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Brandpaverkade stilbalkars deformation

och kritiska belastning

Jorgen Thor

En nyanserad brandieknisk dimensione-
ring tillimpad pd bérande stdlkonstruk-
tioner kan ge avsevirda kostnadsbespa-
ringar.

Detta Document summerar de vikti-
gaste resultaten i forfattarens dok-
torsavhandling  “Behaviour of Steel
Structures Exposed to Fire”. En metod
for berikning av brandpdverkade stdl-
balkars deformationsforiopp presente-
ras. Modellen gér det mdjligt att sdkra-
re bedoma bdrformdga och brottrisk och
att beakta de speciella forhdllanden som
kan rdda for olika konstruktioner. Det
har visat sig att en stalbalk utsatt for
brand qftast har en avsevirt stérre bdr-
formdga dn vad en schablonmassig
bestdmning ger som resuliat.

Dimensionering

1 jamforelse med den relativt noggranna
dimensionering en birande konstruktion
underkastas for statisk last méste di-
mensioneringen av samma konstruktion
for paverkan av brand oftast karakie-
riseras som slentrianmissig. Den
brandtekniska dimensioneringen baseras
namligen vanliptvis pa schablonartat
uppstillda krav pa motstandstider mot
brand relaterade till en paverkan enligt
ett standardiserat temperatur-tidférlopp,
den s.k. standardbrandkurvan. Enligt
gillande svenska bestimmelser tillits
dock en mer nyanserad brandteknisk
dimensionering. Vid en sadan dimensio-
nering, dir brand betraktas som ett last-
fall bland andra, krivs ett pavisande av
att konstruktionen uppfyller sin funktion
vid den verkliga brandpaverkan den kan
bli utsatt for i aktuell typ av byggnad.
Tillimpat pa en birande statkonstruk-
tion resulterar ofta en sddan noggranna-
re dimensionering i aft avsevirda kost-
nadsbesparingar for att uppna erforder-
ligt brandskydd kan géras.

Vid en nyanserad brandteknisk di-
mensionering beriknas stalkonstruktio-
nens temperatur-tidforlopp genom vir-
mebalansekvationer, varefier barférma-
gan beddms med ledning av materia-
lets deformations- och héllfasthetsegen-
skaper vid ifragavarande temperaturer.
For en birande staibalk baseras dirvid
denna bedOmning ofta pd materialets
0,2-grinspakinning. Denna grinspa-
kanning ersitter strickgrinspakinning-
en eftersom vanliga konstruktionsstal
saknar utpraglade strickgrinsomraden
vid hidgre temperaturer. En beddmning
av birformigan baserad pa 0,2

granspakdnningen har dock vissa nack-
delar. Pakinning-tdjningskurvorna fran
varmdragprov uppvisar mycket mjukt
avrundade férlopp vilket innebir att pa-
kédnningen ofta kan hojas avsevirt dver
0,2-grinspakinningen utan att tdjning-
arna blir kritiska. Vidare &r det svért att
pa ett tillfredsstillande sitt beakta mate-
rialets kryptdjning vid en beddmning av
barférmagan baserad pa 0,2-grinspé-
kénningen.

Berdkningsmodell

Hinsyn till pékinning-tojningskurvor-
nas mjukt avrundade forfopp samt till
inverkan av kryptdjningen kan didremot
tas vid en bedomning av barférmagan
baserad pa balkens deformationsfor-
lopp. En modell for berikning av
brandpaverkade stalbalkars deforma-
tionsforlopp har dérfor uppstillts, Som
ingangsdata i modellen anvénds fullstin-
diga pakinning-tdjningskurvor fram-
tagna genom varmdragprov med sa hog
belastningshastighet att kryptdjningens
inverkan pd dessa kurvsamband kan
anses forsumbar. Hansyn till krypning-
en tas i stillet genom en speciell berik-
ning av kryptdjningen, For krypberik-
ningen nddvindiga materialdata har be-
stamts for ett antal olika konstruktions-
stadl genom krypforsok och resultaten
har sammanstillts i tabellform.

Test av modelien

Fér att verifiera den uppstiillda berdk-
ningsmodellen har ett 20-tal brandfér-
stk med belastade stalbalkar utfSrts.
Vid forsoken uppmétta och med mo-
dellen beriknade balknedbdjningar jam-
férdes. Resultatet exemplifieras i FIG.
1 for en av de brandprovade balkarna.
Den goda Overensstammelse som ge-
nomgiende erholls mellan beréiknade
och uppmitta nedbdjningsférlopp be-
kriftar att modellen generellt kan an-
vindas for berdkning av brandpéver-
kade stilbalkars nedbdjningsforlopp.

Kritisk belastning

Beriikningen av en brandpaverkad stal-
balks nedbojningsférlopp innebir ett
omfatiande arbete, For att forenkla den
praktiska anvindningen har dérfor
hjilpmedel] framtagits. Ett mycket stort
antal systematiska berdkningar av
brandpéverkade stalbalkars nedbdj-
ningsférlopp har genomforts pd dator.
Genom att anvinda ett till nedb&ining-
ens storiek kopplat brottkriterium, som
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FIG. 1. Exempel pd jdmforelse mellan upp-

mdtt (linjekurva) och beriknad (streckod

kurva) miitpunktsnedbijning v, for balkde-
len mellan lastangreppspunkterna som funk-
tion av tiden t. Balkens temperaturforiopp
(0-r) { mittsniltets Gverfldns och underflins
Sframgdr av den wundre respektive dvre
streckprickade kurvan. Berdknad pdkdn-
ningsfordelning { bérfan och slutet av for-
séket framgdr av de infillda figurerna.

visat sig praktiskt val tillimpbart har
kritisk belastning kunnat bestdmmas ur
de beriknade nedbdjningsforloppen. Re-
sultaten har redovisats i diagram, ur
vilka kritisk belastning for brandpéaver-
kade stalbatkar vid olika lasttyper och
statiska system kan bestimmas som
funktion av under branden uppkommen
maximal staltemperatur och balkens
uppvarmningshastighet, Exempilet i FIG.
2 giller for fritt upplagd balk med jamnt
férdelad belastning. Balkens avsval-
ningshastighet har genomgiende for-
utsatts vara en tredjedel av uppvérm-
ningshastigheten. Detta férhallande mel-
lan uoppvérmnings- och avsvalnings-
hastighet har med stdd av resultat frdn
brandprovningar visat sig vara en vis-
serligen grov men i detta sammanhang
tillrickligt god approximation av de
verkliga forhallandena. Uppvdrmmnings-
hastigheten kan grovt beddmas med
hjélp av FIG. 3.

Birformaga och brottrisk

Med berdkningsmodellen kan man dven
studera hur avvikelser fran ideala for-

hallanden paverkar deformationsforlopp
och barférmaga. Bland sadana genom-
forda studier kan ndmnas inverkan av
ojimnt fordelad temperatur i balken
samt inverkan av forhindrad langdut-
vidgning.

Genom berikning av en brandpaver-
kad stalbalks deformationsforiopp méj-
liggdirs en sikrare beddmning av bérfor-
méaga och brottrisk &n vad som ir mdj-
ligt med enbart 0,2-grinspikinningen
som underlag. En beddmning av birfor-
magan baserad pd deformationsforiop-
pet visar ocksa att barformagan for en
brandpaverkad stalbalk oftast ar av-
seviirt storre &n vad som kan bed6mas
pa basis av 0,2-grinspikinningen.

] \
‘ ]
\
50 — a ‘\
[ L — e 450C
# i mamssussnall \ \ \ — Ang s50T:
£ L S \ 80 L% 3
o5 L N \‘
|
~ o p- 20N AN \\ :
Vi
i \
80 ‘\ 3
200 400 hnaxlC} 600 \ \\
\ A
\ \Alh g2
FIG. 2. Diagram for bestimning av kritisk belasming q. jor "\\ \
brandpiverkad fritt upplagd balk med jimn: fBrdelad belost- @ WOl .
ning som funktion av den maximala stdltemperaturen vid olika A\ X\ N
uppvirmmings- och avsvalningshastigheter. \ \’\'08 N
KUV eeereeremeereeeneseseeesseneessssaansssessassas sins i I . z
Uppvirmningshastighet CC/min) - 20 4 \\ . \\\
Avsvalningshastighet CC/min) e 6,67 1,33 x \\\ @2 P~ o
W = balkens elastiska bdjmotstdnd Qg ~
. . . op s s . . \ e
a, = materialets strdckgrinspdkdnning vid rumstemperatur N“-\,_ |
=]
FIG. 3. Genomsnittlig uppvdrmningshastighet a som funktion av e i
brandbelasining ¢ vid olika vdrden pd brandeellens dpp-
20 40 g [Mcal/m?] 80

ningsfakior AVh/A, och olika maximala stdltemperaturer 9.

A = brandcellens sammanlagda Sppningsyta (m*)

h = enr med hansyn tll dppningarnas storiek vdgt medelvdrde
av deras utstrdckning | hdjdled (m)

A, = brandeellens totala omsluningsyta (m*)

FIG. 3
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Deformations and critical loads of
steel beams under fire exposure conditions

Jorgen Thor

Application of rational fire engineering
design to loadbearing steel structures
can result in appreciable savings in cost.

This Document summaries the most
important results in the Author’s disser-
tation entitled “Behaviour of Steel
Structures Exposed to Fire”. A method
is presented for the analysis of the defor-

mation process in steel girders under

fire exposure conditions. The model
makes it possible for the loadbearing ca-
pacity and risk of failure to be estimated
more safely, and for the special condi-
tions which may apply to various struc-
tures to be taken into consideration. It
has been found that a steel girder when
exposed to fire will in mosi cases have
an appreciably higher loadbearing capa-
city than is indicoted by a standardised
procedure.

Design .

In comparison with the relatively accu-
rate design process to which a loadbear-
ing structure carrying a static load is
subjected, design of the same structure
with regard to the action of fire must
often be characterised as a standardised
procedure. Fire engineering design is
usually based on standardised require-
ments as to periods of fire resistance
which are related to action according to
a standardised temperature-time proc-
ess, the standard fire curve. Accord-
ing to current Swedish regulations,
however, a more rational fire engineer-
ing design is permitted. In this rational
design where fire is regarded as oneload-
ing condition among others, it must be
demonstrated that the structure is ca-
pable of performing its function when
subjected to such an action of fire which
is likely to occur in the type of building
in question. When applied to a loadbear-
ing steel structure, such rational fire
design, compared with the standardised
fire design procedure, often results in ap-
preciable savings in cost in attaining the
required fire resistance.

In rational fire engineering design, the
temperature-time curve of the steel
structure is calculated by means of heat
balance equations, after which the load-
bearing capacity is estimated on the
basis of the deformation and strength
characteristics of the material at the
temperatures considered. For a loadbear-
ing steel beam this estimation is often
based on the 0.2 % proof stress of the
material instead of its yield stress, since
ordinary structural steel has no pro-
nounced yield region at elevated tempe-
ratures. Estimation of the loadbearing
capacity on the basis of the 0.2 % proof
stress has certain drawbacks, however,
since the stress-strain curves obtained

during tensile tests at elevated tempera-

tures are very softly rounded, with the

result that the stress can often be raised
appreciably above the 0.2 % proof
stress without the stirains becoming
critical. Furthermore, it is difficult sat-
isfactorily to take into account the
creep strain of the material in estimating
the loadbearing capacity on the basis of
the 0.2 % proof stress.

Calculation model

If the loadbearing capacity is estimated
on the basis of the deformations of the
beam, however, it is possible to take intq
account the softly rounded shapes of the
stress-strain curves and the influence of
the creep strain. A model has therefore
been constructed for calculation of the
deformation process of steel beams ex-
posed to the action of fire. Complete
stress-strain curves, recorded in elevated
temperature tensile tests at such high
rates of loading that the effect on these
curves of the creep sirain may be consid-
ered negligible, have been used as input
data in the model, Creep is instead taken
into consideration by separatecalculation
of thecreepstrain, Material datanecessary
for calculation of creep have been deter-
mined by creep tests for a number of
structural steels and the results summa-
rised in a table.

Verification of the model

Some twenty fire tests have been perform-
ed on loaded steel beams in order to
verify the calculation model, The beam
deflections recorded during the tests
have been compared with those calculated
using the model. The results are exem-
plified in FIG. ! for one of the beams
subjected to a fire test. The satisfactory
agreemént consistently obtained be-
tween calculated and recorded deflec-
tion curves confirms that the model can
be used generally for calculation of the
deflections of steel beams under fire ex-
posure conditions.

Critical load

Calculation of the deflections of a steel
beam when this is exposed to the action
of fire entails extensive work, and a
large number of systematic calculations
of deflections have therefore been per-
formed on a computer in order to sim-
plify practical application of the results,
By using a criterion of failure related to
the magnitude of the deflection, which
has been found appropriate to apply in
practice, the critical load has been deter-
mined onthe basis of the calculated de-
flection curves. The results are given in
the form of diagrams, for different types
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FIG. I Example of comparison between dur-
ing fire tests recorded (full line curve) and
calculated (dashed line curve) ceniral deflec-
tions y, for the portion of beam between the
points of application of the load, as a function
of the time t. The temperature-time (f—1) curve
Jor the top and bottom flange at the mid-
section are shown by the lower and upper
chain line respectively. The insets show
the caleulated stress distribution at the
beginning and end of the test.

of loads and statical systems, from

which the critical load for steel beams

under fire exposure conditions, can be
determined as a function of the maximum
steel temperature attained during the fire
and as a function of the rate of heating
of the beam. The exampie in FIG. 2 is
valid for a simply supported beam with
a uniformly distributed load. The rate of
cooling of the beam has in all cases been
assumed to be one third of the rate of
heating. This relationship between the
rates of heating and cooling has been
found, on the basis of fire tests, to be an
approximation of actual conditions
which, although rough, is nevertheless
sufficiently good in this context. Therate
of heating can be roughly estimated
with the help of FIG. 3.

Loadbearing capacity
and risk of failure

The calculation model enables studies to
be undertaken concerning the effect of
deviations from ideal conditions on the
deformation process and the loadbear-
ing capacity, Among such studies
which have been performed may be
mentioned those concerning the influ-
ence of uneven temperature distribution in

the beam and the influence of a restraint
on longitudinal expansion.

Calculation of the deformation process
of a steel beam under fire exposure con-
ditions makes possible safer estimation
of the loadbearing capacity and the risk
of failure than a process based only on
the 0.2 % proof stress. Estimation of the
loadbearing capacity based on the de-
formation process also demonstrates
that the real loadbearing capacity of a
steel beam, under fire exposure condi-
tions, is very often appreciably higher
than that obtained when estimation is
based on the 0.2 % proof stress.

