The problem of multi-object tracking have been 
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studied for a long time and many classical solutions exist such as Kahlman-filtering, JPDAF, 
HMM and particle-filtering. An overview can be found in the introduction of [11]. 
 
 
ROAD PLANE POSITION ESTIMATION 
 
Many indicators, used to describe the road user’s behaviour are actually based on measuring 
distance to other road users, physical objects or virtually calculated points in the road 
environment (e.g. lateral position within the lane, headway to the in-front vehicle, distance to 
a conflict point, etc.), which put high requirements on the accuracy of the position estimation. 
 
 
Rectification 
 
Measuring distances between objects viewed by a camera is not easy as there is no simple 
transformation from distance measures made in the image in pixels to real world distances in 
meters. The problem is that when a two dimensional image is produced from a real world 
scene with three dimensions, information is lost. In the general case it is not possible to 
measure distances without additional information. But with some prior knowledge about the 
scene it might be possible. Consider for example the case where the camera is placed high 
above the centre of the intersection looking straight down. If the intersection is flat an image 
produced by such a camera would be very similar to a map in which case distances in meters 
can be calculated from distances in pixel by a simple scaling. 
 
In practice it is very hard to place a camera straight above the centre of an intersection. A 
much easier situation would be to mount the camera on top of a nearby building. In that case 
it will still be possible to measure distances between points on the ground plane, presuming 
the pavement is at least approximately a plane. If the camera is mounted significantly higher 
than the height of all the road users they could be approximated as flat objects and it is 
possible to transform the images from the camera into images looking approximately as if 
they were produced by a camera looking straight down at the intersection. This transformation 
is called rectification.  
 
In order to perform the rectification the relationship between the ground plane and the image 
plane of the camera has to be estimated. This gives a set of parameters, a homography, that 
are used in the rectification process. Methods for estimating two dimensional homographies 
can be found in [9]. In this case it can for example be performed by manually measuring all 
the six distances between four points in the intersection and marking those four points in the 
image. Typically the points should be in the far corners of the intersection to give the best 
numerical stability and thus suppress measurement noise as much as possible. An alternative 
method would be to wait until an object of know dimensions, such as for example a bus, 
passes the camera view and use the corners of that object for the calibration. By tracking 
vehicles and utilising the fact that most vehicles passing through the intersection will not 
change the physical dimensions it is even possible to fully automate the rectification process. 
This is investigated in [2]. 
 
The results of the rectification process are demonstrated in  
Figure 2. 
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Figure 2. Rectification. To the left is the original image as produced by the camera and 
to the right is the same image rectified. Note that the road plane is rectified nicely while 
objects above the road get more and more distorted the higher they appear. 
 
 
Stereo vision 
 
Rectified image allows measuring distance between the objects on the road plane, but the 
problem is that some parts of an object are elevated above the road and the distances between 
them estimated from the image are not accurate. To know which distances are measured 
correctly one needs to restore some lost information about the spatial relations between the 
object parts. Without any special correction, the image processing algorithm assumes that all 
the parts are in the same plane (see Figure 3), which under some unfavourable (but quite 
realistic) conditions can give an error up to several meters in position estimation. 
 
 

B C

DA' A

ABCD  - the real objects' shape;

 AD  - the real ground position;
A'D  - the ground position assumed by the 
algorythm (no corrections applied)

 
 
Figure 3. 2D-3D problem. 
 
If the vehicle shapes were known that information could be used to give a better position 
estimate. Unfortunately, there are a lot of different vehicles and building a 3D model for each 
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of them is not trivial. Then the problem of identifying which of all the models a certain 
detection belongs to has to be solved, and as the number of models grows this problem will 
become more and more ambiguous. This approach is investigated in [8] and might be 
plausible for vehicles, but when it comes to pedestrians and cyclists that continuously change 
the shapes, this would require advanced dynamic models capturing this variability. It does not 
seem plausible to achieve all that in real time using reasonable amounts of today's hardware.  
 
By using stereo vision (two cameras that are synchronized, i.e. exposing their pictures at 
exactly the same time) 3D-information can be extracted. This is done by identifying the same 
world point in the two images and then triangulating its 3D-coordinates from the 2D-
coordinates in the two images. For this to work the geometry (relative position and rotation) 
of the two cameras has to be calibrated. This can be done by selecting a set of distinctive 
points spread out over one of the images and finding their corresponding positions in the other 
image.  
 
