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Abstract

In the module allocation problem a collection of software
modules are to be assigned to physical processing nodes,
subject to execution and communication cost. The cost
of an allocation is a function of the execution costs and
the communication costs for any pair of modules allocated
to distinct processors. The module allocation problem has
been well studied and is known to be NP-complete except
for certain communication configurations. To solve the
problem, several heuristics have been proposed. This pa-
per discusses an alternative approach to solving the module
allocation problem by applying a stochastic optimization
method called the Cross Entropy (CE) Method. The CE
Method is a state-of-the-art stochastic method for solving
combinatorial and multi-extremal continuous optimization
problems. The CE method uses a distribution with parame-
ter v to generate sample allocation. The generated samples
are then used to update v according to sample quality. This
process is repeated until the distribution converges to a pos-
sibly optimal allocation. The results in this paper indicate
that the CE method can successfully be applied to the mod-
ule allocation problem and efficiently generate high qual-
ity solutions. Also, the CE method allows the use of non-
standard objective functions that are used to find allocations
that have multiple conflicting objectives.

1 Introduction

An important problem that arises in distributed computer
systems is the allocation of software modules to physical
processing nodes. The problem is relevant in architectures
such as CORBA or Web Services that consist of software
modules communicating via a common middle-ware layer,
providing transparent distribution to the applications. Such
systems are both flexible and dynamic. However, to fully
realize the potential of a distributed system, mechanisms

that make efficient use of resources must be introduced.
Good allocations may lead to better throughput, reliability,
processing times and better resource usage. Poor alloca-
tions often lead to poor system performance. Thus, finding
good module allocations is an important way to improve
performance and reduce resource consumption.

This paper investigates the use of a novel stochastic
optimization method called the Cross Entropy (CE) method
for solving the module allocation problem. The CE method
for combinatorial optimization was first proposed by Ru-
binstein [1]. The CE method transforms the deterministic
optimization problem into a stochastic one, and then uses
rare event simulation techniques to solve the problem. The
CE method applied to module allocation involves iteration
over two phases:

1. Generate sample allocations according to a given dis-
tribution parameterized by a parameter v.

2. Update v based on the relative performance of the
samples generated in the previous phase, in order to
generate “better” samples in the next iteration.

Two things are needed apply the CE method to a prob-
lem: a sample generation mechanism and update rules for
the distribution used in the sample generation process. This
paper presents such a mechanism with updating rules for
module allocation problem.

Both theoretical and heuristic methods have previ-
ously been applied to the module allocation problem.

Theoretical methods, such as branch-and-bound and
integer programming, will find the optimal solution. How-
ever, as shown by Fernández-Baca [2], the module allo-
cation problem is NP-complete, except for certain special
cases. Stone [3] used a network flow model to solve the
problem with two nodes. Ma et al [4] presented a branch-
and-bound based solution and Bastarrica et al [5] discussed
solutions using integer programming. Choi and Wu [6] pre-
sented a multi-objective solution using the Niched Pareto
Genetic-Algorithm.

Heuristic methods are fast and efficient, but find sub-
optimal solutions. Heuristic methods commonly include
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Figure 1. System model

ways for partitioning the communication graph. Efe [7],
Lo [8] and Stoyenko et al [9] each presented algorithms for
clustering modules that communicate much and then allo-
cate clusters to nodes. Woodside and Monforton [10] de-
scribed a several heuristics that speed up allocation using a
bin-packing technique.

In comparison with the mentioned methods, our use
of the CE method for module allocation is based on
stochastic optimization theory. Our method requires nei-
ther special problem structure nor heuristic assumptions.
The method is also largely independent of choice of objec-
tive function.

The main contribution of this paper is to show how
the Cross Entropy Method can be used to solve the module
allocation problem in an efficient way. The paper shows
how to apply the algorithm together with a discussion of
the parameters required to operate the algorithm.

The rest of the paper has the following structure: Sec-
tion 2 presents a model of a distributed module based sys-
tem. Section 3 presents the module allocation problem and
how it can be approached. Section 4 describes the CE
method and how it can be used to solve the module al-
location problem. Section 5 presents two experiments to
evaluate the CE method for module allocation as well as
to compare it to other previous methods. Finally, section 6
discusses conclusions from the experiments.