100, '\
10 T \\ l I
it;’"" i — gy a50C
£ (I |
o oy VoA ~~ A 650
I L | \\ 80 4 \\
R
s 2 S
_ v
\\ \\
80 i 3
70 500 BTl 600 \\ \\
3\ N aff;
FIG, 2. Diagram for determination of the critical load q,, for a \‘v\ A \5{?-0,12
simply supported steel beam with a uniformly distributed load v \
under fire exposure conditions as a function of the maximum \\ 5 \\
steel temperature ¥,,,. for different rates of heating and cooling. i} % \
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FOREWORD

This Reporit gummarises the most important results compriged in

the following reports:

Thor, J: The Effect of Creep on the Loadpearing Capacity of
Steel Beams Exposed to Fire.Swedish Institute of Steel
Construction, Publication No 24, Stockholm 1971.

Thor, J: Undersdkning av clika konstruktionsstils krypegenskaper
under brandfdrh8llanden (Investigation of the Creep
Properties of Various Types of Structursl Steel Exposed
to Fire). Jernkontorets Forskning, Series D, No k0,

Stockholm 1972,

Thor, J: Statiskt bestimda stdlbalkars deformation och bar-
férmdga vid brandpdverksn — experimentell och teoretisk
undersdkning (Deformation and Loadbearing Capacity of
Statically Determinate Steel Beams Affected by Fire -
an Experimental and Theoretical Study). Jernkontorets

Forskning, Series D, No 5k, Stockholm 1972.

Thor, J: Berdkning av brandpéverkade statiski bestémda och
statiskt obestémda stdlbalkars deformation och kritiska
belastning (Caleulation of the Deformation and Critiecal
Load of Statically Determinate and Indeterminate Steel
Beams Exposed to Fire). Swedish Institute of Steel
Construction, Report No 22:9, Stockholm 1972.

These reports form part of a composite doctoral thesis entitled
"Behaviour of Steel Structures Exposed to Fire" which includes

the following report in addition to the above:

Thor, J: Strdlningspiverkan pé oisolerade eller underteksisole—
rade stilkonstrukiioner vid brand (Radiation Effects of
Fire on Steel Structures with no Insuvlation or Insulat-
ion in the Form of a Ceiling), Structural Mechanics and
Concrete Construction, Lund Institute of Technology,

Bulletin No 29, Lund 1972.
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sisted by a grant from the Swedish Council for Building Re-
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advice and views during the whole of this work. Thanks are
furthermore due to Mr L.J. Gruber for translation of the

manuscript into English,

Stockholm, February 1973
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1 INTRODUCTION

In order to estimate the loadbearing capacity of steel structures
when exposed to fire, it is necessary tc know the strength
properties and deformational characteristics of the steel under
fire exposure conditions. When the structural members under
consideration are subjected to tension or bending, such estimates
are most frequently based on the yield stress at elevated

temperstiures or the 0.2% proof stress of the steel.

The relations between the high temperature yield stress or the
0.2% proof stress and the temperature, which have been published
in the literature, may differ considerably even when they apply
to the same or similar grades of steel. See FIG. 1. One of the
causes of the inadequate agreement at comparatively high tempera-
tures may be the effect of creep. In fact, at temperatures in
excess of about hOOOC, the creep of ordinary structural steel
begins to be noticeable, and the rate of creep becomes Vvery high
at temperatures above 660°C. Consequently, the rate of loading
in & high temperature tensile test may have great influence on
the shape of the stress-strain curve and hence on the evaluastion
of the 0.2% proof stress. On the other hand, the magnitude of
creep strain in a steel structure exposed to fire depends not
only on the load level and the maximum temperature attained, but
also on the rates of heating and cooling which are, in turn,
dependent on the fire load and the ventilation conditions in the

fire cell, the insulation capacity of the fire insulation, etc.

(5).

Another cause of the differences between the reported 0.2% proof
stresses may be the uncertainty in assessing the slope of the
tangent, at the origin, to the stress—-strain curves determined in
high temperature tests. At elevated temperatures the linear
relationship between stiress and strain ceases for guite low values
of the stress, and owing to this uncertainty regarding the slope
of the tangent, assessment of the 0.2% proof stress is also

uncertain.
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FIG, 1. VYield stress at elevated temperatures, or 0.2% proof stress,
of structural mild sieels expressed as a percentage of the
yield stress at room temperature, plotted as a funetion of
the temperature &,




Another point which should be noted in this connection is that
the gtress—strain curve at elevated temperatures is softf}
rounded {see FIG. 3). Therefore, a moderate increase 1n stress
above the 0.2% proof stress need not necessarily give rise to a
aritical inerease in deformation. There is thus an obvious need
for & criterion better than the yield stress at elevated
temperatures, or the 0.2% procf stress alone, in order to provide

5 reliable basis for the estimation of the loadbearing capacity

of steel structures exposed to fire.

One method which permits more reliable estimaticn of the load-
bearing capacity of steel beams exposed to fire is based on the
deformation of the besams during the fire, account being taken of
the softly rounded shape of the stress—strain curve and also the
effect of creep strain. A model has thersafore been constructed
for the calculation of the deformation of a steel bean which is
exposed to fire. This calculation is based, inter alia, cn
stress-strain curves obtained in tensile tests at elevated tem—
peratures which were performed at such high rates of loading that
the influence of creep strain on these curves may be congidered
negligible. The effect of creep at elevated temperatures is taken
into account by separate calculation of the magnitude of the creep
strain. Various tests have been performed in order to obtain data

relating to the materials and to verify the calculation model.

High temperature tensile tests have been carried cut on test pieces
token from a batch of steel beams in order to determine the stress-
strain curves at different temperatures. Test pieces were also
taken from the same beams for determination of the creep properties
of the material. A number of fire tests have also been performed

on the same steel beams, lcaded and simply supported, the tem—
peratures and deflection curves of the beams being determined in
these tests. The deformation process of the beams was then
calculated with the calculation model, using the material data
obtained in the tensile tests at elevated temperatures and in the
creep tests. and the results compared with the deformations recorded
in the tests. Collapse criteria, associated with the deformation

process, have also been studied by means of the tests and the




calculation model. IFinally, the influence of various factors on
the deformation could be studied by systematic calculations of
the deformation processes of steel beams exposed to fire, and

the loadbearing capacity, associated with a deformation criterion,
could be determined for different types of load and different

statical systems.

10
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2 DETERMINATION OF STRESS~STRAIN CURVES
RY TENSILE TESTS AT ELEVATED TEMPERATURES

The material of the besms from which the test pieces were taken
was an ordinary structural grade mild steel Type 1411 according
to Swedish Standard SIS 1L 1L 11. The yield stress at room
temperature was found to be 3400 kgf/cmg. The analysis of the
material is shown in TABLE I in Section 3.2. The thickness of
the test pieces used in the elevated temperature tensile tests
was 3 mm. Their other dimensions are shown in FIG. 2. The temp-
ersture of the test pieces was kept constant during each test.
Load was increased gradually at a constant rate and the load ard
strain were recorded comtinuously during the test. FIG. 3 shows
the recorded stress—strain curves at different temperatures. The
rate of loading during the tests is equivalent to an inerease in
stress of 975 kgf/cm2 . min, which means that the influence of
creep strain on the stress—strain curve is very small. The curves
shown in the Figure have been used in the course of calculations
with the caleulation model previously referred to. Elevated
temperature tensile tests were also carried out on the same
meterial at considerably lower rates of loading. More detailed
description of the test series will be found in an Appendix to
(6). (Determination of the o - e curve for structural steels at
different constant temperature levels and different constant

rates of loading, A Hultgren and S E Magnusson).
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3 DETERMINATION OF THE CREEP STRAIN

3.1 Creep theory

A creep theory put forward by Dorn (7) hes been found suitable
for use in esbimating the magnitude of the creep strain. In
contrast to several other creep theories, Dorn's theory permits
considerstion of the effect of a temperature which varies with
time. It is assumed that the creep strain Gi for a certain grade
of steel is dependent on the magnitude of the stressg and on a

temperature-compensated time 8. defined by the relation

t

6 = ro A/RT g (h) (1)
0

where AH = the activation energy required for creep {cal/mol)

wniversal gas constant (cal/mol . degrees Kelvin)

]

temperature (degrees Kelvin)

time (hours)

The curve expressing the relation between the creep strain £t and
the temperature—compensated time 8, for different stresses o,
contains a portion of constant slope. This slope dst/de is denoted
7 and is stated to be dependent only on the magnitude of the
stress. The intersection of the "Z line" with the strain axis is
denocted € and is also stated to be dependent only onr the

to
magnitude of the stress (see FIG. L}.

Harmathy (8) has indicated a mathematical relationship between

the creep strain € and the quantities 6, 7 and €iot

g, = (stofln 2) cosh"l (EZG/Eto) (2)

L
If the value of AH/R is known for a grade of steel, the temperature-
compensated time & can be calculated for any temperature-time

curve with the aid of Equation (1). If the relation between the
atress and Z and the relation between the stress and-;to is also
known the creep strain €, of the steel at the appropriate value

of B can be caleculated for any stress using Equation (2)




E=f(r)

¥

FIG, 4. € - o curves for different stresses 0.
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3.2 Determination of the creep parameters AH/R, Z and o

from conventional creep ‘tesis

The value of AH/R and the relation between the stress and Z or
€0 A be determined by means of conventional creesp tests, i.e.
creep tests at constant temperature and stress. At constant

temperature, Equation (1) may be written

= e—AH[(R'T) .t (3)

Since the magnitude cf the creep straln is assumed 4o he depend-
ent only on the magnitude of the stress and on 8, the value of &

in two tests must be the same if the creep strains in the two tests

are of the same magnitude at the same stress, 1.e.

—AH[(R.Tl) -AH/(R.TE)

e c by =e -ty (L)

fl

where T., T temperature (°K) in test 1 and 2

t

2
19 t2 = times(h)} at which the strains attained in test 1
and test 2 are the same.

Houation (&) can be solved for AH/R

28 _ T, . T; . In (tg/tl) | (5)
R T2 - Tl

de de .
t £ dt, _ AR/ (R.T)
it " ap) T Gis v © (6)

where ¢ s " rates of creep during the secondary creep stages

of the conventional creep tests

Once AH/R has been determined according to Equation (5) and the
rates of creep éts have been evaluated from each test, the value
of 7 eppropriate to each test can be calculated from Equation (6).
If the calculated values of Z are plotted in a diagram as a
function of the magnitude of the stress in each test, it is found
that the points relating to high stresses are usually reascnably

close to a straight line in a diagram plotted with one axis
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: (the Z-axis) %o a logarithmic scale. For small stresses, the
points are usually fairly close to a straight line in a diagram

in which both variables are plotted to a logarithmic scale.

At the Domnarvet Iron Works, short-term creep tests have been
performed on a grade 2172 steel to SIS 1Lk 21 72 and alsc on a
steel grain-refined with aluminium, with a bagic analysis
corresponding to steel 2172 (9). From the first test, the value

of AH/R for steel 2172 has been found t¢ be 50,OOOOK (10}. The
values of 7Z determined in the gsame test have been plotted as a
function of the siress, in FIG. 5 with one variable to a logarith-
mic scale and in FIG., 6 with both variables to a logarithmic

scale (11). The Figures alsoc contain the functional relations

between Z and the stress which best agree with the curve plotted,

The value of €., 18 determined from conventional creep tests as the
intersection in a strain-time diagram between the strain axis

(the g -axis) and the projection of the straight line which is drawn
through the points relating to the secondary stage of the creep
process, The values of sto relating to the appropriate test are
plotted as a functlon of the stress in a diagram with both axes to a
logarithmic seale. FIG. T shows the values of €q plotted as a
funetion of the stress for the 2172 steel tested by the Domnarvet
Iron Works. The Figure also gives the equation which most closely

agrees with the line drawn through the points (10).

The creep strain curve has been calculated theoretically for the
temperatures and stresses used in the conventional creep tests,

on the basis of the value of AE/R = 50,000°K and using the
relation between stress and Z and stress and etofound in the tests
for steel 2172.Equations (1} and (2) have been used in calculating
the creep strain. Both the theoretically caiculated and recorded

creep curves are shown in FIG. 8.

The value of AH/R and the relation between the stress and 7 and
the stress and €0 have also been determined for the material of
the beams described in Chapter 1, which was an ordinary mild
carbon steel Type 1411 to Swedish Standard SIS 1k 1L 11. The creep
parameters have also been determined for carbon steel Type 1312

to SIS 1L 13 12 and also for grain-refined carbon-manganese steel.
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Harmathy and Stanzak (3) have given values of AH/R and the
relation between stress and %7 and stress and €y for steel A36
and stesl G.40.12. Steel A36 closely resembles steel 1412 to
STS 1h 1L 12 and steel G.40.12 closely resembles steel 2172

to 8IS 1k 21 72,

TABLE I lists the values of AH/R and the functional relations
hetween the stress and Z and the stress and Sto for all

steels (12).

The steels have been divided into three principal groups, carbon
steels, carbon manganese steels and grain-refined sieels. The
Tgble also gives the analyses of the various steels and their

yield stresses at room temperature.

T+ will be seen from Table I that the values of M/R and the
relationship between the siress and 7 and the stress and Sto show
relatively large differences in some cases, even when steels in
the same group are compared. It is found on comparing creep tests
on similar grades of steel that the creep strain is less for a
steel which has a higher yield stress at room temperature than
for a steel with a lower yield stress at room temperature, when
these are subjected to the same temperatures and stresses. It is
seen in Table I that the yield stresses are different even for
steels in the same group, and this may therefore explain some of
the above differences in the values of the creep parameters.
Arother reason why these differences cccur may be that the
determination of AH/R is sometimes sensitive and may therefore

be subject to some inaccuracy. The values of M/R in turn affect
the magnitude of Z determined ir accordance with Equation (6).
Some uncertainty in the wvalue of AH/R can normally be accepted,
nowever, since it is not the values of M/R or 7 in themselves
but a combination of these which is decisive with regard to the
agreement between the creep curve caleulated with Equations (1)
and (2) and those plotted on the basis of tests. Agreement is
primarily affected by the accuracy with which the values of Z,
calculated on the basis of Equation (6) and plotted as a function
of the stress, conform to a straight line at low values of siress

in a diagram with both variables plotted to a logarithmic scale,
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TABLE I. Yield stress at room temperature, analysis, the values of AH/R, Z and
as functions of the stress g (kgf/cme) for different structural

.
to
steels,
Stesl Steel Yield
group stress at
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rature fnalysis (%) AH/;R Z . 0
(est/e®) | o Jg han [2 [s fer Jou In [ar I Jo [ao] 67 =)
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and to & straight line for large values of stress in a diagram

in which only one of the variables is plotted to a logarithmic
scale (see FIGs. 5 and 6). If the values of Z agree well with
these straight lines, agreement between the theoretically
ealoulated and recorded creep curves will be satisfactory even

if there is some uncertainty as regards the value of AH/R. A
study (12) also shows that calculated creep strains at stresses
which are the same in relation to the yield stress of the steel
concerned at room temperature exhibit satisfactory agreement
within the same principal group, in spite of the above differences

in the values of AH/R znd Z.

