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Abstract

In this paper we analyze the performance of three low-complexity channel estimators, based on
the discrete Fourier-transform (DFT), for orthogonal frequency-division multiplexing (OFDM)
systems. Estimators of this type have been analyzed for discrete-time channels, and we extend
this analysis to continuous-time channels. We present analytical expressions for their mean-
squared error (MSE) and evaluate their complexity versus symbol-error rate (SER) for 16-
QAM. The analysis shows that this type of estimators may experience an irreducible error
floor at high SNRs. However, in one of the three estimators the error floor can be eliminated
while the complexity stays low and the performance is maximized.
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Chapter 1

Introduction

Wireless digital communication systems using coherent signaling schemes, such as a quadra-
ture amplitude modulation (QAM), require estimation and tracking of the fading channel. In
general, this means a more complex receiver than for differential modulation schemes, such as
differential phase-shift keying (DPSK), where the receivers operate without a channel estimate
[1]. In orthogonal frequency-division multiplexing (OFDM) systems [2, 3], DPSK is appro-
priate for relatively low data rates, such as in the European digital-audio broadcast (DAB)
system [4]. However, for more spectrally-efficient OFDM systems, coherent modulation is more
appropriate.

We address linear estimators for OFDM where all channel attenuations in a received symbol
are estimated simultaneously. Using the linear minimum mean-squared error (LMMSE) esti-
mator, which takes advantage of the correlation between all N subcarriers, requires an N x N
matrix multiplication. This complexity can be large depending on the number of subcarriers
in the system. This paper presents and analyzes three low-complexity, suboptimal, approxima-
tions of the LMMSE channel estimator. These estimators all share the property that they use
the discrete Fourier transform (DFT) to estimate the channel in the time domain. Estimators
of this type have been proposed [5, 6, 7, 8], but only analyzed for discrete-time channels [6].

The addressed estimators take the N noisy frequency-domain observations and transform
them to the time domain by an inverse DE'T (IDFT). The linear estimation is then performed
in the time-domain, and the result transformed back to the frequency domain by a DFT. The
transforms can be implemented with fast algorithms requiring only a few multiplications per
estimated attenuation, but there are still N coefficients to estimate simultaneously in the time-
domain. However, an OFDM symbol time is, by design, much larger than the length of the
channel. The time-domain estimation takes advantage of the fact that this concentrates the
channel power to a relatively small number of time-domain samples. Three of the strategies for
doing time-domain approximations are; approximating time-domain samples with low channel
power as zero, ignoring cross correlations and ignoring differences in variance. The three
estimators analyzed here use these three strategies cumulatively.

After presenting the OFDM system model in Section 2, we introduce the three DFT-based
estimators in Section 3. In Section 4 we present an analysis of the average mean-squared error
(MSE) and show that there is an irreducible MSE-floor inherent in DFT-based low-complexity
estimators. We also illustrate their performance by presenting the uncoded 16-QAM symbol
error rate for a 64 tone OFDM system. A complexity versus performance comparison is done,
which singles out the second of the three estimators as a good trade-off. A summary and
concluding remarks appear in Section 5.






Chapter 2

System model

Figure 2.1 displays the OFDM base-band system used in this paper. We assume that the use
of a cyclic prefix (CP) both preserves the orthogonality of the subcarriers and eliminates inter-
symbol interference (ISI) between consecutive OFDM symbols [9]. Further, the channel g(7;t)
is assumed to be slowly Rayleigh-fading and considered constant during one OFDM symbol.
The number of tones in the system is N, and the length of the cyclic prefix is L samples.