2 Model

In this section we outline a general model of a dis-
tributed module based system, where communicating soft-
ware modules are to be allocated to physical processing
nodes in a network. In figure 1, the rectangles are nodes,
circles are modules, lines are communication requirements
between modules and dashed lines indicate an allocation of
modules to nodes.

In the model we will use the term cost as a measure
of what needs to be optimized. The cost is a relevant mea-
surable parameter such as MIPS or load generated by the
software modules.

The physical resources in the model are represented
by a collection of N processing nodes. The nodes are het-
erogeneous, and a particular module incurs different costs
when executed on different processors, due to varying com-
putational facilities at each node. The nodes belong to
a common domain with high network speed compared to
node processing capacity. Thus, network latency is negli-
gible, and the nodes can be assumed to be fully connected.

The software in the system is represented by by M
modules. The execution cost for a module is given by an
N × M matrix E, where element eij is the execution cost
for module j allocated to node i. eij = ∞ if module j may
not be allocated to node i.

The communication model is similar to Bokhari [11],
where the actual communication cost between two mod-
ules is zero if they are co-allocated on the same node. Oth-
erwise, the communication cost is given by an M × M
matrix C, where element cjk is the communication cost
if modules j and k are allocated to different nodes. Note
that cjj = 0 and we assume that cjk = ckj . The com-
munication cost can also be viewed as a graph of intercon-
nected modules, with edges representing that two modules
communicate. The communication cost models the proto-
col handling required to support communication between
nodes, and is a cost for the nodes hosting the modules in-
volved in communication. We do not consider the loading
of the underlying network, since we have already assumed
that it is of high enough capacity.

The allocation of modules to nodes is given by a allo-
cation matrix α with binary elements. Element αij = 1 if
module j is allocated to node i, αij = 0 otherwise. When
several allocations are considered at the same time, let αk,ij

be αij for allocation k.

3 Module allocation problem

The module allocation problem is to allocate modules to
physical nodes in a way that best satisfies a given set of ob-
jectives and constraints. In this paper, we use three differ-
ent performance-related objectives: minimization of total
cost, minimization of maximum node cost and minimiza-
tion of allocation badness. First, let the the cost wi for node
i given allocation α be defined by:

wi(α) =

M
∑

j=1

(ejαij +

M
∑

k=1

cjkαij(1 − αik)) (1)

The total cost minimization objective was formulated
by Stone [3], and is known to be NP-complete, except for
certain communication configurations configurations. In
our notation, total cost minimization is equivalent to

min
α

Lcom =

N
∑

i=1

wi(α) (2)



This objective makes no effort to balance the cost on the
nodes. However, to prevent clustering, constraints limit-
ing either the total cost (see Efe [7]) or other factors such
as memory consumption of modules on nodes (see Roupin
[12]) can be introduced. Note that in a homogeneous sys-
tem, (2) is equivalent to minimizing total communication
cost.

In addition to (2), the second most common objective
in literature (for instance, see Woodside et al[10] is min-
max node cost. In our notation,

min
α

(Lmin−max = maxwi(α)) (3)

By minimizing the maximum node cost the optimal alloca-
tion found will have both balanced cost and low communi-
cation.

The CE method for module allocation is not restricted
to using the previously mentioned functions. We use this
advantage to introduce the notion of allocation badness.
The allocation badness for node i is:

bi(α) = e(wi(α)−wi,ref )/wi,ref (4)

where wi,ref is equal to the average execution cost of all
modules. Note that bi = 1 for balanced allocations with
no communication. The objective is to minimize allocation
badness:

min
α

Lbadness =
N

∑

i=1

bi(α) (5)

By using (5), communication minimization and load bal-
ancing is achieved.

4 The Cross Entropy Method

This section outlines the Cross Entropy Method (The CE
method), and how it can be applied to module allocation
problems.

The CE method was introduced by Rubinstein [1] as
a stochastic method for combinatorial optimization prob-
lems. Rubinstein saw a link between importance sampling
estimation of rare events and combinatorial optimization
problems, such as the Traveling Salesman Problem, Short-
est Path problems and so on.