A difference between the values of AH/R for two similar steels is
"neutralised" by a difference in the Z function. It will be evident
from the foregoing that the value of AH/R and the relationship
batween 7 and €0 and the stress are to be regarded not as exact
material data but rather as empirical values and relationships
which, when used in Equations (1) and (2), produce creep curves

in good agreement with those plotted on the basis of tests.

Creep tests at variable temperatures

Contrary to conditions in conventional creep tests, the temperature
of = steel structure which is exposed to fire is not constant but
exhibits large variations with time. For the caleculation of creep
strains in case of fire, it is therefore important to know what
agreement may be expected between theoretiecally calculated creep
strains at variable temperatures and those recorded during tests.
Tn order to obtain information on this point, scme 20 creep tests
have been performed on test pieces subjected to different loads

and & temperature which varied greatly with time (12). One steel
from each group in Table I was used for the study, i.e. steel

1411, steel 2172 and steel grain-refined with aluminium.

Round test pieces of 4.5 mm diameter and a gauge length of 75 mm
were used. The temperature of the test piece was recorded by three
thermocouples attached to the surface of the test piece. Load was
applied to the test piece by weights by means of a gystem of
levers. Changes in the length of the test plece were recorded by
d8ial gauges comnected tc the ends of the test pieces. FIG. 9

shows the test piece and the test rig.

23




@
e

™
I- -
-4

®
SRR o (G IR
RN

- e
|

| e o m
!

-]
oS-

0

3
®

10

==

®

FIG. 9. a) Test piece, gauge length 1 = 75 mm, diameter 4 = 4.5 mm,

b) General arrangement of test rig; (;) weights, (:) system
of levers, (3) furnace, 14\g¢est piece with thermocouples,

(E} temperatire recorder, (é} dial gauges.
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During the tests, the test pieces were first heated to Lo0°c,
Short—term creep is considered negligible up to this temperature.
Temperature was allowed to stabllise at 400°C for 5 - 10 minutes
and the test pieces were then heated in a few minutes to the

temperature range 600 - 650°C and then allowed to cool in air.

The test pieces and the linkages which transmitted changes in the
length of the test piece to the dial gauges had different
coefficients of thermal expansion, Owing to this, a certain part
of the dial gauge reading was due to the difference in thermal
expansion. In order to determine the strain, every test was
repeated without load, and by subtracting the gauge readings in
the latter tests from those recorded at the seme times in tests in
which load was applied to the test pieces, the changes in length

of the test pieces due to the strsin were obtained.

The creep strain curve was calculated with Equation {2) for each
test for purposes of comparison. The values of Z and €io usged in
Fquation (2) were calculated on the basis of the equations given
in Table I for these quantities. Thé @ function was calculated
with Equation (1) using the values of AH/R in Table I. An
example of the results is given in FIG. 10 which compares the

calculated and recorded creep strains in one of the tests.

Apart from two tesbts, the results of which were influenced by
errors of a purely procedural nature, the agreement between

the recorded and calculated creep strains may be regarded very
satigfactory. This demonstrates that Dora's ereep theory and

the relation between e, and the quantities 6, Z and € given

by Harmethy is well suited for a description of the creep strain
of a steel when subjected to temperatures representative of those

encounterad during a fire.




FIG. 10,

400

1 L

4 8 t|min)

Comparisons of recorded ( } and calculated (~=--)
creep strains £4 at varying temperatures Gh for test
pieces of Steel 2172 (upper figure), The temperature-
time ($4-t) curve of the test pileces is shown in the
bottom figure, This gives the maximum and minimum
temperatures of the test pieces at the various times,
Stress = 1520 kef/cm®,
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MODEL FOR CALCULATION OF THE DEFORMATION PROCESS
OF STEEL BEAMS EXPOSED T0 THE ACTION OF FIRE

Statically determinate beams

In the calculation model, the fire sequence is divided up into

a number of time intervals whose lengths are chesen with regard
t0 the temperatures and stresses {6). The deflection of the beam
at the midsection is calculated at the end of each time interval.
In order that this calculation may be performed, the curvature
along the beam must be known, and this is determined by division
of the beam into a number of sections for which the curvature

is calculated. The strain distribution across each cross section
must first be determined in order that the curvature may be
calculated, and this is done by breaking down the cross sesction
into a number of elements for which the stress and strain are
computed. The principles of the division into time, cross sectionsg

snd elements are shown in FIG. 11.

Owing to the fact that the temperature in a beam exposed to fire
changes during & time interval, the strain and generally also
the stress change during the time interval in each element of
cross section, since the strength and deformation properties of
steel are temperature dependent. The change in strain and stress
during the time interval At from the time tn to the time tn+l
is studied for an arbitrarily chosen cross section element 1i.
The temperature, in OC, is %n+l at the time tn+1' The stress-

strain {o - &) curve at the tempersture £ determined on the

K
basis of tensile tests at elevated temperztires (gee also

Chapter 2}, is approximated to a straight line between the points
0, a, b, ¢, d, &, T etc as seen in FIG. 12. The total residual
strain resulting from previous time stages (both instantaneous
strain and time dependent plastic strain) is Etn at the time tn.
If the mean temperature during the time interval At, from the
time tn to the time tn+l’ is so low that no creep occurs, then
the relation between sbress and strain at time tn+l will be
described for the element by the line A-B(FIG. 12), provided that

the stress does not exceed the value corresponding to the point

of intersection between the line A-B and the approximate

S27
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elevated—temperature'stress-strain curve (point v in FIG. 12).
The direction coefficient of line A-B is dencoted ki and is identical
with the modulus of elasticity of the material at the temperature

6n+1; Using the symbols In FIG, 12, the equation of line A-B may
be written
g = kie + Li (1)

The appropriate positive or negative values of the quantities

concerned are to be inserted intc Equation (7).

If, on the other hand, the stress at time tn+1 exceeds the value
¢ _, then the relation between stress and strain for the element
will conform to the curve (-— B, ¢, d, e, £ -~). Equation (7)
maj however continue tc be used to describe the relation between
stress and strain, if the values of ki and Li in the Equation
sre replaced by the corresponding values obtained from the line

of the approximate elevated-tempeﬁature stress-strain curve for

the approprizte strain.

If the temperature during the time interval At is so high that
the effect of the creep strain in the material shows, then the
relation between stress and strain will be different. As before,
the total residual strain from the previous time stages is €4
at the time tn' As before, the elevated-temperature tensile curve
at the temperature'9n+1 is approximated by the straight lines
between the points 0, a, b, ¢, d, e, £, etc, as shown in FIG. 13.
The sum of the residual strain from previous time stages and
the creep strain which occurs during the time interval At may

be calculated by the creep equations deseribed in Section 3.1,

i.e.
£
o = s o AH/RT 4 (8)
0
¢ T (Eto/ln 2) cosh * (2%/%0) (9)

where 6 = temperature-compensated time (h)

AH = the activation energy regquired for creep to occur
{cal/mol)
R = universal gas constant (cal/mol . degrees Kelvin )
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temperature (degrees Kelvin)

time (hours)

%
€00 7 = creep parameters which are dependent on the
magnitude of the stress

The value of AH/R and the relation between the stress and €i0
and the stress and 7% are determined by means of conventional
creep tests (see also Section 3.2). The values of Z and Epg 8Y€
calculated from these relations for the stress cn applicable

to the time tn' The calculated values of 7 and €10 are inserted
intc Equation (9), and at the same time the strain € in the
equation is put equal to the residual strain €4 from previous
time intervals. Equation (9) will then yield thgt value of g,
en, which corresponds to the stress o, and the residual strain

¢, from previous time intervals. The increase Af in the temp-

in

erature—-compensated time during the time interval At can then
be caleulated with Equation (8) re-written in the form

—AH/R.T
AB = e A {10)

The value of T used-is the mean temperature during the time
interval At, i.e. T = (%n + 8r+l)/2+270. The new value of 8

at time t will then be 8 =g + A8. Provided that the
T n+l n

+1
stress is constant and equal to o during the time interval A%,
Equation (9) will yield the value of the residual strain €y

n+l

at time tn when this value of 0 and the values of Z and € p

+
calculated %or the stress o are substituted in the equation.
The elastic strain corresponding to the stress o, is then added
to this strain. The elastic strain is equivalent to cn/E, where
B is the modulus of elasticity at temperature 6n+l' This gives
the position of point A in FIG. 13. As pointed out, however,
the stress is usually not constant during a time interval but
varies, and if the change in stress from time tn to time tn+l

is assumed to be Ag, the mean siress 9, during the time interval

At is o = o + Ag/2.
m n

The values of Z anrd £ are calculated for the stress O With

t0
these values of Z and e ., and the val?e of 6 ,,» Equation (9)
then yields the value of the strain e . This is the residual

Tn+l
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FIG. 13, Relations between the stress ¢ and strain ¢ which
were used in the caloulation model for femperatures
at which the effect of creep is not negligible,
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strain at the time tn for a mean stress of 5 during the time

+
interval At. To this sirain must be added the elastic strain
eguivalent to the stress o, t Ao, which may be written

(Un + Ac)/E. This gives the position of the point B in FIG., 13.
The points A and B are connected by a straight line. The direction
coefficient of this line is denoted ki and its intercept with the
g—axis Li' The equation of the line A-B is the same as Equation
(7). It is assumed that the relaticn between stress and strain,
for stresses below Uy’ is described by the line A-B. This is
naturally an approximation since the relation between siress and
creep strain is not linear. It is probable that the actual relation
between stress and strain is better described by & curve similar
to C-D in FIG. 13, but explicit determination of this relation
appears to be impossible. The line A-B may therefore be taken as

a sufficiently good approximation of the actual relation between
stress and strain for limited changes in the stress during a time
interval. The chenge in stress can easily be limited during a time
interval At by making the length of this intervel the smaller, the
more the temperature and therefore the tendency to creep increase.
Comparisons between deformetions calculated with time intervals

of different lengths have also shown that computational accuracy

is not particularly sensitive to the length of the interval.

If the stress exceeds Ogs it is assumed as before that the relation
between stress and strain is described by a line of the approxi-

mate elevated-temperature stress-strain curve which corresponds

to the approprlate strain.

Analogous calculations of the relations between stress and

strain at the time tn are performed for all elements of the

+
crogs section by meanslof Equation (7). It is assumed that
Bernoulli's hypothesis concerning plane cross sections is valid.
This implies that the total relative expansicn of the elements
in the cross section, which comprises both strain and thermal
expansion, must be linearly distributed over the depth of the
beam. An arbitrary distribution of the expansion over the depth
of the beam, as shown in FIG. 1k, can always be broken down into

en expansion of absolute value e which is uniformly distributed,

and an expansion symmetrically distributed about the neutral




FIG, 14,

Distribution of the relative expansion over the depth
of the beam,
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axis of the section with maximum and minimum values of te and
e regpectively. The relative expsansion e; at any cross sectional

element may then be written
e. = e +—/— . e (11)

where y. = the distance between the ith element and the
neutral axis

h = the depth of the bean

The symbol e has been chosen for the total relative expansion

in order to emphasise the difference between this and the

strain e.

The strain in the ith element may be written

Eyi
= . - = + —_—, -
e; = e eti e, h e, eti {12)
. . . .th
where e = the relative thermal expansion in the 1 element

t.
i
at the appropriate temperature

If this expression for es is substituted into Equation (7), we

get the stress o in the ith element

6. =k.e. + L. =k.{e +—=_.e -e )+ L. (13)

The sum over all the cross sectional elements of the product of
the stress Gi and the elemental areas Ai must be egual to the

external normal force acting on the ecross section, i.e.

.8 . - + L.JA. =
i {kl{ 2t T eti) LJa, = W (1)
The sun over all the cross sectional elements of the product of
the stress 9y and the elemental areas Ai’ multiplied by the
distance v to the neutral axis, must further be egqual to the
external moment acting on the cross section, i.e.

2y .

1
0 S eti) + Li}Aiyi =M {15)

T {k.{e +
. i'’n
i




Equations (14) and (15) will yield the values of e, and then e

i i i i
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S8 §L1A1 h emZkiAiyi

o = 1 1 i
n k.A. (17)
i1

Using these values of e and e, in Equations (12) and (13), the
strain € and the stress Gi in all cross sectional elements are
calculated., These stresses are compared with those corresponding
to the approximate stress-strain curves from the elevated-
temperature tensil tests (Fig 12, Fig 13) at the temperature of
the different elements at the time tn+1‘ If the stress in any of
the elements exceeds that according to the appropriate elevated-
temperature stress-strain curve for the calculated strain s the
values of ki and Li for these elements are adjusted so as to
satisfy the equation of the straight line of the approximate
elevated~temperature stress-strain curve at the strain Ei' New
values of e  and e are calculated with Equations (16) and (17),
using these adjusted values of ki and Iﬁ’ and when these new
values of e and e are substituted into Equations (12) and (13),
new values of the strain €; and stress o, are obtained for the
various elements. This lteration procedure is repeated until all
the calculated stresses o, are situated on or below the elevated-
temperature stress-strain curve for the temperature of the
different elements at time tn+l' Stress and strain are thus known
at time tn+l for the whole of the cross sectlon. The expression

2yi 01
= + — - —
Et en _Eﬁem et. E. (18)
n+l 1 1
holds for the residuzl strain Et in the ith element at this
n+l

time,
where Ei = modulus of elasticity at time tn+l for the ith element.

The residual strain in the different elements, as calculated
by Equation (18), is to form the basis of the calculations for

the stresses and strains in the elements at the time tn+2'
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Wnen the final values of ey and &y have been calculated as above
for a cross section at the time tn+1’ the curvature K in this

seection can be calculated.

k=32 (19)

where h = the depth of the beam.