Under these assumptions we can describe the system as a set of parallel Gaussian channels
[2], shown in Figure 2.2, with correlated attenuations
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Figure 2.1: Base band OFDM system. The cyclic prefix is not shown in this figure.
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Figure 2.2: The OFDM system, described as a set of parallel Gaussian channels with correlated
attenuations.



k
hy, = — |, k=0...N—-1 2.1
=G (g ) E= 0N -, (2.)
where G (+) is the frequency response of the channel g (7;¢) during the OFDM symbol, and T’
is the sampling period of the system. In matrix notation we describe the OFDM system as

y = Xh +n, (2.2)

where y is the received vector, X is a diagonal matrix containing the transmitted signal points,
h is a channel attenuation vector, and n is a vector of independent and identically distributed

complex, zero-mean, Gaussian noise variables with variance o2. Without loss of generality, we
assume that F {]h,ﬁ} =1.



Chapter 3

DFT-based estimators

The task of the channel estimator is to estimate the channel attenuations h from the observa-
tions y, given the transmitted symbols X. For the sake of a tractable analysis we assume the
xS to be known at the receiver.

Since OFDM systems are designed such that the symbol time is significantly longer than the
duration of the channel impulse response, the inverse DFT of the channel attenuation vector
h has most of its power concentrated to relatively few samples. As an illustration of this
power concentration, Figure 3.1 shows the channel power in the time domain for two channel
types, sample-spaced and non-sample-spaced. Sample-spaced channels are channels that have
all fading impulses at integer multiples of the system sampling rate, and for which the DFT
gives optimal power concentration [6].
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Figure 3.1: Schematic pictures of the time-domain power distribution of the channel, i.e., of
IDFT (h).

DFT-based estimation of sample-spaced channels is addressed in [6], and the three estima-
tors we present and analyze are generalizations thereof for non-sample-spaced channels. For
clarity, we first calculate the linear minimum mean-squared error (LMMSE) estimate of h.

We base our estimates on the LS estimate (the backrotated observations)

hy=X"'y=h+n, (3.1)



where n = X~'n is a vector of independent Gaussian noise variables with covariance matrix
Rz = o2 (XXH )71. The LS estimate ﬂls constitutes a sufficient statistic since X is non-
singular. The LS estimate is a noisy observation of the channel attenuations and can be
smoothed using correlation properties of the channel. The optimal linear estimator in terms
of mean-squared error (MSE) is [8, 10]

h = Wxh;,, (3.2)

where

-1
W 2 Ry, (R + 02 (XX) 1) (3.3)

and Ry, = F {hhH } is the auto-covariance matrix of the channel vector h.

At this point we recognize that the weighting matrix Wy is of size N x N and depends
on the transmitted data X. As a first step towards low-complexity estimators we want to
find a weighting matrix that is independent of the transmitted data. This can be obtained
by considering h;; to be our observation and derive an LMMSE estimator that considers X to
be stochastic with independent and uniformly distributed constellation points. In that case,
the auto-covariance matrix of the noise becomes Ry = ﬁI, where 3 = E {\x,ﬁ} E {]xk\_Q}
is a constellation factor (3 = 17/9 for 16-QAM) and SNR £ E {\xk\Q} /o2 is the per-symbol
signal-to-noise ratio. R R

The LMMSE estimate of h;, from h;;, now becomes

i’\llrn,rn,se = Wfllsy (34)

where the fixed weighting matrix is given by

1
N p
W = Ry, <th + —SNRI> . (35)

This LMMSE estimator still requires N multiplications per estimated attenuation and we use
it both as a reference and as a starting point in the derivation of the DFT-based low-complexity
estimators.

We now use the property of OFDM systems identified above and in [6, 7, 8]: h is the
sampled frequency response of a channel with short time duration compared to the OFDM
symbol length and, hence, its associated cyclic impulse response g = IDFT (h) has only a few
taps with significant power. If we perform the estimation in the time-domain, we can reduce
the complexity of the estimation by using this power concentration.

This prompts the estimator structure in Figure 3.2, where the LS estimate is transformed

into its time-domain equivalent g;; = IDFT (ﬂls). The smoothing is then performed by a

linear transformation

g = Qg (3.6)

and the result is transformed back to the frequency-domain, h = DFT (g1s). The impor-
tant benefit of this estimator structure in terms of complexity is the low complexity of the
DFT/IDFT (implemented as fast transforms) and the time-domain power concentration. This
offers a simplification of (3.6) without sacrificing too much in performance.

