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Response–Time Control of a Single Server Queue

Martin A. Kjær, Maria Kihl and Anders Robertsson

Abstract— Feedback in server systems has during last years
gained much interest in order to fulfill still increasing demands
on performance and optimization regarding, for example, qual-
ity of service (QoS) requirements. In this paper we investigate
a feedback–based prediction scheme for controlling a single
server queue. This control structure has the benefit over other
previously suggested control structures that no measurement
of the required work of each job is needed. However, our
solution maintains the same attractive properties, regarding
average response time and variance.

I. INTRODUCTION

Server systems are used in most (tele)communication

networks. The server system can process jobs from either

other network entities or from clients. In the Internet, web

servers send web pages to clients. In cellular networks, Home

Location Registers handle subscriber information that may be

requested by other nodes in the network.

Different control mechanisms may be used to control the

server system. Admission control [1] prevents system over-

load by rejecting some jobs when needed. Load balancing

[2] optimizes the load in a distributed system. Scheduling

[3] can optimize the delays when jobs have different QoS

requirements. Since a server system consists of CPU:s (the

servers) and limited job queues, it has a non-linear behavior.

A small increase in load can result in rapidly growing queues

and delays. Therefore, the design of the control mechanisms

is not a simple task if optimized performance is desired. In

recent years this field has gained a large research interest

from both academia and IT vendors [4], [5].

In this paper we focus on response-time control; an objec-

tive directly coupled to the end-user, but with close relations

to e.g., the more server oriented queue length control [6].

However, the connection between the queue length and the

response time depends on numerous factors such as the

nature of the arriving traffic and the service times.

Liu et al. [7] designed a response time control system

based on admission control, where the admission probability

was adjusted to obtain the desired response time. The control

set–up included a queuing–theory based feed–forward where

a measurement of the average required work was required.

This was measured offline under low load, and then applied

in on–line control. The offline identification of the average

required work was also the procedure of the work by Lu

et al. [8] and the work of Henriksson et al. [9] where
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Fig. 1. Two queues with common server. The fraction p of the server
capacity is dedicated to the high–priority queue, and the fraction 1 − p is
dedicated to the low–priority queue.

feed–forward was used as part of a control set–ups with

resource allocation actuators. This method can result in

serious degradation of performance if the average required

work changes, as might happen in real applications. The

required work is not usually easy to define in real server

systems that often operate by processor sharing, and it can

be hard to give any qualified estimates of the this quantity.

In this paper, we expand existing prediction schemes by

adding a feedback mechanism. The new prediction method

is utilized for a new response time control scheme. This

controller is shown, through simulations, to maintain the

same desired robustness and transient properties as the

previous published controllers, but here obtained without

the measurement of the required work. The controller is

compared to control strategies using the same or more

measured variables.

II. QUEUING MODEL

The target system in this paper is a single-server system

that processes jobs coming from clients, as illustrated in

Fig. 1. Clients are considered satisfied if the response time

T (the time between the arrival of a job and the time where

is has been fully served, also often denoted the system

time [10]) for a job is less than a certain time limit, Tref ,

in average. Also, there are low-priority jobs in the server

systems, for example, maintenance and monitoring jobs.

The low-priority jobs have no strict real-time requirements,

but they should be processed. We assume that jobs coming

from clients have high priority, but since we need to assure

that also low-priority jobs can be served, the high-priority

jobs only have a share, p, of the server capacity (where

0 ≤ p ≤ 1). p should be set so that the average response

time, T , for a high-priority job is kept at the reference value,

Tref with low variance.

We consider a system with two classes of requests, high-

priority jobs and low-priority jobs, each with its own job

queue. It is assumed that there are always low-priority jobs

waiting for service, which means that the low-priority job
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class uses all its available server capacity.

Jobs have a required work w that describes which process-

ing time the job would have if it was given the full server

capacity. This gives the relationship x = w/p, where x is

the processing time.

