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Sparse Semi-Parametric Chirp Estimation
Johan Swärd∗, Johan Brynolfsson, Andreas Jakobsson, and Maria Hansson-Sandsten

Abstract—In this work, we present a method for estimating
the parameters detailing an unknown number of linear chirp
signals, using an iterative sparse reconstruction framework. The
proposed method is initiated by a re-weighted Lasso approach,
and then use an iterative relaxation-based refining step to allow
for high resolution estimates. The resulting estimates are found to
be statistically efficient, achieving the Cramér-Rao lower bound.
Numerical simulations illustrate the achievable performance,
offering a notable improvement as compared to other recent
approaches.

I. INTRODUCTION

MANY forms of everyday signals, ranging from radar
to biomedical and seismic signals, and human speech,

may be well modeled as periodic signals with instantaneous
frequencies (IF) that varies slowly over time [1]. Such signals
are often modeled as linear chirps, i.e., periodic signals with
an IF that changes linearly over time. Given the prevalence of
such signals, much effort has gone into formulating efficient
estimation algorithms of the start frequency and rate of devel-
opment, and then, in particular, for signals only containing a
single (complex-valued) chirp-component. Here, one notewor-
thy method is the phase unwrapping algorithm presented by
Djuric and and Kay [2]; further development of this method
can be found in e.g. [3]. Other methods presented for single
component estimation are, for example, based on Kalman
filtering [4], [5], or sample covariance matrix estimates [6].

Recent work has in larger extent focused on also identi-
fying multi-component chirp-signals such as the maximum
likelihood technique presented in [7], and the fractional
Fourier transform method [8]–[10]. Others have used the time-
frequency distribution, i.e., Wigner-Ville, reassigned spectro-
gram, or a Gabor dictionary as a rough initial estimate, which
then may be refined using image processing techniques to fit
a linear chirp model [11]–[13]. The latter method seems to
render good estimates, although it typically requires rather
large data sets to do so. Clearly, the nonparametric methods
have the advantage of computational efficiency, but also suffer
from the poor resolution inherent to the Fourier transform. The
parametric methods on the other hand have good performance
and resolution, but require a priori knowledge of the number
of components in the signal. Furthermore, it is not uncommon
that one need to have good initial estimates to be able to use
parametric methods, otherwise the algorithm might suffer from
convergence problems.

In this work, we propose a semi-parametric algorithm for
estimation of the parameters detailing a multi-component lin-
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ear chirp signal, where the number of components is assumed
to be unknown. The algorithm requires very few samples to
get an accurate estimate of the parameters. Hence, even if
the signal is comprised of non-linear chirp components, the
signal can be divided into short segments for which the chirp
rate is approximately linear. We demonstrate the performance
of the proposed method on both real and simulated data, and
compare the results with the corresponding Cramér-Rao lower
bound (CRLB), as well as to competing algorithms. In this
paper, scalars will be denoted with lower case symbols, e.g.
x, whereas vectors will be denoted with bold lower case,
x. Matrices will be denoted with bold upper case letter, X .
Furthermore, (·)T , <, and = will be used to denote the
transpose, the real part, and the imaginary part, respectively.

II. SIGNAL MODEL

Consider the signal model

y(t) =

K∑
k=1

ake
i2πφk(t) + e(t), t = t0, . . . , tN−1 (1)

where K denotes the unknown number of components, N
the number of available samples, ak the complex valued
amplitude, φk(t) the time dependent frequency, and e(t) as
additive noise term, here assumed to be white and Gaussian
distributed. Furthermore, the chirp frequency is assumed to be
linear, at least under short time intervals, such that it may be
well modelled as

φk(t) = f0k t+
rk
2
t2 (2)

yielding an instantaneous frequency function

φ′k(t) = f0k + rkt (3)

where f0k and rk denotes the starting frequency and the fre-
quency rate, i.e., the slope of the chirp, respectively, for chirp
component k. The considered problem consists of primerily
estimating K, f0k , and rk, but in the process also the phase
shifts ϕk , ∠ak and the amplitudes αk , |ak|. One may
express (1) in a more compact manner, using matrix notation

y = Da+ e (4)

where

y =
[
y(t0) . . . y(tN−1)

]T
(5)

a =
[
a1 . . . aK

]T
(6)

D =
[
d1 . . . dK

]
(7)

dk =
[
1 . . . ei2πφk(tN−1)