6
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Figure 3.2: Structure of DFT-based channel estimators, where the linear transformation con-
sists of a matrix multiplication g = Qgys.

Our approach is to find sparse approximations of the LMMSE estimator’s equivalent time-
domain smoothing matrix

Q = FIWF, (3.7)

where F is the N x N unitary DFT matrix and W is defined in (3.5). This will reduce the
number of required multiplications, and thus the estimator complexity. A straightforward way
is to simply ignore the coefficients in g;; that contain more noise than channel power and only
transform the remaining elements back to the frequency domain. For sample-spaced channels,
this is a fruitful approach [5, 6] since the major part of the coefficients only contain noise and
no channel power. If the channel is not sample-spaced, however, the channel power is still
concentrated but distributed over all coefficients. Due to the lost channel power in the ignored
coefficients the simplification causes an irreducible error floor [§].

We now move through three simplification steps and obtain three different low-complexity
estimators, of which the last is the straightforward approach described above. The general
concept is based on reducing the number of non-zero elements in the time-domain matrix
multiplication (3.6), with the aim of reducing the computational complexity and preserving
the performance. The three estimators are selected as follows: (See Appendix A for a detailed
derivation.)

e Estimator A

By choosing the M coefficients in g;, that have the highest channel power, we restrict
the linear transform in the time-domain to a fixed matrix of size M x M. If M is chosen
much smaller than N, the complexity reduction compared to the LMMSE is considerable.
The complexity of the time-domain processing in this case is M?/N multiplications per
estimated attenuation. This estimator converges to the LMMSE when M — N. We
have presented a related estimator previously in [8].

e Estimator B

Further reductions in complexity can be done by ignoring cross-correlation between the
M chosen taps in g;, and only weighting them individually. This essentially means that
we restrict the time-domain processing to be a diagonal M x M matrix multiplication.
Since this matrix only has M non-zero elements, the complexity of this processing is M /N

7



multiplications per estimated attenuation. To the authors’ knowledge, this estimator has
not been presented before.

e Estimator C

In this last estimator, we further restrict the time-domain processing to only use the M
chosen coefficients directly as input to the DFT. This means restricting the matrix to an
M x M identity matrix, which does not require any multiplications at all. When M — N
this estimator converges to the LS estimator. This estimator is similar to the estimator
designed for sample-spaced channels in [5, 6].

Esti- Restriction Linear Effective Required
mator | (cumulative) transformation matrix size mult. /attenuation
LMMSE | N.A. N.A. N x N N+1

A Use M coefficients. | Q4 = Q]%XM g M x M logy N + %2 +1

B Diagonal matrix. Qp = DJ%XM g M x M (diag.) logs N + % +1

C Identity matrix. Qc = IM(;M g M x M (identity) | logy N +1

LS N.A. N.A. N.A. 1

Table 3.1: Analysed DFT-based estimators. See Appendix A for details.

The outlined estimators (A-C) are summarized in Table 3.1, where we have also included the
LMMSE and LS estimators as references. The table shows the total computational complexity,
including the IDFT and DFT! for estimators A-C. In general, unless M is close to N, the
complexity decreases in Table 3.1 from the LMMSE to the LS.

1To obtain a complexity measure we have assumed that NN is a power of two and that the DFT and the
IDFT requires 1 N log, N complex multiplications each [11].

8



Chapter 4

Performance analysis

The estimators presented in the previous section all have different computational complexities,
and the design variations give them different performances as well. To illustrate the perfor-
mance of these estimators, we calculate the MSE and use formulae from [12] to obtain the
uncoded 16-QAM symbol-error rate (SER).