III. CONTROL SYSTEM

A block–diagram of the server system is illustrated in

Fig. 2. The inputs are those variables that are directly

accessible by the controller, and in the target system, the

only input is p. The disturbances are the inputs that are not

affectable by the controller. They might be measurable, but

in many cases they are not. In the target system, the inter–

arrival times of new jobs, denoted a, and required work,

w, can be regarded as disturbances. Outputs are measurable

quantities that depend on the system under investigation, and

the previous behavior of the inputs. In the target system, the

response time for a job, denoted T , and the job queue length,

denoted N , are the outputs.

In this paper, the objectives of the control system are

the following. First, to maintain an average response time

E{T} = Tref for high-priority jobs with p as control

variable. Second, to reduce the average allocated server

capacity E{p} while minimizing the response–time variance

E{T 2} − E{T}2. Only the queue length (N ) and the

response time (T ,) the time of arrivals (a), and, if necessary,

the required work (w) should be used by the control system.

Also, effects of varying arrival rates should be kept minimal.

The dynamics of a queuing system can change dramati-

cally depending of the load and the length of the queue. If

the queue holds a lot of jobs, the influence of the statistics

will be reduced because of the averaging effect. Since the

response time for a job can be measured when the job

leaves the system, it is natural to adjust p at departure

instants. However, this control action will not only affect

the response time of the job now being served, but it will

also affect the response time of all the other jobs waiting

in the queue. Likewise, the response time of the job being

served will have been affected by the control signals set

while the job was waiting in the queue. This means that

if the queue on average holds many jobs, a significant, and

non–constant, time–delay will arise, which can reduce the

control performance. If, on the other hand, the queue is

almost empty at all time, the stochastic nature of both the

inter–arrival times and the processing times will have large

affect on the obtained response times, thus complicating the

control actions. Furthermore, a short queue is often obtained

on the cost of a higher control signal on average.

IV. CONTROLLERS

Due to the robustness properties inherited in every closed–

loop control strategies, all the following control design

methods will be based on feedback.

A. Classical feedback controllers

The classical closed–loop setup contains a measurement

of the objective variable, compared to the desired reference.

p N

T

a w

Fig. 2. The high–priority queue seen from a control perspective. The
arrival times (a) and required work (w) are unaffectable quantities and are
treated as disturbances. Dynamic variables of the queuing system are the
queue length (N ), the response time (T ), which are treated as outputs. The
fraction of the server capacity denoted to the high–priority queue (p) is a
user–defined parameter, and is therefore treated as input.

Controller

Feedback

T

N

p

pff

Tref

Feed-forward

Controller

wa

pfb

Fig. 3. The high–priority queue with a classical feedback controller. The
setup can also hold a feed–forward mechanism in order to achieve better
performance.

Based on the error (and possible past errors), the control

signal is adjusted in a manner intended to reduce the error.

A simple method is to adjust the control signal with a fixed

amount as long as the error is above some threshold. This

strategy will in the future be denoted step control. Another

method is to use variants of the PID-controller [11], [12].

B. Feed–forward based prediction

The control strategies above are based solely on feedback.

This means that information is taken from the outputs alone,

and sent back to the controller, thus for the controller to

react, an error must be present. It is often possible to predict,

based on measurements of e.g. the disturbances, that an error

is about to arise if no immediate action is taken. If such

information is available, it can be utilized in the control

mechanism in what is often called feed–forward.

The combination of feedback and feed–forward for the

single–server queue can be seen in Fig. 3. Here the arrival

times and the required work are used for feed–forward. If

the feed–forward block is removed, the control is based

exclusively on feedback. Removing the feedback and relay

only on the feed–forward results in an open–loop scheme,

which means that the robustness properties of the closed loop

are lost.

Measurements of disturbances can be included in many

ways. In control of queuing systems, queue–theoretic ap-

proaches are often taken, such as in [9], [13]. In [9]

a prediction for the response time is derived where the

prediction is calculated at the departure of a job from the

server (at time tnow). Assuming that there are jobs in the

queue, the predicted response time of the remaining jobs is

given by the average time they have spent in the queue plus

a prediction of how long time it will take to serve them. A
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Processing timeQueuing time
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time
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N
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Fig. 4. Server and queuing diagram. The average time of the known part
is given by 1

N

P

i(tnow − ai). The average time of the predicted area is

given by
(N+1)w̄

2p
.

slightly modified version of the predictor is given by

T̂ =
1

N

∑

i

(tnow − ai) +
(N + 1)w̄

2p
(1)

where w̄ is the expected required work for all the remaining

jobs.