The asbove method of calculating the strains, stresses and curvatures
at the time ﬁn+l is performed for all the sections into which the
besm has been divided. The central deflection of the beam at tThe

time tn+ is then computed by numerical integration of the

1
curvatures of the different sections. The general differential

equation for the central deflection y of the beam may be written
y'o= {1+ (y')2}3/2 . K (20)

Tor deflections which are small in relation to the length of

the beam, Equation (20) can be simplified %o
y" = K (21)

In spite of the fact that the deflection of a beam which is
exposed to fire may be considerably larger than its deflection at
room temperature, calculation using Egquation (21) yields a result
which is fully acceptable in this context. It has been found in
comparing deflections calculated by Equations (20) and (21)
respectively for some representative cases that the error in

the deflection calculated by means of Equation (21) is no more

than a few per cent.

If the statically determinate beam, for instance, is divided
inte 10 equal parts (11 cross sections), numerical iIntegration
of Equation (21) yields the following central deflection when
due attention is paid to the boundary conditlons
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L2

y=—"-{0.5e_ +2e + ke +6e + 8B + Ge + 8e + be_+
h.200 ml m2 m3 mh m5 m6 mT m8
+ he +2e 4+ 0.5 ) (22)
e Mo peb]

where L = Iength of beam

h = depth of beam

e ,e ,e ..=the values of e at the appropriate cross

m, o, m3 m

section, calculated by means of Eq. (16)

When the central deflection at the time tn+l has been calculated
according to Equation (22), the procedure described above is

repeated for the time tn+2’ and so on.

Statically indeterminate beams

In a statically indeterminate beam there is usually a re-distri-
bution of the moment along the beam when deformation incresases
during a fire, which is not the case for a statically determinate
beam. This re-distribution of moment must be determined in order
that the deformation process in a statically indeterminate beam

may be calculated. This may be done by consideration of the rules
applicable to the change in inclipation of the beam at the sectlions
where it is restrained. For 2 beam which is rigidly restrained at one
or both ends, there must be no change in inclination at the sections
where the restraint is applied. In practice, caleulstion of the
deformation process of a steel beam exposed to the action of fire,
which is e.g. rigldly restrained at both ends, is performed in the
following way. The curvatures at the various cross sections at the end of
a time interval are calculated in the same way as for a statically
determinate beam for the moment distribution in the beam which
applied at the end of the previous bime interval. A check is

made by numerical integration of the curvatures thus obtained
whether there is any change in ineclination at the sections where

the restraint is applied. If this is the case, then the mcoment
distribution assumed in ealeculating the curvatures is incorrect,

and the supposed moment distribution is adjusted by inecreasing or
decreaging the restraining momenis, depending on whether the

changes in inclination at the restraint sections are positive or




negative. The curvatures at the various sections of the beam are
sgain calculated for the new moment distribution, and the
curvatures calculated for this moment distribution by numerical
integration are again checked with respect to changes in incli-
nation at the restraint sections. The iteration procedure is
repeated until s moment distribution is obtained which produces
no change in inelination at the restraint sections. The central
deflection of the beam at the time concerned is finally obtained
by numerical integration of the curvatures calculated for this

morent distribution.

The re—-distribution of momenis in a statically indeterminate beam
which is exposed to fire has great influence on the deformaticn

of the beam during the fire. Since re-distribution of moments is
dependent on the type. of loading, among other things, the
deformation will also depend on this, as shown in FIG, 15.

This shows the calculated deflection-time (y - t) curve for a
besm of coastant eross section which is restrained at both ends
and is exposed to fire, the load in one case being concentrated

at the centre and uniformly distributed in the other. The material

data used in the edlculation are the same as those described below

in Section 5.1.2,

It has been assumed in both cases that the extreme fibre stresses
at the section where the stress is highest are 55% of the yield
stress at room temperature. The temperature-time (® - t) curve
for the beams, which has been assumed to be egual in both cases
and equal all along the length of the beam, is alsc shown in the
Figure. It has alsc been assumed that there is no restraint to
longitudinal expansion of the beams. It will be seen in the
deformation curves shown that deflection is considerably greater
for a-concentrated load than for a distributed load. The reason
for this is that in a beam with a concentrated load, the moment
Mf at midsection and the absolute values of the restraint

moment s MS are equal at room temperature (MS = - PL/8, Mf = PL/8),
and the points of contraflexure are therefore situated at the
quarter points of the beam and moment distribution is symmetrical
about these points. Owing to this symmetry, the increases in

curvature in portions of the beam subjected to a positive moment
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are the same as the increases in curyvature in portions subjected
to a negative moment, and the initial moment distribution in the

beam is therefore maintained unchanged during the entire fire.

For a beam with s uniformly distributed load, however, the moment
at midpoint at room temperature is only a half of the absolute
values of the restraint moments. (Ms = - ng/lE, Mf = ng/Eh).

The increase in curvature which occurs as the temperature rises

end the strength and deformaticnal stiffnes decrease is therefore
dependent in magnitude on the moment. Since a change in inclination
at the restralint sections is prevented, the absolute values of

the moments at these sections must become smaller and the moment

in the span become larger during the fire. Owing toc this moment
‘re~distribution which results in a reduction in the restraint
moment, this beam is subjected to a slower and therefore lesser
total deformation than the beam with a concentrated lcad in

which the initial mement distribution is retained. FIG. 15 shows
the calculated restraint moments Mé as a function of the time t

in a beam with a uniformly distributed load. At the assumed load
level and temperature load, the absolute value of the restraint
moment drops during the fire from 0.0833qL2 at time O to

O.O683qL2 at time 180 minutes. For the same beam consisting of

an ideal elastoplastic material, the absolute value of the restraint
moment as calculated by the limit state theory, is O.O627qL2.

The inset figure in FIG. 15 shows the calculated moment distribution
along the beam at time 0 and time 180 minutes. The moment distri-

bution according to the limit state theory is also shown for

purposes of comparison.

The re-distribution of moment during the fire is less extensive

as that predicted by the limit state theory. In order that a
moment distribution according to the limit state theory may be
achieved, which presupposes that the cross section is fully
plastic, considerable deformations are required during fire, owing
to the softly rounded shapes of the stress-—strain curves at

elevated temperatures (13).
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FIG. 15. Comparison, under fire exposure conditlons, of the
caleulated central deflections y as a functlon of the
time t in a beam of carbon steel of constant I section
which is rigidly restrained at both ends, for the cases
where the load is uniformly distributed (---) and
concentrated at the centre ( ) (13). It is assumed
in both cases that the extreme fibre stresses at the
most highly stressed sections are 55% of the yleld stress
of the material at room temperature, The temperature-
time (& - ) curve for the beams, which is assumed to
be equal in the two cases and to be the same all along
the beam, is shown by the chain line, The deflectlon
curves are calculated on the assumption that there is
nothing to prevent longitudinal expansion of the beams,
The calculated support mement Mg 1s shown for the beam
with uniformly distributed load as a function of the
time t (w,.—. .=},

The inset figure shows the calculated moment distribution
in the beam with uniformly distributed load at the
beginning of the fire ( ) and at the final stage of
the fire (---), The moment distribution according to the
1imit state theory (_._), on the assumption that the
material is an ideal elasto-plastic one, is also shown
for purposes of comparison,
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COMPARISON OF CALCULATED BEAM DEFORMATIONS
WITH THOSE RECORDED DURING TESTS

Beam teste performed in Sweden

Testing equipment

Some twenty fire tests have been carried out on lcaded, statically
determinate steel beams in order to verify the calculation model
described in the previous Chapter (6). The materizl of the beams
was Steel 1411 according to Swedish Standard STS 14 1h 11 (see
Chapter 2). The beams were HELOOA sections with a span of 2.5 m.

The fire tests were performed at the Division of Structural
Mechanics and Ceonerete Construction, Lund Institute of Technology,
in a bottled gas—fired furnace whose temperature was controlled
manually. The temperature of the furnace was reccrded at 5 points
and that of the beam at 12 points. The thermocouples were affixed
to the beam in drilled holesg about 3 mm deep which were covered by
a thin sheet of asbestos. Placing of the thermocouples iz shown

in FIG. 16. The temperature—-time curves recorded in one of the

tests (Beam 8-1) are shown in FIG. 17 as an example.

Load was applied to the test beams by means of a loading yoke in
the form of two point lcads placed symmetrically about the mid-
point of the beam. The lcading ycke was conneeted through a system
of wires to a spreading beam carrying two loading contaziners,
situated on the floor below the furnace. The load applied to the
test beams was regulated by the quantity of water in these con-

tainers, FIG. 18 shows the general arrangement of the loading

system.

The total deflection of the beam and also the difference between
this deflection and that at the points of application of the load
were determined during the test. Deflection of the midpoint was
recorded by means of a ruler resting on the top flange of the
beam, the ruler being guided by a sleeve against which the reading
wag made. The deformation of the portion of the beam between the
load points was measured by a dial gauge affixed to a bar rigidly

connected to the two legs cof the loading yoke. The point of the
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FIG, 16, Placing and numbering of thermocouples, 0 = furnace,
¥ = beam. The thermocouples in the top flange were placed
in holes drilled from the top of the flange, The thermo-
couples in the bottom flange, with the exception of No 2
which was placed in a hole drilled from the top of the
flange, were placed in holes drilled from the bottom of

the flange,
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FIG. 17.

3 6 9 2 tme B
Temperature-time (8§ - t) curves recorded in the furnace and
on the beam, in the case of test beam 8-1, The numbers against

the eurves are the numbers allocated to the thermocouples as
shown in FIG, 16.
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Measurement of deformations, a) Measurement of the
total central deflection of the beam, b) measurement
of the difference between the deflection at the centre
and those at the points of application of the load.
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dial gauge rested on the top flange at the centre of the beam

and its reading therefore directly gave the required difference
between the deflection at the midpoint and that at the load points.
The genersl arrangement of the measurement system is ghown in

FIG. 19.

Material data used in the calculations

The deflection curve of the beam was computed for eachk test by
means of the calculation model described in Chapter k, using the
applied load and the recorded beam temperatures as input data.
Owing to the large differences in temperature between the centre
of the beam and its ends (see FIG. 17), calculation of the
deflection curve was confined to the portion between the points
of application of the load. The differences in temperature along
the beam were considerably less in this portion than between the
centre and ends. Ancther advantage of this procedure was that the

moment acting on the beam was constant between these points.

The gtress—strain curves according to FIG. 3 were used in the model
for caleulstion of +the deformations. As mentioned before, these
curves had been determined on the material of the beams used in the
tests, and, furthermore, the influence of creep strain may be con-
sidered negligible in these curves. The values of the creep para-
meters AH/R, Z and e used in Equations (8) and (9) of the cal-
culation model were those listed in TABLE I (Section 3.2) for
Steel 1L4311. These values had been determined on material taken

from the beams used in the tests.

The deformation due to elastic strain in & steel beam exposed to
the setion of fire is small compared with the deformation due to
the instantaneous and time dependent plastic strain. Experimental
study of the temperature dependence of the modulus of elasticity
in the beam material used was therefore considered unnecessary.
The relation between the modulus of elasticity E (kgf/cmg) and
the temperature 8 (OC) which was used in the model was therefore
determined on the basis of information in the literature (1), (%),
(8), (14). The following simplified relations, which are rough

mean values of the relations given in the literature, have Dbeen

used:
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For & < 205°C
E = 2,100,000 (23)
For 205 < & < 370°C
E = 2,535,000 - 2,120 & {2h)
For 4 > 370°C
B = 3,215,000 - 4,040 & (25)

Reference {8) gives the relation between the relative thermal
expansion and the temperature for a struetural steel that is
largely the same as the material used in the test beams. In the
calculation model, this relation has been spproximated by two
linear relations between the thermal expansion e, and the

temperature 9,
For 25°C <& < 370%

e, = 0.0000131 . (& - 25) {26)

For 8 > 370°C

e, = 0.0000161; . (B - 370) + 0.0045 (27)

The results of tests and calculations

The results of tests and calculations are exemplified in FIG. 20

{a, b, ).

The recorded and calculated deflection-time curves relating to the
portion of beam between the points of application of the load ars
shown for three of the tests. The Figures also show the temperature-
time curve recorded at the top and bottom flanges respectively

at the midsection. The calculated stress distributions at the

beginning and end of each test are also shown.

In all the beam tests, the agreement between recorded and calculated
deflections may be said to be very good. This demonstrates that the

calculation model desecribed in Chapter b, using the material data




FIGs, 20 (a, b, ¢), Comparison of during fire tests recorded {(—)
and calculated (---) central deflections yj for the portion
of beam between the points of application of the load, as a
function of the time t. The temperature-time (& - t) curves
for the top and bottom flange at the midsection are shown by
the lower and upper chain lines respectively. (©)
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determined in accordance with Chapters 2 and 3, can be used
with satisfactory accuracy for the assessment of the deformation

behaviour of steel beams when acted upon by fire.

Beam tests performed under the aegis of the Buropean

Convention for Constructional Steelwork

There is very little possibility of utilising the results of
fire tests performed on steel beams, which are reported in the
literature, for further comparisons of the calculated and
recorded deformation processes. Test conditions relating to
supports, restraint, loading and temperatures and also the
elevated temperature properties of the steel material are in
most cases described so sketehily that the deformation process
cannot be checked on the model. This was also one of the reasons
why the fire tests with simply supported steel beams, described

in the previous Section, were carried out.

In spite of the fact that some data necessary for the calculatlon
model had not been given, the results of some fire tests performed
on steel beams of HE 220 B section by the European Convention for
Constructional Steelwork (15, 16) could be made use of for further
comparisons between recorded and calculated deformations. Data
which were required for the calculations but had not been given

had to be estimated. Such data are those concerning the elevated
temperature properties of the material in the form of the stress-
strain curve at different temperatures and also data relating to
the creep properties of the material. Calculaticn of the deformations
was therefore based on material ‘data determined for the beams used
in the fire tests described in the previous Section. The material
in these beams had a higher yield stress at room temperature than
that in the beams used in the European Convention for Constructional
Steelworks tests, however. Fictitious loads, equal to the real

load multiplied by the ratio between the yleld stress at room
temperature for the model material and the actual material, were
therefore used in calculating the deformations for these latter
bears. As regards the temperatures in these beams, these are

gquoted only for the bottom flange, web and top flange at the

midsection.On the basis of temperatures recorded in other fire
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tests, it may be assumed that the temperatures in the end regions
of these beams were lower than in their midregions. Two different
calculations were therefore performed for each beam, the
assumptionr in the first case being that the temperature of the
midsection was representative for the whole of the beam, and

in the second case that the temperature & at the ends of the beam
was 75% of the temperatureS'Bm given at the midsection of the beam.
Decrease of temperature slong the beam from the middle to the ends
was assumed to be in the form of a sine curve. The recorded and
calculated deflection-time (y - t) curves are compared in FIGs.