The parameters we have chosen for the OFDM system are N = 64 subcarriers and a cyclic
prefix of length I = 8 samples. The impulse response of the physical channel

g(mit) = an(t)s (r— 1)

consists of independent Rayleigh-fading () impulses, uniformly distributed (7,,) over the
length of the cyclic prefix and with a constant power delay profile. From this channel model
we calculate the auto-covariance matrix Ry, of the channel attenuations h [13]. The cyclic
impulse response g = Fh has a corresponding auto-covariance matrix R,, = FAR;,F. We
assume that the variances v, = F {]gk\Q} are in decreasing order, i.e., Yo > Y1... > YN_1-
The auto-covariance matrix of the M used transform coefficients, Ry, s, is thus the upper left
M x M corner of Ry,.
Through direct calculation of the auto-covariance matrix of the estimation error

Rigo = E{(h—1) (i-n)"} (4.)

for all estimators, we obtain their respective average MSEs

1
MSE = ~ Trace (R (4.2)

e@éQ) :
Note that the diagonal elements of R, are the individual error variances for each channel
attenuation. The calculations are derived in Appendix A. The final MSE expressions for the
LMMSE estimator, the low-complexity estimators (A—C) and the LS estimator are displayed
in Table 4.1. Appendix A also contains a note on sample-spaced channels that is of interest
when comparing this analysis with the analysis in [6]. As displayed in the table, estimators A,
B, and C experience an error floor (MSE) due to the channel power in the N — M excluded
channel taps. This error floor is the same for all DFT-based low-complexity estimators. The
individual ranking of the low-complexity estimators in terms of MSE, for a fixed M, is MSE4 <
MSEg < MSE¢.



| Estimator ‘ Average MSE

LMMSE 1 8 & _ AN
NENR 2o 3 n+sln
A L 0 Mil 2k, M MSE
~ T —= +
NSNR 2o % vtsin
M—1
B L > —— 4+ MSE
k=0 7k+SNR
C N ‘}NR + MSE
B
LS SNR

Ak,ar — eigenvalues of Ryg ar.

Y, — diagonal elements of Rgyy in decreasing order.

N-1
MSE =+ > v (MSE floor)
k=M

Table 4.1: Average MSE for the investigated estimators. Ry, 5s denotes the covariance matrix
of the M dominating taps in g. Note that the s xs are eigenvalues of R,.

Using the formulae from [12], we display 16-QAM SER curves for two different numbers
of included transform coefficients (M = 10 and M = 40) in Figure 4.1. The 16-QAM SER of
the full LMMSE estimator and the LS estimator are also included in the figure, as references.
Note that for M = 10 there is no visible difference in SER between the three low-complexity
estimators and that the SER levels off at high SNRs, due to the error floor. It is only for higher
values of M that a difference in SER is noticeable between the low-complexity estimators. It
is also noteworthy that even at M = 40 (out of a possible N = 64) the error floor is visible,
and the low-complexity estimators perform worse than the LS estimator above a certain SNR.
For M = 40, the figure also shows that the performance of the estimators is decreasing from
A to C.

The performance of the low-complexity estimators, especially for high SNRs, depends
strongly on the number of included taps. An analysis of this behavior shows that the three
low-complexity estimators are quite different in terms of complexity versus performance. This
is illustrated in Figure 4.2, which shows that the complexity needs to be high to make estimator
A the best in terms of SER. In general, estimators B and C are more efficient per required
multiplication. For a 64 subcarrier system, the complexity of estimator C is always 7 multipli-
cations per attenuation while estimator B has a complexity of between 7 and 8 multiplications
per attenuation, depending on the number of taps used.

10
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Figure 4.1: Uncoded 16-QAM SER for three systems using the low-complexity estimators A,
B, and C, respectively. (Note: Estimators A, B and C have the same SER for M = 10.)

If we want to eliminate the error floor entirely, we have to use all taps (M = N) in
estimators A—C. Effectively, this turns estimator A into the high-complexity LMMSE estimator
and estimator C into the low-performance LS estimator. However, estimator B which has lower
complexity than estimator A and better performance than estimator C is a good compromise
between the two. Estimator A does not have a complexity low enough to compete with the
other two and the approximations in estimator C seem to be too crude to provide a good
estimate. This enables us to single out estimator B as the best trade-off between complexity
and performance among the three estimators analyzed.