]T
(8)
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III. ALGORITHM

The proposed algorithm initially estimates the frequency
starting point and the frequency rate. Since the number of
components in the signal is unknown, one may create the
dictionary containing P � K candidate chirps, thus approxi-
mating (1) with

y ≈Da (9)

where, D is an N × P dictionary matrix, and a the corre-
sponding amplitudes. Solving (9) using ordinary least squares,
if feasible, would yield a non-sparse solution, i.e., most of the
indexes of a would be non-zero. By instead forcing the solu-
tion to have only a few non-zero elements, one may instead
find a solution which indicates which dictionary elements that
are most dominating in the signal. This may be achieved by
solving

minimize
x

||y −Dx||22
subject to ||x||0 < ρ (10)

where ||z||0 denotes the number of non-zero elements in z.
Even though the cost function in (10) is convex, ||x||0 is
not, and the optimization problem has been shown to be NP-
hard. To be able to solve (10), one has to relax the constraint,
which is commonly done by considering the `1-norm instead
of ||x||0. Given this relaxation, the problem transforms to
solving a Lasso optimization problem

minimize
x

||y −Dx||22 + λ||x||1 (11)

where λ is a tuning parameter, controlling the sparsity of
the solution. The solution obtained from (11) will depend on
the grid structure of D, i.e., if the true components are not
contained in the dictionary, the components that are the closest
to the true chirps will be activated, thus the corresponding
indexes in x will be non-zero. Therefore, the solution attained
from (11) will be biased in accordance to the chosen grid
structure of D. To avoid this bias, we introduce a nonlinear
least squares (NLS) search to further increase the resolution.
Let the residual from (11) be

r = y −Dx (12)

Each chirp is then iteratively updated by first adding one chirp
to the residual formed in (12), conducting a NLS search for the
parameter estimates, removing the found chirp using (12), and
then adding the next chirp. When all chirps have been updated,
one may continue updating the residual with the newly refined
estimates. After a few iterations, the final estimates are found.

A. Reweighted LASSO

In the above algorithm, the user has to select a value for λ. A
too high value of λ will suppress chirps with small amplitudes,
whereas a too small value of λ will not manage to suppress the
noise, which will lead to an overestimation of K. The value
of λ is commonly chosen through cross-validation [14] or,
by some data dependent heuristics. In this paper, we propose
a simple heuristic for choosing λ. One may consider λ as
a threshold for the energy for which signals that may be in

Algorithm 1 Chirp algorithm
1: Initiate wi = 1, for i = 1, . . . , P
2: for ` = 1, . . . do
3: Solve (15)
4: Update (14)
5: end for
6: Compute (12)
7: for j = 1,. . . do
8: for k = 1, . . . , K̂ do
9: z = r+D(·, IK̂(k))(j)x(IK̂(k))(j)

10: Use NLS to update D(·, IK̂(k))(j) and x(IK̂(k))(j)

11: end for
12: end for

the solution of (11). With this insight, one may then find it
reasonable that a suitable choice of λ should somehow include
the total energy of the signal, e.g. measured in the `2-norm
||y||22. Herein, we suggest the following choice

λ =
||y||22
2N

(13)

This suggests that a chirp is allowed in the solution of (11) if
it contains more energy than half of the mean energy in the
entire signal. This has empirically been shown to provide a
reliable choice of λ, at least when N is around 15 − 30. To
further increase the robustness to the choice of λ, we propose
a re-weighted Lasso approach, based on the techniquew intro-
duced in [15]. In the re-weighted approach, one solves the
minimization iteratively where, at every iteration, a weight
matrix W with weights w1, . . . , wP on the diagonal and
zeros elsewhere, is used. The diagonal elements in W are
updated as

w`p =
1

|x`−1p |+ ε
, p = 1, . . . , P (14)

where the superfix ` denotes the iteration, and ε > 0 a tuning
parameter, which prevents the solution from diverging. At each
iteration the following minimization is solved

minimize
x

||y −Dx||22 + λ||W `x||1 (15)

The algorithm is outlined in Algorithm 1 where D(·, k) and
x(k) denote the k:th column and the k:th index of the matrix
D and the vector x, respectively. Furthermore, let the number
of non-zero elements in the solution from (11) be K̂ and let the
corresponding indexes in x be the index set IK̂ . It should be
noted that the reweighted Lasso approach introduces another
tuning parameter ε. In this paper, we have set ε to be

ε =
N

||y||22
(16)

which is in accordance to the discussion in [15], and has been
empirically shown to be reliable for N around 15-30.

IV. NUMERICAL RESULTS

In this section, we set out to test the algorithm on real
and simulated data, as well as comparing it to other chirp
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Fig. 1. The figure shows the ture (solid) and the estimated (dashed) IF.