©la ~ 21d. FIGs. 2la and 21b refer to simply supported beams (15),
while FIGs. 2lc and 214 refer to beams restrained at one end (16).
Fach Figure shows the tempersture—time (6m - t) curve at the bottom
and top flange al the midsection. For the simply supported beams,
the difference between calculated deformations for the temperature
ratios %/ﬁm of 1.0 and 90.75 is considerably less than that for

the restrained beams, This is explained by the fact that deforma-
tion of a simply supported beam is essentially governed by curvature
conditions at the midregion of the beam, while for a restralned
beam it is the magnitude of curvature at the sections where the
beam is restrained which exercises the predominant influence on
deformation, It is also evident from the Figures that the deforma-
tion curves Qalculated by means of the model, particularly at the
assumed temperatiure ratio~8/9m = 0.75, are in good agreement with

+the recorded deformation curves,
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d), Comparison of central deflection-time (y-t) curves

recorded during fire tests (15, 16} and those calculated for

steel beams HE 220 B & = temperatures at the ends, @, = tempera-
q = load, Q. = load which causes the most

tures at midsection,
highly stressed sectlon to yield at room temperature.
- X - top flange temperature

recorded central deflection
. - ecalculated central deflectlon at midsection
- o - bottom flange temperature

for $/4 = 1.0
caleulated central deflsction at midsection

for G/%m = 0.75

Figs. 21 (a, b, c,
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% CRITERION OF FAILURE

As will be seen from the stress—strain curves in FIG. 3, at

elevated temperatures there is no clearly defined yield region.
Since the stress-strain curves are also very softly rounded,
assessment on the basis of the 0.2% proof stress of the load
carrying capacity of a steel beam which is exposed to fire very
often results in an obvious underestimation of the actual load
carrying capacity of the beam. Estimation of the load carrying
capacity should instead be based on the deformation curve of the
beam when it is acted upon by fire. Theoretically, the load

carrying capacity of a beam in a fire test may be consldered
exhausted when its rate of deformation is infinitely high. It 1is,
however, very difficult to decide when the rate of deformation is

to be defined as "infinitely high" since the rate of deformation
during a test continuously increases as the temperature rises,
Futhermore this criterion is impossible to use in connection with

a real fire‘when the deflection of the beam due to creep contlnues
to increase during the cooling down perilod of the beam. There is
therefore a clear need for a definition of failure which Is better
suited for practical purposes, Various such practical definitions

of failure, asséciated with finite deformations or rates of deforma-
tion, are also often applied in fire testing contexts. Robertson and
Ryan (17) have proposed the following criteria of fallure for statl-

cally determinate beams which are exposed to fire

7 T h.800 (28)
2
& _ L
dt  h.150 (29)
where L = distance between the points of support of the beam (cm)
h = depth of beam {cm)
vy = central deflection of the beam (cm)
t = time (h)

According to Robertson and Rysn, both criteris must be satisfied
before failure is to be considered to have occurred. This implies
that, provided the rate of temperature rise is sufficiently low,
central deflection of the beam may become considerable before
the criterion concerning rate of deflection according to
Equation (29) is satisfied. When a beam is part of a structure,
however, it cannct perform its function when its deformation is

excessive since eadjacent elements of the structure such as parts
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of the floor slab may lose their support ete. The structure would
in other words cease to function before the beam 1tself has
attained the criteria of failure according to Equations (28) ang
(29}. Satisfaction of both criteria may alsc have the consequence
that a beam which is heated at a Ffast rate attsins a lower critical
temperature than a beam which is heated slowly. This appears to be
functionally wrong in view of the fact that a fast rate of heating
has a lesser effect on creep than slow heating. In view of this

and with regard to the function of the beam as part of a siructure,
it is therefore appropriate to make use of a criteriocn of failure

which is based only cn deflection and not on the rate of deflection.

The deflection criterion of Robertson and Ryan according to
Eguation {28), vy = Lg/h.BOO, is logically constructed, since the
deflection y of a beam can always, independently of the loading

and restraint conditions of the beam, be written in the form

where the summation sign implies summation over all the sections
into which the beam has been divided in the course of calculation.
The symbols ey and e, denote the expansion in the bobtom and top
respectively at the appropriste cross section. C and cs are
constants which are functions of restraint conditions, lecading

and the number n of cross sections.

If a beam exposed to fire is loaded by a bending moment constant
along its entire length and if the temperature in all parts of
the beam is assumed to be the same at all times, then the
deflection eriterion according to Equation {28) is equivalent to
a strain of 0.5% at the bottom of the beam (11), This is true on
condition that the compressive strain due to a compressive force
is the same as the positive strain due to a tensile force of the
same magnitude. For other loading conditions, for instance a
uniformly distributed load or concentrated load, the strain at
the bottom of the beam at the section which is most highly stressed
must be greater than 0.5% in order that a deflection according to
Equation (28) should be attained. The relation between siress and

strain is not linear at temperatures which oceur during a fire.
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The magnitude of the strain reguired for a deflection according

to Equation (28) is therefore not clearly determined by the type
of loading in the case of loading conditions other than a constant
bending moment. The magnitude of this strain is dependent on the
maximim temperature and the rate of heating. In order to obtain

a rough idea of which strains satisfy the deflection criterion,

a number of deformation calculations were performed with the
calculation model. The calculations were made for different
temperature effects, both for a beam with & uniformly distributed
lozd and for a beam with a centrally placed concentrated load.

In order to make possible direct comparisons with the beam
subjected to a constant bending moment, it was assumed during each
calcoulation that the temperature was equal all along the beam at
81l times. The results of the calculations show that the deflection
criterion is eguivalent to a strain at the bottom of the beam of
0.8 - 1.0% for a beam with a uniformly distributed load and one

of 1.5 - 1.9% Tor a beam with & central concentrated load. The

results are shown 1n TABLE IIa.

Inequality of temperature in the beam also influences the magnitude
of the strain required for the deflection criterion according to
Equation (28) to be attained. In order io study this in closer
detail, a rumber of deformation calculations were performed for

a beam subjected to a constant bending moment, the temperature
being varied along the axis of the beam according to an assumed
sinusoidal temperature distribution. The calculations were carried
out for ratios between the temperature of the end and central
sections of 0.75 and 0.5. The magnitude of the strain which is
required at the bottom of the midsection in order that the
defiection criterion according to Equation (28) may be attained

is not clearly determined by the temperature distribution. As has
been mentioned before, the maximum temperature and the rate of
neating exercise an influence on the magnitude of this strain.
When the ratio between the temperatures at the end section and

the midsection is 0.75, the requisite strain is in the region of
0.6 — 1.0%. For a temperature ratio of 0.5, the requisite strain
at the bottom of the midsection is in the region of 0.8 - 1.4%.
These results are tabulated in TABLE IIb.
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Strain (%) required in the bottom fibres at midsection

in order that the deflection criterion y = Lg/h.SOO

should be reached,

Different loading conditions, Same temperature in all

parts of the beam.

Ioading condition

a— o | 4

0.5 0.8 - 1.0

1.5 - 1.9

Variable temperature along the beam., Constant bending

moment,

¢

Temperature distributioné .

8

=

Temperature distribution

il

B8 A 1.0 «9/-9m = 0,75

44 =0.5

0.5 0.6 - 1.0

0.8 - 1.4




59

During a fire test, the temperature at the ends of a beam is

lower than that around ifs centre. This is also very often the

case in natural fires. It is obvious on the basis of a rough
estimate using the values in TABLES ITa and IIb that the strain
reguired at the bottom of the midsection in order that a deflection
according to Eguation (28) should be attained, is probably in the
region of 1 - 2% in most cases. It will be seen from FIG. 3 that
the slope of the stress-strain curves at elevated temperatures

is comparatively shallow within the 1 - 2% strain region. When

this region has been passed, strain and hence deformation therefore
generally increase at a fast rate as the stress or temperature
rises. For the beams in the fire tests described in Section 5.1,
application of Equation (28) to the portion of the beam between

the points of application of the load yields a critical deflection
of 0.75 cm. It is evident from the calculated and recorded
deflection curves that deflection generally increases rapidly when

this level of deformation has been passed.

A reasonable requirement which a criterion of failure should
generally satisfy is that the Geformation should increase at a
considerable rate when the load exceeds the load level which
satisfies the criterion of failure. Determination of the loads
which produce a deflection in agreement with Equation {28), for
different steel temperature-time curves (different maximum
temperatures and rates of heating and cooling), would provide a
possibility of studying more closely this aspect of the deflection
eriterion according to Equetion (28). The inerease in deflection
due to a certalin rise in the critical load determined in the way
described above could then be found. Such a study is however
difficult to perform purely on the basis of test results, since it
is likely that a very large number of tests would be necessary at
each temperature-time curve in crder that the load which produces
a deflection according to Equation (28) may be determined. Further,
with the testing equipment described in Section 5.1, it would be
practically impossible for the tests to be fully reproducible as
regards temperatures. Owing to variations in temperature differences
both along and across the beam and also differences in the rates

of heating and cooling, it would be impossible to make direct

comparisons between the different tests. Such a study is however
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possible using the calculation model, and a study has been
performed for a simply supported beam with a uniformly distributed
1cad.The results show that the central deflection increases by

60 — 100% for a 10% rise in the loads which, at the temperatures
concerned, satisfies the eriterion according to Egquation (28).

A six to tenfold increase in deflection for unit inecrease in the
load may be considefed sufficiently large in order that the
deflection criterion according to Equation (28) should be

accepted as a reasonable criterion of fallure, from the above

aspect alsoc, for steel beams exposed to fire.

The criteria proposed by Robertson and Ryan, as described in
Equations (28} and (29), were originally intended for statically
determinate beams., It is however appropriate that the deflection
criterion according to BEguation (28) should be extended to cover
also statically indeterminate beams. It has already been pointed
out that, when a beam is subjected to excessive deflection, there
is a risk that the parts of the structure connected to the beam,
such as parts of the flcor slab, will lose their support. Owing
to this, it is appropriste that a criterion associated with the
magnitude of deflection should be used for the definition of
failure, and it is also reasonable that the criteria applied with
regard to the maximum permissible deflection should be the same
irrespective of the static system. This implies therefore that

L in Equation (28) should denote the distance between the points
of support of the beam and y the central deflection, even when
this Equation is applied to a statically indeterminate beam, for
instance one rigidly restrained at one or both ends. On the other
hard, however, when the Equation is appligd to a cantilever,

L must denote twice the length of the cantilever and y the
deflection at the free end of the cantilever in order that
conditions may be comparable with those in the case of a beam

supported at two points.
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7 THE INFLUENCE OF VARIOUS FACTORS ON THE DEFORMATION PROCESS

T.1

OF STEEL BEAMS EXPOSED TO TEE ACTION OF FIRE

Deformations of a steel beam which is exposed to the action of
fire are influenced by a number of faetors. If it is assumed that
the temperature~time relation is the same all over the beam and
there is no restraint on longitudinal expasnsion of the beam, then
the deformstion as expressed by y.hé-(y = central deflection,

h = depth of beam, L = length of b%am) will be governed by the
following factors for a certain materisl and a certain shape of

section:

Maximum temperature
Rate of heating and cooling

)
)
) Statical system
) Type of loading
)

Magnitude of load

Using the calculation model, the influence of these factors on
the deformations in beams of carbon steel and of constant I cross

section has been studied.

Maximum temperature

Since the strength and deformational stiffness of steel decrease
as the tempersbure rises, the deformation of a steel beam which

is exposed to fire is very largely dependent on the steel
temperature attained, as will be seen in FIG. 22. This shows the
caleulated central deflection y for a simply supported beam with

a uniformly distributed load g as a function of the steel temp-—
erature &, on the assumption that the action of the temperature ig
renresented by a linear temperature rise of 100°C/min from room
temperature to the temperature $. The load Uy is the load at which
the section subjected to the highest stress reaches the yield

stress at room temperature.
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Calculated central deflectlion y as a function of the
steel temperature 4 for a simply supported beam with
uniformly distributed load g when it is exposed to a
temperature action represented by a linear increase in
temperature of lOOOC/min from room temperature to the
temperature 4, It is assumed that the temperature is
equal all over the beam and that there is no restraint
on longitudinal expansion of the beam, The load qg 1Is
the load at which the most highly stressed sextion
reaches the yield stress at room temperature,

62




0,003

y-

0,002

0,001

FIG,

63

i EEESEEERERE Ij"
| 7 |
L\
\
N\
_i}na§500AQh§Fl70‘
Mhag650 Yge0.23
] i ] 1
25 50 75 afc/min] 100
2%, Calculated central deflection y, under fire exposure

conditions, as a function of the rate of heating a for a
simply supported carbon steel beam with a uniformly
distributed load gq. The deflections during the cooling
period are included in the calculated deflections. It is
assumed that the rate of cooling is one-third of the rate
of heating in question, that the temperature is the same
all over the beam, and that there is no restraint on
longitudinal expansion of the beam, The load qg is the
load at which the most highly stressed section reaches
the yield stress at room temperature, and %anax the
maximum temperature which the beam attains during the
fire,
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Rates of hesting and cocling

It is not until a temperature of approximately M5OOC has been
reached that the creep strain of the steel begins to exert an
influence on the deformation of & steel beam exposed to Ffire.
Since the magnitude of creep strain i1s time dependent, deformation
at temperatures above hSOOC will be the greazter, the slower the
rates of heating and cooling. FIG. 23 shows the calculated
maximum central deflection y for a simply supported beam with
uniformly distributed load, which is exposed to fire, as a function
of the rate of heating.a. The deflection includes that during the
cooling period, the assumption being that the rate of cooling is
one~third of the rate of heating under consideration. The Figure
shows three curves representing different loads ¢ and maximum
tenperatures emax' The symbol A denotes that load at which the
section which is most highly stressed reaches the yield stress at
room temperature. The loads used in the calculations at the
different maximum temperatures have been chosen in such a way that
the deflections in the three cases are of the same order and reach
values which are critical from the point of view of failure, at

a rate of heating of lO—EOOC/min. It is evident from the curves
that the influence of the rates of heating and cocling on the

deformation increases as the temperature rises.