A graphical interpretation of the predictor is given in

Fig. 4. See also [9].

Using this predictor, a feed–forward signal can be calcu-

lated by

pff =
(N + 1)

2(Tref − 1
N

∑

i(tnow − ai))
w̄ (2)

Notice that an estimate of the required work is needed in

order to use the predictor. Also note, that the feed–forward in

(2) does not calculate the predicted response time explicitly,

and therefore, there is no mechanism to ensure that the

prediction is correct.

C. Proposed feedback-based prediction and control

In this section we propose a redesign of the response–

time prediction in order to improve the prediction based

on knowledge of earlier predictions. This is performed by

imposing feedback into the prediction scheme. This is a

method often used in linear state estimation [12]. The control

scheme presented here contains the robustness properties of

feedback as well as the predictive actions from the feed–

forward.

Instead of using the information from the measurements

of the required work in (1), a virtual parameter z is used in-

stead. This parameter can be interpreted as the compensated

averaged required work. The predictor is now given by

T̂ =
1

N

∑

i

(tnow − ai) +
(N + 1)

2p
z (3)

The estimated service time is now seen as a new output and

z as an input. The purpose of this control problem is to make

the response–time estimate T̂ follow the real response time

T . The control error is therefore given by eT = T−T̂ . Using

a PI controller with eT as input and z as output will, at least

in steady state, assure that E{T̂} = E{T}. The variable z
can now be used to calculate the feed–forward control signal

for the single server queue:

pff =
(N + 1)

2(Tref − 1
N

∑

i(tnow − ai))
z (4)

PI

controller

T̂

T

N
p

Feed-forward

informations

Prediction

model

Prediction

error

a w

z

Tref

p Inverse

model

prediction

Fig. 5. The response–time prediction is updated by a feedback mechanism.
Using the internal state z, the inverse queue model gives the control signal
p required to obtain the desired average response time.

The control setup using this feedback based prediction

scheme is illustrated in Fig. 5. It is noted that the structure

has significant similarities to the state feedback control

structure, which is often used in linear control design [12].

Because of this similarity, the purposed control scheme will

be denoted state feedback control in the remainder of this

paper.

Alternatively, the PI–controller could be expanded with

a differential part (PID) which has been successfully used

in many other applications to achieve faster responses. The

differential part is sensitive to noise, and since the system

under investigation is extremely noise, the differential part

has been discarded at an early stage.

V. INVESTIGATIONS

We investigated the controllers with simulations based on a

discrete-event simulation program written in Java. The Java-

program included classes for the traffic generator, the queue,

the observer and the controller. In this section all details

regarding our investigations will be described.

A. Controller Design

Five controllers were evaluated: A step controller, two or-

dinary PI-controllers, one PI controller combined with feed–

forward, and one state–feedback controller. One PI-controller

was designed to obtain fast transients, in the following called

the fast PI controller. The other PI-controller, called slow

PI, was designed to avoid oscillations. All controllers were

event based, and was triggered by when a job departs from

the server.

To reduce the variance of the control signal, a low–pass

filtered response time was used. The filter, which also was

event based, was given by

Tf (k) = 0.9Tf (k − 1) + 0.1T (k) . (5)

The control signal was truncated to be in the interval

pmin = 0.001 to pmax = 1 before applied to the server.
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The step controller was given by

p(k) =







p(k − 1) + d for e(k) > h , p(k − 1) < pmax

p(k − 1) − d for e(k) < h , p(k − 1) > pmin

p(k − 1) else
(6)

where h was the threshold and chosen to h = 0.005. The

step size was d = 0.001. The filtered response time was used

to calculate the control error e(k) = Tref − Tf (k).
The slow PI controller was designed with an anti–windup

scheme as in [14]

I(k) = I(k − 1) + g(1 − r) · e(k) (7)

+
g(1 − r)

10

(

pfb(k − 1) − p(k − 1)
)

(8)

pfb = g · r · e(k) + I(k) (9)

The variable I represent the integral part of the PI controller.