The main idea behind the CE method is to transform
the original deterministic optimization problem into an as-
sociated stochastic problem, and then tackle the stochastic
problem using an adaptive sampling algorithm. In the pro-
cess, a sequence of random solutions is constructed that
converges probabilistically to the optimal or a near-optimal
solution.

In each iteration, importance sampling is used to alter
the allocation distribution matrix Pt, amplifying the prob-
ability for finding better allocations. Cross Entropy mini-
mization is used to efficiently update parameters. In addi-
tion, a performance function further weights the allocation
qualities to give more influence to better allocations in the

alteration of the allocation matrix. The objective is to let
the allocation matrix converge to a binary matrix giving the
optimal allocation. Cross Entropy is a measure of distance
between two distributions and it is defined in [1].

The CE method is different from other stochastic op-
timization methods such as Simulated Annealing (SA) or
Genetic Algorithms (GA). The CE method does not do
local search like SA or GA, instead it performs a global
search in the entire solution space.

In this paper we use the Boltzmann version of the
two-stage Cross Entropy Algorithm in [1]. This version
weighs the allocation according to the performance of the
allocation. According to [1], the Boltzmann version is su-
perior to the originally suggested threshold version of the
CE method.

4.1 Sample generation and initialization of Pt

The samples used in the algorithm are generated using
a N × M probability matrix P . Let Pt be the probability
matrix used in iteration t. Element Pt,ij is then the proba-
bility that module j is allocated to node i in iteration t.

The initial value for Pt is arbitrary for a unconstrained
allocation, as long as there is a high probability that a mod-
ule j is allocated to a node j in the first iteration of the
algorithm. For example, Pt=0,ij = 1/N . The column sum
of Pt is equal to 1.

As mentioned in section 2, security and reliability re-
quirements that restrict certain modules to a subset of avail-
able nodes must be taken into account. This is done by ad-
justing Pt accordingly by setting Pt=0,ij = 0 for unavail-
able i:s and scaling up the remaining probabilities.

In a system with homogeneous processing times the
initial P0 can be chosen in a way that the number of gen-
erated permutations is reduced. First, place module 1 on
node 1 (P0,11=1.0), place module 2 on either node 1 or 2
with equal probabilities (P0,12 = P0,22 = 0.5), continu-
ing until the first i modules have been allocated. With this
method, P0 will contain zeros below the diagonal of the
first i columns. Every column will still sum up to 1.0, how-
ever.

4.2 Cross Entropy Algorithm for Module Allocation

0. Initialize Pt=0.

1. Generate a set A of K sample allocations αk using Pt.
Each sample αk represents an allocation of modules to
nodes. Let L(αk) be the cost of allocation αk, where
L is one of the objective functions defined in section
3. Calculate the minimum Boltzmann temperature γt

to fulfill the average allocation performance:

max γt (6)

s.t.h(Pt, γt) =
1

K

K
∑

k=1

H(αk, γt) > ρ (7)



where H(αk, γt) = e−L(αk)/γt is the Boltzmann per-
formance function for allocation αk, ρ is a search
focus parameter, typically in the range of 10−2 ≤
ρ ≤ 10−6. A small value of ρ improves convergence
speed, but is more likely to get caught in local mini-
mizes.

2. Using γt together with generated set of samples A
from step 1 and H(αk, γt), update Pt by minimizing
the distance to the optimal matrix. This is done by
solving the following problem

max
Pt+1

1

K

K
∑

k=1

H(αk, γt)
∑

ij∈αk

ln Pt,ij (8)

The solution to this problem is shown in [1] to be

Pt+1,ij = Ct

K
∑

k=1

αk,ijH(αk, γt) (9)

where Ct = 1/(
∑K

l=1 H(αl, γt)) is a normalization
constant for iteration t. Equation 9 will minimize the
Cross Entropy between Pt and Pt+1 and optimally im-
prove allocation probabilities given the calculated γt

and the performance function.

3. If convergence then stop iteration, else t = t+1 and go
to step 1. A criterion for convergence is that γt−k =
γt−k+1 = ... = γt for a given k, say k = 5.

Say that the algorithms terminates at t = τ the algo-
rithm returns two (possibly equivalent) allocations αiteropt

and αglobopt. αiteropt is the optimal allocation as given by
the converged probability matrix Pτ while αglobopt is the
best allocation found during the entire run of the algorithm.
Note that L(αglobopt) ≤ L(αiteropt).