Statical system

The type of statical system exerts a great influence on the
deformation of a steel beam which is exposed to fire. Contrary

toc the state of affairs in a statieally determinate beam, a
re-distribution of moments generally ccecurs in a statically
indeterminate beam as the deformation of the beam incresses during

a fire. This re-distribution of moments has the effect that the
moments and stresses in the sections of a beam which are most

highly stressed are reduced, and this has a restralning effect

on the deformation. The influence of this re-distribution of moments
on the deformation of a steel beam which is exposed to fire has

already been touched upon to some extent in Section L4.2.
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Comparison of the calculated central deflection ¥ as a
function of the time t for a simply supported carbon steel
beam (---) and one rigidly restrained at both ends {(—),
the beams being acted upon by a uniformly dlstributed
load g and exposed to a temperature action, represented
by the chain line (& - t) curve, which is uniform over
the whole of the beam, It is assumed that there is no
restraint on longitudinal expansion of the beams. The
load g is equivalent to 67% of that load in each beam
which causes the yileld stress to be reached at room
temperature at the most highly stressed sectlon.
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The caleulated central deflection—time (y - &} curves for a
simply supported beam and for one restrained at both ends, both
with a uniformly distributed load snd exposed to the same
temperature (® - t) action, are compared in FIG. 24. The load in
both cases is 67% of that load q which in each beam causes the
yvieid stress to be reached =t room temperature in the section
which is most highly stressed. It is seen in the Figure that the
beam restrained at both ends, in which there is a re-distribution
of moments, stands up to the temperature conditions very much

better than the simply supported beam.

Type of loading

The deformation of & beam is dependent on the distribution of
curvature along the beam.This implies that the deformation of a steel
beam which is exposed to fire will vary in megnitude for different
types of loading, even if the maximum moments in the beam are the
same for these types of loading. This state of affairs is
illustrated in FIG. 25 in which the calculated central deflection-—
time (y - t) curve for & simply supported beam with a uniformly
distributed load is compared with that for a simply supported

beam with a central concentrated load, both beams being exposed

to the action of fire. The temperature—time (& - t) curve is also
shown in the Figure. The maximum moment is the same in both cases,
but for a concentrated load the reduction in moment from the mid-
section to the supports is larger than for a uniformly distributed
load, and the deflection for a concentrated load is therefore less.
Irf theré is a linear relationship between stress and strain, the
ratio of the deflection for a uniformly distributed load to that
for a concentrated load is 1.25. The relationship between stress
and strain is not linear at elevated temperatures, however, and
this means that the relationship between the deflections at the
two types of loading varies with the temperature,
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FIG, 25.
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Comparison, under fire exposure conditions, of the
calculated central deflection-time (y - t) curve for
a simply supported carbon steel beam with a central
point load (——) with that for a beam with a uniformly
distributed load (---), both beams being exposed to a
temperature action, uniform all over the beams, which
is represented by the (8 - t) curve shown by a chain
iine, It is assumed that there is no restraint on
longitudinal expansion of the beams. In both cases,
the load is 30% of that load which causes the most
highly stressed section to yield at room temperature,
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FIG, 26, Calculated central deflection y, under fire exposure
conditions, as a function of the load level g/qg at three

different maximum steel temperatures & ax for a simply
supported carbon steel beam with a uni%ormly distributed
load,

q = the load being considered

the load which causes the most highly stressed
sextion to yield at room temperature

il

qs

The calculated deflections which iInclude those during the
cooling period, are calculated on the assumption that the
rate of heating, which is uniform all oyer the beam, is
20°C/min and the rate of cooling is 6,7°C/min, It is also
assumed that there is no restraint on longitudinal
expansion of the beam,
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Magnitude of load

As will be seen in FIG. 26, the magnitude of the load exerts a
great influence on the deformation in a beam exposed to fire.

The calculated central deflection y which includes the deflection
which oceurs during the cooling period is shown for a simply
supported beam with a uniformly distributed load as a function-
of the load level q/qs, where g denctes the actual load and qs
the load at which the yield stress is reached at room temperaiure
st the section which is most highly stressed. The calculations
were performed for three different maximum temperatures &max

at an assumed rate of neating of 20°C/min and a rate of cooling

of 6.7°C/min.
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8.1

CRITICAL LOADS FOR STEEL BEAMS EXPOSED TO THE ACTION OF FIRE
AS DETERMINED BY MEANS OF CALCULATED DEFCRMATIONS

Caleulation method

By means of systematic caiculations witk the calculation model -
during which the factors listed in the previous Chapter are

varied - the load which produces a deflection according to

Equation (28) can ve determined for different types of loading,
different statical systems and different temperature relationships.
Due consideration is given in this connection to the argument in
Chapter 6 concerning the significance, in conjunction with
different statical systems, of the quantities comprised in
Equation (28). The critical loads determined in this way are
exemplified in FIG. 27 which applies for a simply supported beam
of I section loaded by & uniformly distributed lcad. The Figure
gives the value of the coefficient B which is the ratio between

the load which produces a deflection according to Eguation (28)

and the load at which the most highly stressed section reaches the
yield stress at room temperature, as a function of the maximum steel
temperature emax attained during the fire for three different rates
of heating and cooling. For purposes of comparison, the Figure also
shows values of 8 on the assumption .that there is no creep, i.e. the
rates of heating and cooling are infinitely great. The coefficient
B is calculated on the assumption that the temperature is equal

all over the beam snd that its longitudinal expansion is not
prevented. For a simply supported beam of I gection with a
uniformly distributed load, as shown in the Figure, the critical

load is

eritical load (kg#/cm)

=
3]
L
M
e

n

coafficient'according to FIG. 27

il

elastic modulus of section (cm3)

= ™
o
L
I}

e Q
il

length of beam (em)

70

yield stress of the material at room temperature (kgf/cmz)
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FIG. 27. The coefficient B for calculation, according to Equation
(%0), of the critical load qgp for a simply supported I
section beam of carbon steel with a uniformly distributed
load, as a function of the maximum steel temperature Spa¢
for three different rates of heating and cooling (I, 1T,
IIT). The value of B for infinitely fast rates of heating
and cooling is also given for purposes of ccomparison,

Curve  Rete_of heating (°C/min)_  Rate of cooling (°C/min)
I 100 3.3
1T 20 6,67
IIT 4 1.33

-

Tt is assumed that the temperature is the same all over
the beam and that there 1s no restraint on longitudinal
expansion of the beam,
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Section 8.2 discusses diagrams constructed in the same way for
determination of the critical load for a number of types of

loading and statical systems.

In FIG. 27 and in the diagrams in Section 8.2, the ccefficient 8
is the ratio between the load which produces a deflection according
to the deflection criterion Equation (28) and the load which causes

the most highly stressed section to reach the yield stress at room

72

temperature, Another possibility would be to make 8 represent the rela-

tion between the load which causes a deflection according to Eq. (28)

and the limiting load of the beam at room temperature, as calculated

by the limit state theory. In this way, initial values of the B curves

at a temperature of 0°C would always be unity irrespective of the
type of loading, statical system or shape of cross section. The
main reason why the former method has been chosen is that design
of steel beams at room temperature conditions is at present
generally based on the elastic theory. By using 1n the diagrams a
value of B equal to the extreme fibre stress at the most highly
stressed section according to the elastic theory, divided by the
yield stress of the material at room temperature, the maximum
temperature which the beam in guestion can withstand without the
deflection exceeding that according to Equation (28), can be

directly determined.

Diagrams for determination of the critical load

for certain given conditions

The disgrams for determination of the critical loads of steel
beams exposed to fire, which are discussed in this Section and
shown in FIG. 30, are based on the conditions given in the
subsections &) - ) below. The effect on the critical load when

certain conditions are different from those below is discussed

in Section 8.3.

a) Type of load, statical system

The type of load and the statical system are shown in the diagrams.
See Subsection 8.3.1 with regard to types of loading which are
not included. See Subsection 8.3.2 with regard teo continuous beams.



b) Grade of steel

The diagresms can be used for structural steels to Swedish Standards
Steel 1311, 1312, 1b11, 1ki2, 1413, 141k or for steels of similar
composition and strength. See Subsection §.3.3 with regard to
steels with compositions or strengths which show major deviations

from these steels.
¢} Bhape of cross section

The diagrams apply to I beams of constant cross section., See

Subsection 8.3.4 with regard to beams of different cross sections

and Subsection 8.3.5 with regerd to beams of variable cross section.

The diagrams are further velid only on condition that there is no

risk of instability failure (see Subsections 8.3.L4 and 8.3.5).
d) Rates of heating and cocling

The diagrams are based on a steel temperature relationship which
entails linear increase in temperature from room temperature to
the appropriate maximurn tem.perature'emaX and subsequent linear
cooling &t ‘a rate which is one-third of the rate of heating. The
values of B are shown for three different rates of heating and
cooling, viz. 100°C /min and 33.3°C/min, 20°C /min and 6.67°C /min,
and 4°C/min and 1.33°%C/min. It is only at temperatures in excess
of approximately MBOOC, where creep strain begins to be felt, that
the rates of heating and cooling have a noticeable influence on
the critical load. IT the maximum steel temperature-&max, in the
course of practical design, is determined by calculation of the
entire steel temperature process (4, 18), the appropriate rate

of heating will slso be cbtained. If, on the other hand, the max.
steel tempersture emax is determined from diagrams presented in
(5) or (18) which give-ﬁmaX directly as a function, inter alia,

of the fire load and the opening factor of the fire cell, the rate
of heating must be estimated separately. This can be done with the
help of FIG. 28 which gives the average rate of heating of the beam
as a function of the fire load g for different values of the
opening factor A/TE?/At and the maximum steel temperature Smax'
The rates of heating for values of the opening factor and maximum
temperatures other than those in the Figure may be estimated by

means of linear interpolation.
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FIG, 28. Average rate of heating a as a function of the fire load

q for different values of the opening factor A/ h/A¢ of
the fire cell and for different maximum steel temperatures

max
A = total opening area of the fire cell (me)
h = mean value of the vertical extents of the openings,
welghted in view of their sizes (m)} o
A, = total surface area of the fire cell {m™),

t
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The curves in FIG. 28 have been determined on the basis of the
following considerations. The gas temperature—time (& - t) curve
for a fire cell, for which the thermal properties of the structures
boundnig the fire cell are glven, 1s determined by the magnitudes
of the fire load and the opening factor. The gas temperature-time
(% - t) curve for a fire cell is shown schematically by the full
line in FIG. 29. The temperature~time process in an uninsulated
steel structure, for a given gas temperature development, is
determined by the ratio between the area of the steel section
which is exposed to the fire and the volume of the section. The
dashed line in FIG. 29 shows schematically the steel temperature
development for an uninsulated steel structure. The point of
intersection between this curve and the gas temperature curve gives
the maximum temperature &max in the steel and the time tmax at
which this temperature is reached. If the meximum temperature %max
of an uninsulated steel structure is thus known, the time tmaX
corresponding to this temperature can be determined, since the

gas tempersture—time curve is known. The average rate of heating

is obtained by division of & by t_ .
max max

For an insulated steel structure at a given gas temperature
development, the steel temperature development depends on the
thermal resistance snd heat capacity of the insulation and on the
ratio between the mean surface ares of the insulation and the
volume of the steel section. The steel temperature curve for an
insulated steel structure is shown schematically by the chain line
in FIG. 29. Owing to the effect of the heat capacity of the
insulation, the maximum steel temperature in this case is not given
by the point of intersection between the steel temperature and

gas temperature curves. Since the heat capscity of commonly used
insuletion materials is normally negligible in comparison with
that of the steel section, the difference in time between tmax

and the time at which the steel temperature and gas temperature
curves intersect is usually very small in relation to the time
tmax' Tn view of this and the fact that, with regard to the
relevent circumstances, the average rate of heating can only be
estimated roughly, FIG. 28 can be used for insulated steel
structures also. As a rule, the maximum steel temperature is also

calculated without consideration of the heat capacity of the
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FIG. 29, Schematic temperature-time (8§ - t) curves,

Gas temperature development in a fire cell

-=== Steel temperature development in an uninsulated
steel structure :

- . =Steel temperature development in an insulated steel

structure
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insulstion. The calculated maximum teupersture is therefore a
iittle above the actual maximum temperature, which, from the
safety point of view, more than makes up for any errors in the

estimated rate of heating.

With regard to ratios other than 3:1 between the rates of heating

and cooling, see Subsection 8.3.6.

e) Temperature distribution along and across the beam

Tt is assumed that the temperature is the same in all parts of
the beam. See Subsection 8.3.T with regard to variations in

temperature across the cross section of the beam and Subsection

8.3.8 with regard to variations in temperature along the beam.

f) Longitudinal expsansion

The diagrams assume that longitudinal expansion of the beam is
not prevented. See Subsection 8.3.9 with regard to a restraint

on longitudinal expansion.

Estimation of critical load under conditicns

different from those in Section 8.2

Other types of loading

The deflection becomes less and the values of f therefore become
larger, the smaller the moments in different cross sections of a
beam exposed to fire are in relation to the maximum moment in the
beam. This is also evident from FIG. 30. The values of B are for
instance higher for a simply supported beam loaded with a polnt

load than for a simply supported beam in which the bending moment
is constant along the beam. The latter type of loading produces

the lowest values of 8 of all types of loading.

In conjunction with types of loading other than those given in
FIG. 30, the value of B applicable for a constant bending moment
and the temperature in question can therefore be used for an

estimation, on the safe side, of the critical Iload. This value
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{a=1). The coefficient B - as a function of the maximum steel
temperature 8,5 for different rates of heating and cooling
(I, II, III) ~ for determination of the critlcal load in
steel beams under fire exposure conditions. Conditions as
enumerated in Subsections a) - f) in 8,2,

Curve Rate of heating (2g@gi§) Rate of cooling (ég/@;g)

——— — s — T — A A

I 100 35.3
IT 20 6.67
IIT 4 1.33

Symbols

eritical load (kgf em), (kegf/em), (kgf)
length of beam {cm) 3
elastic modulus of section (em™)

yield stress of the material at room
temperature (kgf/cm?)

It is evident from the diagrams that the values of 8 at
temperatures within the range 100-400°C are in some cases
higher than those at room temperature, This implies that

the load at which a deflection according to Equation (28)

is reached in these cases is higher than the load for which
the yleld point will be reached at room temperature at the
most highly stressed cross section, This is explained by

the fact that, in the temperature range 100-400°C, the
stresses which correspond to the stress-strain curves
determined by means of tensile tests at elevated tempera-
tures exceed the corresponding stresses at room temperature
for suffieclently large values of the strain, and the fact
that the strain required in order that a deformation
according to Equation (28) should be reached varies according
to the type of loading and the statical system, The influence
of some other factors on the appearance of the 8 curves is
discussed in section 8,3,
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5.3.2

of B is then to be multiplied by that load which, for the type
of loading in question, produces inecipient yield at room tempera-

ture at the section which is most highly stressed.

Contilnuous beams

Tt is seen in FIGs. 30 f, g, h and i that the values of § for

beams with end restraint at one or both ends are about the same

at the same type of loading, although the values of B are somewhat
higher when the beam is restrained only at one end. The reason for
this is that moment re—distribution occurs more easily in this case.
The relationship between the restraining moment M according to

the elastic theory and the moment Mg according to the limit state

theory provides a measure of the theoretical moment re-distribution

possibilities.