Fig. 2. The figure shows the estimated time-frequency distribution of chirp
signals using reassigned spectrogram. The ground truth is shown in Figure 1.

algorithms and the CRLB. In this paper, we define the signal
to noise ratio (SNR) as

SNR = 10log10

(
P

σ2

)
(17)

where P is the power of the signal and σ2 is the variance
of the Gaussian noise. In the first example, we simulate a
uniformly sampled signal with length N = 20 containing
two chirp components, as depicted in Figure 1, which were
corrupted with a white Gaussian noise with SNR=10 dB.
The resulting estimates from the proposed method and the
reassigned spectrogram [16] are shown in Figures 1 and 2,
respectively. The reassigned spectrogram shows the two chirp
components, but the estimates are blurred, as well exhibiting
jumps in the frequencies. On the other hand, the proposed
method manages to find the chirp components with out any
such ambiguities.

We continue by showing how the proposed method may
be used in tracking a non-linear chirp. In this example, we
simulated an exponential chirp component defined as

φ(t) =

(
rt − 1

log(r)

)
f0, (18)
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Fig. 3. The estimated chirp in dashed lines compared to the true chirp.
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Fig. 4. Performance of the proposed method as compared with the CRLB,
the Djuric-Kay method and the DCFT method, when estimating the starting
frequency of one single chirp

where f0 and r are parameters determining the starting
frequency and the exponential rate of change. The signal,
containing N = 105 samples, was divided in 7 equally sized
sections, such that each segment may be reasonably well
modelled as a linear chirp.The signal was corrupted by white
Gaussian noise with SNR 20 dB. The proposed algorithm
was applied on each section and the resulting chirp estimate
is depicted in Figure 3, where it is clearly shown how the
proposed method manages to estimate the evolving paramaters
of the non-linear chirp.

Next, we examine the estimation performance of the pro-
posed method as a function of SNR, as compare to the CRLB.
The simulated signal contains one single chirp component with
starting frequency f0 = 0.6/π and frequency rate r = 0.03/π,
amplitude α = 1, and a uniformly distributed random phase
ϕ ∈ U(− 1

2 ,
1
2 ), which was randomized for each simulation.

The sample length is set to N = 20. The parameters are
estimated using the proposed method, where λ and ε were
selected as suggested in Section III-A, the discrete chirp
fourier transform algorithm (DCFT) [8], and the algorithm
presented by Djuric and Kay in [2]. For each SNR, 1000
Monte-Carlo simulations were conducted and the resulting
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Fig. 5. Performance of the proposed method as compared with the CRLB,
the Djuric-Kay method and the DCFT method, when estimating the frequency
rate of one single chirp.
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Fig. 6. Showing the time-frequency estimation of the bat signal using the
proposed algorithm.

Root Mean Squared Error (RMSE) are shown in Figures 4
and 5. The proposed method only estimated the wrong number
of components in 1 out of 1000 at the SNR=5 dB level.
For the other SNR levels, the order estimations were without
any errors. To assert a fair comparison, the simulations where
the proposed method estimated the wrong model order were
removed from all methods, and are thus not included in the
RMSE graphs. As is clear from Figures 4 and 5, that the
proposed method, with out any prior knowledge about the
number of chirps, manages to attain the CRLB, ass well
as outperforming the Djuric-Kay algorithm even though the
Djuric-Kay algorithm has been allowed oracle model order
information. Furthermore, the DCFT algorithm is stuck to
the initial grid, which seggests why it does not manage to
improve when the SNR increases. We proceed by examining
the performance on multicomponent chirp signals. Since the
competing methods did not manage to perform on multicom-
ponent data, we only show the results for the proposed method
as compared to the CRLB. Figures 7 and 8 depict the results
of a Monte-Carlo simulation where 1000 simulations were
used for each SNR-level. The starting frequency of the chirps
were f01 = 0.6/π and f02 = 1.2/π, and the slope rates were
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Fig. 7. Performance of the proposed method when estimating the starting
frequencies of two non-crossing linear chirps, as compared to the Cramér
Rao Lower Bound.
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Fig. 8. Performance of the proposed method when estimating the frequency
rates of two non-crossing linear chirps, as compared to the Cramér Rao Lower
Bound.

r1 = 0.03/π and r2 = 0.09/π. The amplitudes were set to
one and the phase were drawn as ϕ ∈ U [−1/2, 1/2] at each
simulation. Once again, λ and ε were chosen as described in
Section III-A. As one may note from Figures 7 and 8, the
proposed method follows the CRLB for SNR levels greater or
equal to 10. It should also be noted that the proposed method
only estimated the wrong model order 26 times out of the
1000 simulations, and this only happened for the SNR=5 dB
case. Again, these simulations were removed from both the
proposed methods RMSE.

We continue by showing the performance on real data,
containing sounds from bats [17]. Audio sources, such as
music and speech, are often modeled as harmonics. Thus, it
should be expected that the sound from a bat should contain a
harmonic structure. Figure 6 shows the estimated chirps for a
bat signal containing 240 samples divided into 8 equally long
sections. The tuning parameters were selected as suggested in
Section III-A. Figure 6 shows the expected harmonic structure,
where two over-tones are visible.
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