Consider a point in the first image. To locate its 3D-world coordinates the same point has to 
be found in the second image. But it is not necessary to search the entire second image. The 
position of the point in the first image defines a 3D-world line along which the world point 
must be located, and since the cameras are calibrated this line is known. The image of this 
3D-line in the second camera will be a 2D-line in the second image. This is called an epipolar 
line and it is only necessary to search for the point along this line. What's even better is that 
all points on an epipolar line in the second image correspond to a single epipolar line in the 
first image. That means that there is a one to one correspondence between epipolar lines in the 
first camera and epipolar lines in the second camera. All the points along an epipolar line in 
the first image will thus be found along the corresponding epipolar line in the second camera. 
This means that the 2D-problem of finding the points in the second image corresponding to 
all the points in the first image, can be reduced to several 1D-problems of finding the points 
along an epipolar line in the second image corresponding to all the points along an epipolar 
line of the first image. 
 
It is very hard to find the correct match for every pixel. Typically some part of the images 
contains uniformly coloured regions with no texture, such as for example the roof of a car. As 
all pixels in those regions have almost the same colour, they match equally well to any pixel 
in the region. A classical solution here is to first ignore those uniformly coloured regions and 
only work on edges and then in a second step when the 3D-location of the edge points is 
known try to fill in the rest. To find these edge-pixels a 1D-sub-pixel edge detector ([3]) can 
be applied along each epipolar line and for every edge-point found a small patch centred on 
the detected edge-point can be extracted to be matched against the patches extracted from the 
edge-points on the corresponding epipolar line in the other image. 
 
In order to measure distances in meters the calibration described above is not enough. It does 
allow for projective 3D-coordinates to be calculated, but they are only defined up to some 
unknown projective transformation. To estimate Euclidian 3D-coordinates a metric 
calibration has to be preformed. In [9] several methods for this are presented. Now it is no 
longer enough with four known points in the road plane. At least seven points are needed and 
they may not all be coplanar. In practise significantly more points are needed to give 
numerical stability and they need to be spread over the entire image and be located on 
different heights. 
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Recently services such as Google Earth and national equivalents have started to provide high 
resolution aerial images covering a significant part of the globe. By using such images of the 
intersection under study the calibration can be performed using manually selected point 
correspondences between the camera images and the aerial image. The aerial image gives two 
out of three world coordinates, and as the last one, the height, is zero for the points on the 
road plane, all three coordinates are available for these points. An affine calibration of the 
cameras can be found by treating the aerial image as an image from an affine camera looking 
straight down and using the method described in Section 9.4 of [9]. Then, if the principal 
point and the skew of the camera are known, the focal length can be estimated from the points 
on the ground plane, as all three world coordinates of these are known, using bundle 
adjustment ([9]). Finally the full camera calibration and the unknown point heights can be 
found also using bundle adjustment, with the affine camera and all intrinsic parameters 
(principal point, skew and focal length) fixed. 
 
The road plane is easily located by manually selecting a few points on it, and then all points 
located less than some threshold from the road plane could be identified as belonging to the 
road and the rest of the points represent the objects in the scene. This includes vehicles, 
pedestrians and cycles as well as traffic lights and lampposts. 
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Figure 4. The effects of the chosen bandwidth on the resulting profile. Note that 
Approximation I follows the character of the original data, but still is too scattered. 
Approximation II is very smooth, but loses extreme values. 
 
 
SCATTERED DATA SMOOTHING 
 
Due to some stochastic errors, the raw position measurements from the video are always 
scattered around the “true” trajectory, which requires application of some smoothing 
procedures before the data can be practically used. However, the smoothing quality depends 
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on how the used algorithm suits the data. If it is too “strict”, there is a risk to loose important 
profile features, such as presence or exact position of the local extremes or inflection points. 
On the other hand, if the algorithm is too “forgiving”, one might get false extreme indications 
that have merely stochastic character. 
 
Simple smoothing techniques, such as moving average, usually use a fixed bandwidth 
(interval or amount of points used to calculate the smoothed value) over the whole dataset. 
However, some parts of the dataset might differ from the other in character and thus it is hard 
to choose the bandwidth optimal for the entire dataset. Figure 4 gives an example on how the 
estimated data points depend on the chosen bandwidth. 
 
Another problem, arising due to inaccuracy of the raw data, is the overestimation of the 
derivative values. As an example, let us consider calculation of speed from the trajectory data. 
The distance between two measured points is systematically biased towards longer distances, 
which results in speed overestimation (see Figure 5).  
 
 

1
1'

2
2'

3'
3

4'
4

1' - 2' > 1 - 2 ,
2' - 3' > 2 - 3, 

etc.

=> v'  > v

"true" trajectory
estimated trajectory

 
 
Figure 5. Overestimation of the derivative from the scattered data. 
 