2 2
Restrained at both ends: M= gt M = gL
12 g 16
M/M_ = 1.33
g
gL2 qL2
Restrained at one end: M= g Mg = 1ET7
M/M = 1.4
/ o 7
For & beam with_a central point load,
. PL
Restralned at both ends: M= e Mg = PL
8
M/M =1.0
g
Restrained at one end: M= 3L M = PL
16 g 6
M/M = 1.12
£

For a continuous beam, the magnitude of the support moment
calculated by the elastic theory is wusually between those for
beams restrained at one and both ends respectively. Estimation, on

the safe side, of the critical load for a continuous beam of
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constant I section which is loaded with a uniformly distributed
load or a central concentrated load can thus be based on the

values of B for a beam restrained at both ends which is loaded
with a UDL or a central point load. The value of R corresponding
to the actual temperature and load -~ uniformly distributed or point
load - is then to be multiplied by that load which, at room
temperature, causes incipilent yield in the most highly stressed

section of the continuous beam,

Other grades of steel

The diagrams in FIG. 30 have been constructed on the basis of
material data determined by means of tensile tests at elevated
temperatures and by means of creep tests, on test pleces taken
from the steel beams used in the fire tests described in

Section 5.1. (A). The material in these beams was Steel 1411
according to SIS 14 14 11. Critical loads for steel beams which
are exposed to the action of fire have however also been calculated
with the model on the basis of materiszl data (3) for an American
steel A 36. With regard to its material analysis and strength
properties, this steel corresponds to Steel 1412 according to

SIS 14 1Lk 12. The creep parameters and stress-strain relations

at different temperatures, which are given in (3} for the A36
steel, indicate the differences from the corresponding data Tor
the 1411 steel. The fact that there is good agreement between the
B values for these steels,i.e. between the ratios of the critical
lcad on exposure to fire to the load at which the most highly
stressed section yields at room tempersture, shows however that
the strength and deformation properties of the two steels are
similar under fire exposure conditions. The calculated values of 8
for the two steels are compared in FIGs. 31 and 32, for simply
supported beams and beams restrained at both ends, for a constant

I section and & uniformly distributed load.

Reference {12) gives an account cof an experimentsl and thecretical
gtudy of the creep properties of different structural steels under
fire exposure conditions. In addition to the A36 and 1411 steels
mentioned above, the carbon steels comprised in the study were

two 1312 steels to SIS 1k 13 12. The theoretically calculated
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200 400 &

FIG, 31. Comparison of calculated values of B for a simply supported
beam of constant I section with uniformly distributed load,
the materials being Steel A36 (---) and Steel 1411 (=Y.

Tt is assumed that longitudinal expansion of the beams is
not restrained and that the temperature is the same all
over the beams.

The different branches of the curve correspond to rates of
heating and cooling according to curves I, IT and IIT in
FIG. 30.
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FIG., 32, Comparison of calculated values of S8 for a beam of constant
I section with a uniformly distributed load which is regidly
restrained at both ends, the materials being Steel AZ6 (---)
and Steel 1411 (—-),

It 1s assumed that longitudinal expansion of the beams is

not restrained and that the temperature is the same all
over the beams,

The different branches of the curve correspond to rates of
heating and cooling according to curves I, II and III in
FIG, 30,



creep processes for these four steels, which were based on the

creep parameters determined for each steel, were found to be in
very good agreement at stresses of thé same magnitude in relation
to the yield stress of the steels at room temperaiure. This fact

and the good agreement between the caleculated values of B for the
436 steel and the 1411 steel (FIGs. 31 and 32) show that the
disgrams in FIG. 30 which were constructed on the bagis of

material data for the 1411 steel can be used for all steels with
analyses and strengths similar to those of a 1411 steel, i.e. for
21l ordinary carbon steels. The differences in the yileld stresses

of the steels are taken into consideration by means of the egquations
given in the diagrams for calculation of the critical loads. Most
often, however, the actual yield stress of the material irn a steel
beam is unknown, and estimation of the load carrying capacity in
the event of fire must in such cases be based on the nominal yield
stress of the material. In most cases, this entails a not inconszider-
sble underestimation of the real load carrying capacity, since,
statistically, the actual yield stress exceeds the nominal value

in 95% of the cases.

The study reported in (12) also comprised two carbon-manganese
steels corresponding to Steel 2172 according to BIS 1k 21 72 and
alsc two grain-refined steels with a basic analysis the same as
that of the carbon-manganese steels. The theoretically calculated
creep processes for these different steels, which were based on
the creep parameters determined for each steel, were found to be
in good agreement within each steel group at stresses of the same
magnitude in relation to the yield stresses of these steels at
roor temperature. In addition, the creep processes in the grain-—
refined steels were largely the same as those in the carbon steels.
This indicates that the diagrams in FIG. 30 can be used, with
gufficient accuracy, also for the estimation of the critical locads
in beams exposed to fire which consist of grain-refined material
of the same basic analysis as an ordinary carbon-manganese steel.
On the other hand, however, the carbon-manganese sieels which had
not received. grain refining treatment exhibited an sppreciably
lower tendency to creep than the carbon steels and the grain-
refined steels. Systematic calculations of the critical loads in

beams exposed to the action of fire were also carried out, therefore,
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FIG, 33,

Comparison of values of 8 for a simply supported beam of
constant I section with uniformly distributed load, the
materials being carbon-manganese steel (—) and carbon
steel (---). It is assumed in both cases that the tempera-
ture is the same all over the beam and that longitudinal
expansion 1Is not restralned.

The different branches of the curve correspond to rates of
heating and cooling according to curves I, IT and III in

FIG, 30,
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FIG, 34, Comparison of values of B for a beam of constant I section

with a uniformly distributed load which is rigidly restrained
at both ends, the materials being carbon-manganese steel
(— ) and carbon steel (---). It is assumed in both cases
that the temperature is the same all over the beam and that
longitudinal expansion is not restrained,

The different branches of the curve correspond to rates of
heating and cooling according to curves I, II and IIT in

FIG., 20.
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on the basis of the material datz presented in (3), for one of

the carbon-mangsnese steels comprised in the above study. The
calculations were confined to simply supported beams and beams
restrained at both ends, of constant I sections and loaded with

& uniformly distributed load. The results are shown in FIQs. 33
and 34 in which the values of B for beams of carbon-manganese
steel and carbon steel are compared. It is evident from the
Figures that the values of B are consistently higher for “beams

of carbon-manganese steel than those of carbon steel. It is also
evident from FICG. 34 that the value of B for the restrained beam
of carbon-manganese steel has a maximum at about hOOOC, while
there is no corresponding maximum for the beam of carbon steel.
This may be explained as follows. Within the temperature range of
appro%. lOO—h5OOC, at sufficiently large strains, the stresses
corresponding to the stress—strain curves drawn on the basis of
tensile tests at elevated temperatures exceed the corresponding
stresses at room temperature. This applies tc both carbon-~manganese
steel and carbon steel, but the strains which cause the stresses
to become higher are smaller in the carbon-manganese steel than in
the carbon steel. The strains required in order that the restrained
beam should attain a deflection according to EZguation (28) are
evidently sufficiently large at some sections for the asbove

effect to be felt in beams of carbon-mangsnese steel, but are

not sufficiently large for this to be manifested@ in beams of carben
steel. As will be seen in FIG. 33, R has no maximum at elevated
temperatures in any of the steels in the simply supported beam.
The strains required in order that the simply supported beam
should attain a deflection according to Equation {28) are
evidently less than the strains required@ in the carbon-manganese
steel in order that the stresses at elevated temperatures should
exceed those according to the stress-strain curve determined at

room temperature.

Different shape of cross section

During deformation of a beam which is exposed to the action of fire,
there is a redistribution of stresses over the cross section as

a result of plastic strains (6, 11). The stresses at the extreme

fibres become smaller while those inside the section inecrease, The
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decrease in the extreme fibre stresses limits deflection of the
beam, and the greater this reduction in the extreme stresses,

the smallier the deflection will be. One of the factors which
influences the extent o which the extreme stresses are reduced

is the shape of the cross section. The greater the ratio of the
plastic section modulus W_ of the cross section te the elastic
section modulus W, the greater the reduction in extreme fibre
stresses during a fire. Since estimation of the critical lcad is
based on the deflection, the incresse in critical load is a
function of the increase in the value of WP/W. According to the
limit state theory, which assumes that the most highly stressed
cross section of the beam is fully plastic, the load carrying
capacity is directly proportional to the value of WP/W. For
ordinsry I sections, the value of Wﬁ/w is 1.13-1.15, and for
rectangular sections it is 1.5C. According to the limit state
theory, therefore, the ratio of the load carrying capacity of a
beam of.rectangular section to that of a beam of I section 1s
1.31-1.33, on the assumption that the elastic section moduli are

. the same in both sections. During a fire, however, the deformaiions
of a beam must be very large before the most highly stressed section
becomes fully plastic, the reason being the very softly rounded
ghapes of the stress—strain curves at elevated temperatures. At

a deflection according to the deflection criterion formulated in
Equation {28), the most highly stressed section of a steel beam

ig not fully plastic under fire exposure conditions, which implies
that the critical load in the event of fire is not directly
proportional to the W_/W value of the cross section. This is also
demonstrated in FIG., 35 in which the values of B for a simply
supported beam of carbon steel, of constant rectangular section
and with a uniformly distributed load, are compared with those for
a similar beam of constant I section. At room temperature, the
ratio of the eritical loads for the two beams is 1.33, which is
the same as the ratio of Wﬁ/w for the rectangular section to that
of the I section. As the temperature rises, the ratio between the
eritical load for the beam of rectangular section and that for the
beam of I section becomes smeller and drops to 1.20-1.25 within
the temperature range 400-650°C. Roughly the same state of affairs

can be seen in FICG. 36 in which the values of B for a beam of
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Comparison of the values of f§ for a simply supported carbon
steel beam with a uniformly distributed load, the cross
section being constant and rectangular {(——) and I-shaped
(«--). It is assumed in both cases that the temperature is
the same all over the beam and that longitudinal expansion
is not restrained.

The different branches of the curve correspond to rates of
heating and cooling according to curves I, II and III in
FIG., 30,

22
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FIG, 3. Comparison of the values of B for a carbon steel beam with
a uniformly distributed load which is rigidly restrained at
both ends, the cross section being constant and rectangular
{(—) and I-shaped (---)}, It is assumed in both cases that
the temperature is the same all over the beam and that
longitudinal expansion is not restrained,

The different branches of the curve correspond to rates of
heating and cooling according to curves I, IT and IIT in

FIG. 20.
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carbon steel of constant rectangular cross section, restrained

at both ends and loaded with a uniformly distributed load, are

compared with those for a similar beam of constant I section.

One of the conditions stipulated in conjunction with the diagrams
in FIG. 30 was that there must be no risk of instability failure.
In the case of a beam section where the flange width is much
greater than the flange thickness, or the depth of web is much
greater than the web thickness, certain local instability phenomensa
may be critical with regard to the load carrying capacity of the
beam. If, however, the shape of the cross section is such that
there is no risk of a local instability failure at room temperature,
then it is also unlikely that there will be any such risk at
elevated temperatures. The load at which local instability failure
occurs is greatly dependent on the magnitude of the modulus of
elasticity, the proportional decrease in which as the temperature
rises is less than that in the yield stress or the 0.2% proof
stress., (L, 14). The ratio between the risk of a local instability
failure and the risk of a flexural failure should therefore become
smaller as the temperature rises. However, owing to the softly
rounded shapes of the stress—strain curves at elevated temperatures
and the fact that the load carrying capacity with regard to
instability is governed both by the modulus of elasticity - or
tangent modulus — and aiso the yieid stress or the 0.2% proof
stress, 1t is likely that the reduction in this risk ratioc on a
rise in temperature is less than the ratio between the proportional
reduction in the magnitude of the 0.2% proof stress snd that in

the magnitude of the modulus of elastieity.

Variation in the cross section along the besm

The deflection of a steel beam which is exposed to fire primarily
depends on the stress distribution along the beam and not on the
moment distribution. If the section modulus of a simply supported
beam subject to a certain load is varied aiong the beam in such a
way that the extreme fibre stresses are the same all along the
beam, the deflection development on exposure to fire will be the
same in this beam as that in a beam of constant section modulus

which is loaded by a constant bending moment, on ccndition that
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the stresses and the steel temperature development are the sane

in the two cases. Since the deflection processes are identical,
the ratio between the critical load under fire exposure conditions
and that at room temperature is alsc the same in the two cases.

An estimation, on the safe side, of the critical load for a simply
supported beam of variable cross section along the beam can thus
always be based on the values of B applicable to the loading
condition of constant bending moment, according to FIG. 30a.

The appropriste value of B is to be multipiied by that load which,
for the cross sectional variation in question, causes the yield
stress to be reached at room temperature at the most highly

stressed section.

Veriation of the cross section along a beam is more usual in a
rigidly restrained or continuous beam then in a simply supported
one. If a rigidly restrained beam is designed so that the extreme
fibre stresses at the section where the span moment is the maximum
are the same as at the restraint sections, then the capacity of
the beam with regard to moment redistribution is exhausted.
Naturally, the values of B for = simply supported beam can be used
for the estimation of the critical load in such cases, but this
results in many cases in an estimation of the risk of failure which
is rather too much on the safe side. In spite of the fact that no
redistribution of moments occurs, the moment distribution in a
rigidly restrained beam is still considerably more favourable than
in & simply supported beam. This state of affairs is illustrated
to some extent in FIG. 37. This compares the calculated values of
B for a beam restrained at both ends, which has a section modulus
in the span that is only one-half that at the restraint sections,
with the values of B for a beam of constant cross section that

is rigidiy restrained at both ends, and also with the values of

B for a simply supported beam of constant cross section. The load
in all cases is assumed tc be uniformly distributed. Only the
values of R for the slowest temperature development according to
curve ITI in FIG. 30 are shown. In the case of the beamr of
varisble cross section, it is assumed that the transition between
the different forms of cross section coincides with the points of

contraflexure in the beam at room temperature. It is seen in the
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¥IG. 37. Comparison in beams of carbon steel of the ealculated values

of B, All the beams carry a uniformly distributed load, and
the curves refer to a simply supported beam of constant I
section (- * -), a beam of I section rigidly restrained at
both ends in which the modulus of section in the span is one-
half that at the end sections (---), and a beam of constant

I section rigldly restrained at both ends (——), It is

assumed in all cases that there is no restraint on longitudinal
expansion of the beams and that the temperature is the same all
over the beams, The values of B apply for the slowest rate of
heating according to curve III in FIG, 30,
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Figure that the values of B are the same at room temperature for
the restrained beam of variable cross section and the simply
supported beam, but that the values of B at elevated temperstures
are higher in the restrained beam. In the temperature range of
500—6500C, the ratio between the values of B in the two beams is
about 1.20-1.25.