4.3 Algorithm Parameters
The sample size K should be adjusted to the values

for N and M . A large K will generate more statistically
stable results requiring fewer iterations. However, the pos-
itive effect of increasing K is decreased if K grows too
large. If a small K is used the results will fluctuate more.
The effect of small K can be helped by the introduction of a
smoothing function, to prevent that Pt,ij :s may be reduced
to zero prematurely:

Pt,ij = P̂t,ij ∗ β + Pt−1,ij ∗ (1 − β)

where P̂t,ij is the value calculated in the algorithm at itera-
tion t and β is a smoothing parameter. While the objective
of the algorithm is to converge Pt to zeros and ones, doing
so prematurely decreases the efficiency of the algorithm.

However, it should be noted that the presented algo-
rithm is quite insensitive to exact choice of parameters. As
long as ρ is not to small, the smoothing parameter β is < 1
and K is large enough, the results of the algorithm are ro-
bust.

4.4 Problem constraints
In the presented algorithm, there is no provision to en-

sure that generated samples are feasible. Since all costs are
positive, infeasibility typically occurs when more cost is al-
located to a node than it can hold. There are three ways to
handle infeasible samples: (1) Leave them as they are, (2)
Artificially give infeasible samples very low performance
(i.e. a very high L(αk)), and (3) draw new samples until
all are feasible. Depending on the problem, feasibility is
not a problem if most generated samples are feasible.

4.5 Global and iteration optimal solutions
Even if the CE method typically is fast to converge

for a problem, it has an additional property that is very use-
ful: By saving the best sample from all iterations so far,
αglobopt, at least one high quality solution is known at all
times.

5 Experiments

In this section we describe two experiments using the the
CE method for allocation of modules. The first experiment
applies the CE method to a sample problem previously by
Efe [7]. The second experiment compares the accuracy of
the CE method using the objectives presented in section 3.

5.1 An illustrative example
As an illustration of how the CE method works, we

will now show how the method works for a small exam-
ple previously investigated by Efe [7], Williams [13] and
Woodside and Monforton [10]. Efe used a clustering al-
gorithm, which forms K clusters of the M modules so as
to minimize inter-cluster communication, and then a mod-
ule reassignment algorithm that did pairwise module inter-
change based on node loading. Williams ordered tasks by
communication factors and then allocated them in that or-
der, using the execution costs for placement. Woodside
and Monforton used an heuristic extension of the MUL-
TIFIT algorithm (which in turn was initially investigated
by Coffman [14]), that used an iterative bin-packing tech-
nique, where costs where increased according to commu-
nication cost.

The example uses three homogeneous nodes and ten
modules. The module execution costs and communication
costs are found in the module graph is found in figure 2.
The objective used was the same as in Woodside, min-max
cost balancing (3). The CE method parameters used were:
search focus parameter ρ = 10−2, sample size K = 5 ·N ·
M = 150 samples and convergence parameter (in step 3)
k = 5.

The CE method algorithm was run 50 times. The al-
gorithm converged on the optimal solution in 80% of the
cases. However, in all cases, the optimal solution αglobopt

was found during the sampling process already after a few
iterations. Using 100 samples per iteration, the mean num-
ber of iterations before convergence was 41.
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Figure 2. Module graph for Efe’s example. Labels on edges
are communication costs and labels on vertices are module
index followed by execution costs. Note that nodes are ho-
mogeneous in the example.

Table 1 contains results from the CE method com-
pared to other methods. The values in the table are the
optimal cost L for a node as well as the modules allocated
in the optimal case.

Widell Woodside Efe Williams
N L/modules L/modules L/modules L/modules
1 120 (2,3,5) 120 (2,3,5) 120 (2,3,5) 115 (2,5)
2 145 (4,7,8) 145 (4,7,8) 145 (4,7,8) 180 (3,4,6,7)
3 140 (1,6,9,10) 140 (1,6,9,10) 140 (1,6,9,10) 160 (1,8,9,10)

Table 1: Cost and allocated modules per node, for
optimal solution given Efe’s example.