The controller constants g and r were chosen to 0.0005 and

0.01, respectively. The controller was based on the filtered

response time e(k) = Tf (k) − Tref .

Alternatively, the integral part of the PI controller could be

implemented with varying amplification to take the aperiod-

ically nature of the event–based control update into account,

as in [15].

The fast PI controller was equivalent to the slow PI

controller, except for the control parameter g = 0.01.

The slow PI–FF controller used the same feedback–loop

as the slow PI controller, but a feed–forward mechanism was

also included. A inverse response–time predictor was given

by

Q(k) =
1

N

∑

i

(tnow − ai(k)) (10)

pff (k) =







N(k)+1
2 (Tref−Q(k)) wf (k) for Tref > Q(k)

pmax else

(11)

where ai(k) are the arrival times of the jobs in the server

system at departure k and tnow is the current time. The

variable wf is a filtered version of the required work w,

given by wf (k) = 0.00wf (k−1)+0.01w(k). It is assumed

that w can be measured. The control signal was given by a

summation of pff the output of the slow PI controller in (9).

Note that this feed–forward strategy requires a measurement

of the required work w.

The state feedback controller was implemented with a

feedback–corrected prediction scheme as

Q(k) =
1

N

∑

i

(tnow − ai(k)) (12)

T̂ (k) = Q +
N + 1

2 p(k − 1)
z(k − 1) (13)

T̂f (k) = 0.9 T̂f (k − 1) + 0.1 T̂ (k) (14)

e(k) = Tf (k) − T̂f (k) (15)

z(k) = z(k − 1) + g
(

e(k) − r e(k − 1)
)

(16)

p(k) =

{

N(k)+1
2 (Tref−Q(k) z(k) for Tref > Q(k)

pmax else
(17)

The control parameters were given by g = 0.0001 and r =
0.01. Note that this strategy does not require a measurement

of the required work w.

B. Simulations

Both steady-state and transient simulations were per-

formed. All steady–state results were evaluated after all tran-

sients had been removed. Transient behavior was investigated

after the queuing system had converged to steady state, and

was allowed to run for sufficiently long time to make sure

that all transient behavior was observed. In all simulations,

we used a Poisson process for modeling the arrival process of

new jobs. Also, the required work of a job was exponentially

distributed.

In the steady state simulations, the mean arrival rate of new

jobs, λ, was first varied between 10 and 90 jobs per second.

The mean required work for a job was 0.01 seconds. If p = 1
(i.e., an uncontrolled system) and λ = 50 /s, the average

response time would become 0.02 seconds with a mean

queue length of 0.5 jobs. The reference value for the response

time, Tref , was set to 0.6 seconds, which correspond to

a queue length of about 30 jobs for λ = 50 /s (Little’s

law [16]).

Then, the response time reference Tref was varied from

0.05 s to 1.7 s while the arrival rate was kept constant at λ =
50. All other parameters was as with the previous steady–

state experiment.

In the transient simulations, the required work distribution

was kept constant as an exponential distribution with mean

0.01 seconds. However, the average arrival rate of new jobs

changes from 20 to 80 jobs per second at time t = 8000
seconds. This is a considerable change in arrival rate, which

brings the queuing system from operating with low load to

operating in the high end of the medium–load range. All

initial transient behavior has died out and the system has

reached steady state before the change of arrival rate.

VI. RESULTS AND DISCUSSION

In this section we will present and discuss the results from

the investigations.

A. Steady state simulations

Fig. 6 shows some performance metrics from the simula-

tions. The top of the figure shows how the controllers track

the reference as the traffic changes. It is noticed from the

figure that both the fast PI controller and the step controller

are not capable of maintaining the desired response time

in steady state. Also the proposed state feedback controller

suffers from poor steady state reference following at both

high and low arrival rates, whereas it performs satisfactory

at medium arrival rates in the range of 20 − 80 /s. The

bottom of Fig. 6 shows the variance of the response time.

Here the benefit of using feed–forward becomes obvious.

The combined PI and feed–forward controller and the state

feedback controller damp the stochastic variations of the

queuing system far better than any of the controllers solely

based on feedback.
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with feed–forward, and the state feedback controller coincide in some parts
in the top figure. So does the slow PI controller with feed–forward and the
state feedback–controller in the lower plot.
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Fig. 7. Server capacity allocation as function of arrival rate in steady state.