As a final comparison, we present the 16-QAM SER performance of estimator B (with
all taps included), the LMMSE estimator, and the LS estimator in Figure 4.3. The SER
performance of estimator B is good for low SNRs where it resembles that of the LMMSE
estimator, and this at less than 1/8 of the complexity (number of multiplications) of the
LMMSE. At high SNRs it converges to the SER of the LS estimator, but there is no error
floor and the performance never becomes worse than that of the LS estimator. Estimator B
has more than a 2 dB gain over the LS estimate for SNRs less than 15 dB and a 3 dB gain for
SNRs below 5 dB.

11
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Figure 4.3: Uncoded 16-QAM SER for estimator B where all 64 taps are used (M = N).
Curves for the LMMSE and LS estimators are included as references.
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Chapter 5

Conclusions

In this paper we have presented the MSE and SER performances of three low-complexity DFT-
based estimators (A-C). Using M of the N time-domain coefficients yields estimators with
complexity (excluding the DFT/IDFT) of M?/N, M/N and 0 multiplications per estimated
channel attenuation, respectively. Only the first of these estimators is potentially of high
complexity since M < N. We have provided analytical expressions for the mean-squared error
of all three estimators and shown that, if the number of included taps is less than N, they
suffer from an irreducible error floor.

The error-floor can be removed if all taps are used in the linear transform, but only estimator
B maintains both its performance and its low complexity in this case. The other two designs
either experience a drastically increased complexity (estimator A) or converge to the poor
performance of the LS estimator (estimator C). Estimator B maintains good performance with
low complexity by ignoring the relatively small cross-correlation between the time-domain
channel coefficients. So, we consider estimator B using all N coefficients to be the most
suitable of the DFT-based channel estimators. In the investigated system it has almost the
same performance as the LMMSE estimator for low SNRs, and this at less than 1/8 of the
complexity. Further, in terms of symbol-error rate, this estimator has more than a 2 dB gain
over the LS estimator for SNRs less than 15 dB.
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Appendix A

Estimator expressions

In this appendix we provide expressions for the linear transformations of the three low-
complexity estimators and the MSE for each estimator. At the end we have also included
a note on sample-spaced channels, which is of interest when comparing our analysis to the one
in [6].

To simplify the matrix notation we assume that the coefficients in the cyclic impulse re-
sponse g, are ordered according to decreasing channel power. This is justified since per-
mutations of the DFT/IDFT coefficients do not change the estimators — it only changes the
order in which the coefficients are indexed. The channel power in coefficient gjs is denoted
Y = E{] gk\Q}, which are the diagonal elements of R,.

Before we start the derivation, we write the estimator structure, Figure 3.2, in matrix
notation

h, = FQF"X"'y = FQF"h,,, (A.1)

where Q is the matrix representing the linear transformation in the time domain and F is the
N x N unitary DFT matrix (Note: F~! = F#). Further, we need the auto-covariance matrix
of g which is

R,, = E (gg"”) = F'Ry,,F. (A.2)

We are minimizing the MSE, and thus need an explicit expression for the auto-covariance
matrix of the estimation error (4.1)

R = £{(ha—h) (ha—n)"} (A3

_ H p HpH
— FQF (th+ SNRI) FQUF

R, FQ'F? — FQF'R + Ry,

which gives the MSE according to (4.2).
To save space, the calculations below are not presented in detail. However, the respective
Q matrices of the estimators are substituted in (A.3) and the following equalities are applied:

e Trace (URU") = Trace (R), when U is a unitary matrix.

e Trace (D;RD;) = Trace (D;DyR), when Dy and Dy are diagonal matrices.

15



e Ry = U R, Uy, where F = | Uy, Vi | and Uy, contains the first M columns
of F.