One possible solution is to first smooth the trajectory line and then calculate the speed based 
on the travelled distances along this line ([1]). However, trajectory smoothing does not 
completely remove the error in speed estimation. Calculation of the second or third 
derivatives (acceleration and jerk) thus still remains very inaccurate. 
 
To overcome these problems we used local kernel polynomial regression algorithm ([6]). One 
advantage of this method is that the size of the bandwidth is an adjustable parameter, 
calculated dynamically depending on the data character in the current region. The other 
advantage is that the method allows separate estimation of the derivatives directly from the 
raw data.  
 
This method is also used for smoothing the raw speed measurements obtained directly from 
the video data by using sub-pixel correlation, which is described in the following section. An 
example of the data proceed with the local kernel polynomial regression algorithm is 
presented in Figure 6. 
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Figure 6. Data processed with local kernel polynomial regression algorithm. 
 
 
DIRECT SPEED ESTIMATION 
 
Speed and acceleration of road users are the parameters, describing the dynamics of a traffic 
situation. Detailed speed trace (speed profile) of a road user can provide important 
information such as clearly indicate when braking or swerving occurs, as well as can be used 
together with position data for calculation of other important traffic parameters (time gaps, 
collision point position, TTC – Time-to-Collision, etc.). The braking intensity can serve as an 
indicator for a conflict situation and a measure of its severity ([10], [14]); moreover, the 
derivative of the acceleration (jerk) was found to be an even better indicator for conflict 
situations then the hard braking ([16]). 
 
 

   

 
Figure 7. Two adjacent frames used to estimate car velocity. 
 
We have discussed the accuracy problems when estimating the speed values from the raw 
position data. There is thus a potential to improve speed estimation quality if speed 
measurements can be done directly from the video data, for example, by using displacement 
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between two adjacent frames. The problem is that this displacement is very small (typically 
only 1-5 pixels, see Figure 7) so the estimate has to be done with sub-pixel precision. 
  
To do that the image is interpreted as a sampled version of a two dimensional function. 
According to the sampling theorem it is possible to reconstruct the original function as it was 
before the sampling by using sinc-interpolation between the sample points (pixels). This 
assumes that the original function contains no frequencies higher than half the sampling 
frequency, which is usually guaranteed by the optical properties of the camera lens. 
 
This means that it is possible to calculate the intensity values for positions in the image 
between the pixels and thus it is possible to extract patches from the image located at sub-
pixel positions. Such patches can be extracted around the position indicated by the tracker in 
the adjacent frames and then be compared. By also looking at the derivatives of those patches 
it is possible to deduce in what direction the patch should be moved in order to find a better 
match. Thus the displacement can be found using standard optimization techniques such as 
Newton-Rapson ([3]). 
 
 
OBSTACLES BETWEEN CAMERA AND SCENE 
 
Another problem is that there might be obstacles between the camera and the road user. In the 
case shown in Figure 8 it is the lamp of a lamppost and the system measures the speed of the 
lamp instead of the speed of the car as the lamp is closer to the camera. To solve this, the 
background/foreground segmentation data can be used to mask out the pixels that belong to 
the moving objects and remove all pixels belonging to the static background (including the 
lamppost in front of the car). Then the sub-pixel correlation described above only considers 
the pixels belonging to the objects and a better speed estimate is achieved. 
 
 

 

 

 
 
Figure 8. Effects of an obstacle on speed estimation. The diagram to the left is a speed 
profile of a car passing the intersection with fairly constant speed. The images to the 
right are the frame 737 and the corresponding foreground mask. The estimated speed 
drops significantly as the car passed beneath the lamp if the mask is not used. 
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CONCLUSIONS 

 
The paper presents some typical problems faced in applying automated video analysis 
techniques for traffic behaviour analysis purposes and proposes some solutions to them. The 
intention is not to advocate for some “best” method or solution, but rather to create a research 
framework, report on experiences gained during our first years of system development and 
define the problematic areas which have to be further studied and filled in.  
 
The practical work experience with automated video analysis system at Lund University 
shows a great potential of the tool. The observations are already continuously performed over 
several months, which was hardly feasible before in any behavioural study. Some part of the 
original video data is stored and can be used for other studies that were not even planned 
when observations started. The continuous trajectory and speed data, provided by the system, 
open a new dimension in describing the road user behaviour, which might affect the 
formulation of the future research questions as well as the choice of tools and methods used 
for such data analysis. 
 
The future work should include detection and tracking accuracy improvement for objects of 
different sizes and shapes, increase robustness of the used procedures under less favourable 
work conditions (jammed traffic, twilight or night conditions, precipitations), as well as 
development of the analytical part for the further data analysis and interpretation of the results 
in terms of safety and the efficiency of the observed traffic system. 
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