To further show the operation of the CE method, fig-
ure 3 shows the matrix Pt is at different iterations t of the
algorithm. In this particular instance, the algorithm con-
verged after 33 iterations. The height of the bars represent
the probability that a module will be allocated to that node
in the next iteration. Note that since the system is homoge-
neous, the algorithms converge to a permutation of the op-
timal allocation. Note also that the permutation-reduction
trick was used for the initial distribution.

In figure 3 we see that initial convergence is quite fast,
but the algorithm takes time to settle. One reason for this
is that we are using the min-max objective function. The
CE method performs better with additive functions. A less
strict convergence criteria will also decrease convergence
time.

Despite these observations, the results from this ex-
periment indicate that the CE method can be useful in find-
ing good allocations, without any regard to problem struc-
ture.

5.2 A large symmetric system
We have also investigated the performance of the CE

method on larger systems. Since the allocation problem is
very hard, we have used artificially constructed problems,
with known solutions, to compare our converged solutions
with.
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Figure 3. Illustration of convergence for Efe’s example,
with convergence at t = 33 (last iterations not shown, since
they are not visibly different)

As an example, we used homogeneous systems with
the following characteristics. Module execution cost was
same on all nodes (eij = 10 for i = 1..N and j = 1..M ).
We let the number of modules be M = G · N . Modules
were clustered in groups of size G, with all modules within
a group communicating only within the group. The result-
ing communication cost matrix was (for a example with
N = 3 and G = 3):

C =



















0 7 7 0 0 . . .
7 0 7 0 0 . . .
7 7 0 0 0 . . .
0 0 0 0 7 . . .
0 0 0 7 0 . . .

. . .
. . .



















For this example it is easy to see that the optimal al-
locations for all three objectives (2), (3) and (5) are those
that allocate all modules in a group to the same node. In
addition for the latter objective, only one group is allocated
to one node.

We ran the allocation algorithm 10 times for each ob-
jective and cases. Each iteration used N · M samples. The
results are summarized in table 2. The table shows algo-
rithm accuracy (Acc.) for finding the optimal allocation for
each case and objective, and t̄ is the average number of it-
erations iterations to do so. The accuracy is the number out
of 10 times the algorithm converged on the optimal value.
For the cases that did not find an optimal solution, the con-
vergence in all occasions was to allocations with at most



Objective Comm. cost. (2) Minimax (3) Badness (5)
Case Acc. t̄ Acc. t̄ Acc. t̄

N = 6,M = 24 10 53 8 74 9 31
N = 8,M = 32 9 78 6 104 8 63
N = 10, M = 40 8 111 4 143 7 105

Table 2: Accuracy (Acc) and average number of iterations
for the symmetric problem.

two modules that were not allocated to the same node as
the rest of their group.

We see in the table 2 that the CE method is most ac-
curate for the two additive objective functions (minimize
communication cost (2) and minimize badness (5)). This is
as predicted in Rubinstein [1]. The explanation is that the
additive functions carries more information about solution
quality than the minimax function. This also explains why
the two additive functions converge much faster, as more
information from the generated samples are carried over
to the new distribution. Note that convergence is quickest
for the minimize badness, as this function puts a stronger
penalty to poor allocations than the other two.

6 Conclusions

This paper presents how to apply the Cross Entropy (CE)
method to the module allocation problem in distributed sys-
tems. The CE method is a stochastic method for combina-
torial optimization. Each iteration of the CE method in-
volves two steps: first generation of sample allocations us-
ing a parameterized distribution and then updating the dis-
tribution’s parameters according to the qualities of the gen-
erated samples. The distribution converges after a number
of iterations, producing a solution. In addition to the con-
verged solution, the sampling process of the algorithm also
finds high quality solutions, so that even if the algorithm is
terminated before full convergence, the best solution so far
is available. For module allocation, the CE method allows
for module allocation without requiring special structure
of the system, which is required by other methods. Ex-
periments described in the paper show that the CE method
finds the optimal in a large number of cases, and performs
at least as well as previous heuristics described in literature.
In addition, the CE method handles more complex objec-
tive functions than is usually used in described heuristics.
However, we also see that the efficiency of the CE method
is decreased if non-additive objective functions are used.
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