Fig. 7 shows the averaged allocated CPU as function

of the arrival rate. The figure shows a general trend; the

need for server resources increases with the traffic. The

figure even indicates that this relationship is linear. By close

inspection it can be seen that the slow PI controller demands

an insignificantly smaller amount of server resources than

both the combined PI and feed–forward controller and the

state feedback controller for arrival rates above 20 /s. Below

this, the step controller and the slow PI controller seem to

perform slightly better. In this region the stochastics become

extremely dominating, and predictive control, which is based

on averaging, becomes useless. The slow reacting feedback–

based mechanisms therefore perform better. However, in

the dominating arrival rate span, the feed–forward based

controllers show superior performance.

A common way to represent simulation and experiment

data in the telecommunication community is the distribution

as illustrated in Fig. 8. The dashed line represents the result
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Fig. 8. Response time distributions. Notice that the the slow PI controller
with feed–forward and the state feedback controller coincide in most parts
of the figure.
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Fig. 9. Steady state simulation results for the state feedback controller.
The resources available for the low priority queue, as function of response
time T , plotted for different values of arrival rate λ.

of an ideal response. The figure indicates that none of the

controllers are ideal, but the two controllers with feed–

forward (the slow PI+FF controller and the state feedback

controller) performs significantly better. The Step controller

and the two pure–PI controllers are skewed and show to

result in high possibility for long response times.

Fig. 9 shows what is earned by using control, since the

capacity not reserved for the high-priority queue is available

for the low-priority queue. The figure shows that a lot

is gained when accepting slightly longer response times.

However, as longer response times are accepted, the increase

in capacity for the low-priority queue diminishes.

B. Transient simulations

One strong argument to use feedback in the control is the

robustness towards changes in the environment. The above

simulations were all performed with steady state environ-

ments, which means that the both the required work and the

arrival rate had constant distributions. It is of high relevance

to investigate the behavior of the controlled queuing system

under changes in the environment. Fig. 10 illustrates the
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increase in the arrival rate from 20 /s to 80 /s occurs at time t = 8000 s.
The left column shows the control signal and the right column shows the
response times. Rows one to five show results for the step controller, the
slow PI controller, the fast PI controller, the combined PI and feed–forward
controller, and the state controller, in the mentioned order.

transient behavior of the single serve queue with the different

controllers.

The transient behaviors show that the slow designed

controllers based only on feedback result in a large transient

at the arrival rate change. First the change must be detected

in the response time measurements, and then the controllers

must build up the control signal to compensate. During this

time, the queue has built up, resulting in large response

times. The fast PI controller manages to react faster to

the disturbance and thereby maintaining a shorter queue.

The transient behavior can be seen in the figure, which

yields a oscillating behavior that is undesirable. It should

be mentioned that the fast PI–controlled system becomes

unstable (ever increasing queue length) if the reference is

increased too much. The two controllers based on both

feedback and feed–forward seems to manage the change

well, which was also the reason to utilize the feed–forward.

The feed–forward measures the change of arrival–rate and

starts to compensate for it even before it has affected the

response time. There is no significant difference between the

transient performance of the two controllers.

C. Discussion

Both the steady state simulations and the transient simula-

tions show that the capability to maintain the reference and to

reduce the response time reference is improved significantly

by imposing feed–forward. The two feed–forward methods

show similar properties in most of the tested cases. However,

our proposed state feedback controller does not require a

measurement of the required work, which can be considered

as a considerable advantage.

VII. CONCLUSIONS

Performance related control of server systems is a wide

research area with numerous applications. In this paper,

we have considered a single-server queue in which high-

priority jobs should receive as much server capacity as

needed to experience a certain response time. However, the

server capacity should be optimized in order to allow for the

execution of low-priority jobs.

We have proposed a state feedback controller that uses a

prediction of the response time. We compare the proposed

controller with other controllers found in the literature. The

proposed controller is shown to have a similar desirable be-

havior for the target system than the best of other controllers

despite that no measurement of the required work is required

in our solution.
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