° UAH,[V am = 0, where U,; and V_), are defined above.

To simplify the MSE expressions we also use that the trace of a matrix is equivalent to the
sum of its eigenvalues [14]. Further, relation (A.2) implies that Ry and R, share the same
eigenvalues [14], which is used to avoid separate notations.

e LS estimator

The LS estimate (3.1) is used as input to the IDFT in Figure 3.2, and its MSE is

MSE:i

SNR'

This estimate only requires one multiplication per estimated attenuation. Since it is the
input to the rest of the estimators, this one multiplication will show up in the following
complexity expressions.

e LMMSE estimator
The LMMSE estimator is given in (3.4) and (3.5) and its MSE becomes

. 1
MSE = N Trace (th (I — (th + %Q th))

N-1
A, N

where the A ns are eigenvalues of Ry, (and Ry,).

Implementing this estimator as a matrix multiplication as in (3.4) requires N + 1 multi-
plications per estimated attenuation.

e Estimator A

Imposing the first restriction on the linear transformation,

| Quxnm O
QA - |: 0 0 )
the minimal MSE is obtained if
/8 _1
Qurrxm = Rgg s (Rgg,M + m1> )

where Ry, 3y is the upper left M x M corner of Ry,.
The MSE of this estimator is

1 -1
MSE = N Trace (RggJu (I — (RggJu + %I) Rgg,]V[)) + MSE
M-1
1 6 )\k M
= — ’ + MSE
NSNR =5 A + %

16



where the \; ars are eigenvalues of R4 3 and

N—-1
1
MSE = Trace (Vi_yRunVa-ar) = = 3 (A4)

k=M

where V y_;; contains the last N — M columns of F. We call MSE the MSFE floor, since
it only depends on the number of excluded taps (N — M) and lower bounds the MSE.

Implementing this estimator according to Figure 3.2 requires log, N + %2 + 1 multipli-
cations per estimated attenuation.

Estimator B

Applying the second restriction on the linear transformation,
_ | Duxar O

where Dy, = diag (&g, 61, ...,0m_1), we obtain a minimal MSE if

The MSE of this estimator is

MSE =

where MSE is given by (A.4).

Implementing this estimator according to Figure 3.2 requires log, N + % + 1 multiplica-
tions per estimated attenuation.

Estimator C

Applying the last restriction on the linear transformation,

o IJHXJH 0

we do not have any choice in the design, except for M, and the MSE becomes

M B
MSE = g + MSE

where, again, MSE is given by (A.4).

Implementing this estimator according to Figure 3.2 requires log, /N + 1 multiplications
per estimated attenuation.

17



A note on sample-spaced channels
The above expressions are derived for a general case, but they have some interesting prop-
erties for sample-spaced channels that are worth noting. Consider a channel impulse response

L

g(m;t) = Zam(t)(S(T—mTS),

m=0

where the fading amplitudes o, (t), of the sample-spaced impulses, are independent. Then
F diagonalizes Ry, and R,y becomes diagonal with only L non-zero elements. The channel
power in the kth coefficient of g is therefore equivalent to the kth largest eigenvalue A, n of
Ry, (and Ry,), and the eigenvalues of Ry, pr becomes Ay pr = Ay = 7%, of which only the
first L are non-zero. Hence, the MSEs for the estimators become:

‘ Estimator ‘ Average MSE ‘

N—1
1
LMMSE N_R > WT:T
k=0 SNR
| M
A ~ SR + MSE
N SNR kZ:O %JrSNR
| M
B ~ SNR b + MSE
N SNR kZO %JrSNR
C X qNR + MSE
8
LS SNR

First of all, estimator A is now equivalent to estimator B and, since 7, = 0 for k > L,
both estimator A and B are equivalent to the LMMSE estimator for M > L. Further, since
MSE = 0 for M > L, we can choose M = L in estimator C which reduces the noise, compared
to the LS estimator, to a fraction L/N. This last observation was also done in [6].
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