Different ratic between the rates of heating and cooling

The diagrams in FIG. 30 are based on a steel temperature
development for which the rate of heating was assumed to be three
times the rate of cooling. On the basis of the theoretically
calculated steel temperature processes for uninsulated and insula-
ted steel beams, performed at the Division of Structural

Mechanics and Concrete Construction of Lund Institute of Tech-
nology, and the steel temperature curves determined in the course
of tests, it is found that this relationship between the rates of
neating and cooling is representative of that in actual fire

conditions.

In order to get an idea of what will be the result of a change

in the relationship between the rates of cooling and heating,

the eritical load for a simply supported beam with a uniformly
distributed load has been calculated on the assumption that the
rate of cooling is only one-sixth of the rate of heating.
According to this assumption, the calculated critical load at a
maximum temperature-&max of 650°C is approximately 95% of that
applicable to a rate of ccoling that is ome~third of the rate of
heating. The difference between the critical loads in the two
cases becomes less as the maximum temperatures decrease. At SOOOC,
the critical load at the lower rate of cooling is about 99% of
that at the higher rate of cooling. The reduction in critical

load owing teo a lower rate of cooling than that assumed in the
diagrams in FIG. 30 is thus fairly moderate. This reduction is

in sddition more than counterbalanced by the rise in eritical load
as a result, inter alia, of the uneven distribution of temperature

along the beam. (See Subsections 8,3.7 and 8.3.8).
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The temperature developments comprising a linesr rise in temp-—
erature up to the actual maximum temperature and a subsequent
linear decrease in tempersture, which have been assumed in
calculating the deformation curves and in evaluating the critical
loads, are naturally an approximation of the steel temperature
developments which occur during an actual fire. The above
comparisons between critical loads at rates of cooling higher and
lower than that assumed, and some calculations performed with
non-linear temperature developments more in agreement with actual
conditions, show however that the linear temperature developments
employed for the sake of simplicity can be asccepted with an accuracy

that is sufficient in conjunction with exposure to fire.

Variation in temperature across the cross section

When a beam is exposed to the action of fire, the temperature at
the top of the beam is generally lower than that at the bottom of
the beam. The magnitude of this difference in temperature depends
on a number of factors such as room geometry, the design of the
insulation, dissipation of heat to the floor slab, etec. On the
basis of recorded itemperatures during fire tests, it appears that
the difference in temperature between the top and bottom flanges
of a steel beam which is exposed to fire is normally in the range

of 50-200°C.

This difference in temperature between the top and bottom flanges
causes a deformation in the beam irrespective of whether or not

the beam is loaded. However, the top flange which is at a lower
temperature takes a larger proportion of the load and thus relieves
the hotter and therefore wesker bottom flange. This redistribution
of stresses has the result that the deflection is less than when
the top flange has the same temperature as the bottom flange. This
is particularly noticeable at elevated temperatures when the creep
strain predominates. The deflection-time (y - t) curves for a
simply supported beam of I section and with & uniformly distributed
load, for the assumptions that the temperature is the same all over
the beam and that the temperature of the top flange is 10¢°c lower
than that of the bottom flange, are compared in FIG. 38. In the

latter case, the temperature is sssumed to be constant from the
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Deflection-time (y -~ t) curves for a simply supported carbon
steel beam with a uniformly distributed load, calculated on
the assumption that the temperature is the same all over

the beam (——) and that the temperature across the cross
section varies as shown in the inset (---). The maximum
temperature & of the beam as a function of the time t is
shown by the chain line, In the case of the beam in which
the temperature varies over the cross sectlon, it is assumed
that the temperature of the top flange, Before the bottom
flgnge has attained a temperature of 125 °C, is constant at
25°C, It is assumed in both cases that there is no restraint
on longitudinal expansion of the beam, The load q is
eguivalent to 20% of that load which causes the yield stress
to be reached at room temperature at the most highly stressed
section,



bottom flange up to the middle of the web and to decrease linearly
from there to the top flange. The temperature & in the bottem
flange is given in the Figure as s function of the time t. At the
beginning of the fire, before the tempersture of the bottom had
attained 12500, the temperature of the top flange of the beam with

variable temperature was assumed to be constant at 2500.

It will be seen from FIG. 38 that the deflection of the beam in
which the temperature varies over the cross section is initially
greater than that of the beam in which the temperature is constant
over the cross section. This is due, as mentioned above, to the
additional deformation caused by the difference in temperatures in
the beam, Owing to the favourable redistribution of the stresses
over the cross section, deflectior of the beam with the temperature
variable over the cross section will however gradually become less
than that of the beam in which the temperature is constant over

the cross section.

Since redistribution of the stresses exerts an influence on the
development of deformations, the shape of the cross section is
significant with regard to the magnitude of the difference between
the deformations in the beam where the tempersture varies over the
cross section and those in the beam where the temperature is con—
stant over the cross section. Caleculations also show that the
deformations in a beam of rectangular cross section, for the same
difference in temperatures, are somewhat less than in a beam of

I section. The state of affairs in the case of a statically in-
determinate beam is similar toc that in & statically determinate
beam, but the infiuence which the difference in temperatures exerts
on the deformations is a iittle greater in the former case. This

is due to the fact that the variation in temperature over the cross
section, with the top flange cooler than the bottom cne, causes the
restraining moments to become larger and the span moment conseguent-

ly to become smaller than is the case in a similar beam of constant

temperature.

By means of systematically performed calculations, the critical
load was determined for beams in which the tempersture varies over

the cross section. The results show that the critical load - as

100
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defined by the deflection criterion in Equation (28) - is
consistently larger fér a beam in which the top flange is cooler
+than the bottom flange than for a beam in which the temperature

of +he whole beam is equal to that of the bottom flange. Since,
however, there is a limit to redistribution of stresses in a

cross section, there is also a limit above which an incresse in

the temperature difference over the cross section causes no increase
in the critical load. The critical load at a temperature difference
between the top and bottom flange of 200°C is only siightly larger
then that at a temperature difference of 10000, the maximum temp—

erstures being the same in the two cases.

Summarising, the following reccmmendations can be made on the
basis of the calculation results with regard to the increase in
the critical load for beams in which the top flange is 100-200°¢C
cooler than the bottom flange in relation to that in similar beams

in which the temperature over the cress section is constant.

&) Simply supported beam with s uniformiy distributed load

For beams of I section, the increase in critical load is of the
crder of 5% at & maximum temperature of ESOOC and is sbout 15%
at a maximum temperature of 65OOC. The corresponding figures for

beams of rectangular section are 10% and 257,

At a maximum temperature of hBOOC, the increase in critical load
is of the order of 10%, and at a maximum temperature of 65000

it is about 20%.

Variation in temperature along the beam

Tn the course of fire tests on steel beams, it has been found that
the temperature in the end regions of the beams is considerably
1ower than in their midregions. A similar state of affairs may
also be expected in the case of a beam subjected to the action of
a real fire if the supports of the beam are on or near the walls
which confine the fire. The fact that the temperature is lower

in the end regions of a beam means that the deflection is less
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than if the whole beam had the same temperature as its midregion.
The reason for this is that the curvature of the beam becomes
less as the temperature is smaller, and that the deflection of
the beam is dependent on the curvature along the entire beam. How
much less the deflection is in & beam in which there is a certain
temperature difference between the ends and the centre than in a
similar beam with a constant temperature is governed, inter alia,

by the nature of loading and the statical system.

Since the critical load is based on the magnitude of the deflectionm,
a variation in temperature along the beam will also exert an
influence on the magnitude of the critical loasd. Systemstic cal-—
culations have been performed of the critical load in a simply
supported beam with a uniformly distributed load which is exposed
to the action of fire, the temperature of the end sections being
assumed to be 100°C lower than that of the midsection. The results
show that the critical load at a maximum temperature of 450°C is
about 5% greater than in a similar beam of constant temperature.
The assumption made in the case of a beam in which-the temperature
varies along the span is that the variation is linear between the
temperature of the midsectior and that of the end sections. At a
maximum temperature of 65000, the critical load in beams of
variable temperature is approximately 10% greater than in beams

of conrstant temperature. Similar calculations of the critical load,
on the assumption that the temperature of the end sections is
200°C lower than that of the midsection, show that the increase in
critical load in relation to that at constant temperature along
the beam is about 7% at a maximum temperature of h5OOC and abcut
17% at a maximum temperature of 65000. The temperature of the end
sections, before the temperature of the midsection had attained

12500 or 22500, was essumed constant at 250C.

For a statically indeterminate beam the inerease in critical load
due to a lowering of the temperature at the end sections is con-—
siderably greater than that in a statically determinate besam.
This is due to the fact that the moment taken by the sections at
which the beam is restrained is the higher, the lower their
temperature, and the span moment diminishes correspondingly.

Calculations made for a beam with a uniformly distributed load
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which is rigidly restrained at both ends show that the critical
load, at a maximum témperature of-hBOOC and a temperature
difference of lOOOC, is about 10% greater than in a similar beam
of constant temperature. The assumption made in the case of
temperature varying along the beam is that the variation between
the midsection and the end sections is linear. At a maximum
temperature of 55000, the increase in eritical load is about 25%
and at a maeximum temperature of 650°C it is sbout 65%. At a temp-
erature difference between the midsectiorn and end sections of QOOOC,
the increase in critical load in relation to that at a constant
temperature distribution is about 204 at a maximum temperature of
hBOOC. At a maximum temperature of 55000, the corresponding
increase is about 55% and at & maximum temperature of 650°C it
is about 150%. In the same way as in the case of the simply
supported beam, it was assumed that the temperature of the end
sections is constant at 2500 as long as the temperature of the

midgection is less than 12500 or 22500.

8.3.9 Restraint on longitudinal expansion

If the longitudinal expansion of a steel beam due to the action
of fire is wholly or partly prevented — for instance due to
limitation of movement at the supporis — forces are imposed on
the beam. The magnitude of these imposed forces depends on a
number of factors such as temperature conditions, the degree of
restraint on longitudinal expansion, the stiffness of the besam,

the magnitude of transverse loading etc.

In practical construction, movement at the supports is usually
subject to considersble limitations. This is for instance the
case in conjunction with floor slebs of high in-plane stiffness
which limit the movements in & horizontal direction of the
supporting columns and hence of the beam supports. It is likely
that some movement nevertheless occurs, for instance due to a
clearance or plastic deformation at the points of attachment.
An other thing is that there also had to be some expansion of the
beam in order to prevent forces to be imposed even when the
supports are absolutely immovable. That is beacuse the neutral
axis of a deformed beam is longer than the distance between the

points of support and the deflection Increases during a fire,
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At the beginning of a fire, when the deflection of s steel beam
is small, the difference between the lengths of the neutral axis
and the chord is less than the expansion due to the rise in
temperature. If the supports are immovable, the beam is therefore
initially subjected to a compressive force. In those cross sections
of the deformed beam where the resultant of the compresgive force
is above the centroid of the section, the moment acting on the
beam is increased. If, therefore, the resultant of the compressive
force coineides with, or is situated above, a line connecting the
centroids of the end cross sections, the moment is increased along
the entire beam. An increase in the moment scting on the beam
causes an increase in deflection. At all times, the compressive
force is so large that the difference between the length of the
neutral axis of the deflected beam and the length of the chord
between the points of support is equal to the expansion of the
beam due to the rise in temperature, less its shortening due to
elastic and plastic contraction. When the deflection has become

5¢ large that the difference between the lengths of the neutral
axis and the chord exceeds the thermal expension less any residual
contraction owing to plastic compressive strain, the beam is
instead subjected to a tensile force. This tensile force reduces
the moment acting on the beam and thereby exerts a limiting
influence on continued deformation of the beam. This state of
affairs is illustrated in FIG. 39, which compares the calculated
deflection y of a simply supported beam whose supports are
absolutely immovable in the horizontal direction with the cal-
culated deflection of a similar beam whose expansion is not
subject to any restraint, both beams being acted upon by fire

and loaded with a uniformly distributed load. In the case of the
beam subjected to restraint, it is also assumed that the resultant
of the imposed forces coineides with a line between the centroids
of the end cross sections. The deflection is plotted as & funetion
of the steel temperature €. The calculations have been performed
for two different load levels and three ratios between the depth
h and length L of the beam. As will be seen in the Figure, the
points of intersection between the deformation curves for the
beam which cannct move at the supports and those for the beam

vhich is free to move occur at different temperatures and deflections,
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FIG, 39, Calculated deflection y as a function of a temperature &
which is uniform all over the beam, for a simply supported
beam with a uniformly distributed load g, on the assumption
that the supports of the beam are absolutely immovable (—)
in the horizontal direction and that there is no resiraint
on longitudinal expansion of the beam (---). The loads q;
and g are 60% and 35% of the load which causes the most
highly stressed cross section to reach the yleld stress at
room temperature, The deflections are calculated without
consideration of the creep strain. In the beam which is
restraint on longitudinal expansion, it is assumed that the
resultant of the imposed forces coincides with a line through

the centroids of the end cross sections.
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depending on the load acting on the beam and on the stiffness of
the beam. The points of intersection in the different cases
indicate the change in the imposed force from compression to
tension. The higher the load, the lower the temperature which is
required in order that the deflection necessary for this change
may be attzined. The more slender the beam, the lower the temp-
erature at which the deflection required for this change in sign
cccurs. The deflection curves shown in FIG. 39 have been computed
without considerstion of the effect of creep. The situation will
however be similar even when creep is taken into consideration,
although the deflection necessary for the change is attained at
a lower temperabure owing to the influence of creep. That also

means that the deflection necessary for this change will be less.

In the course of model tests (19) on loaded frames which were
heated in = furnace, one of the factors studied was the effect on
the deflection process of preventing heorizontal movements of the
joints in the frame. The results are exemplified in FIG, 40 in
which the recorded deflection ¥y as a function of the steel
temperature 4 is compared for a frame in which the joints cannct
move and one in which there is no restraint on horizontal movement
of the Joints, The state of affairs with regard to deformations is
similar in a frame in which movemenet of the Joints is prevented
and in a beam which cannot move at the supports, At low tempera-
tures, when the deflection is small, the horizontal member of +the
frame is acted upon by compressive forces, and consequently the
deflection is greater than in a similar frame in which the joints
can move horizontal. When the temperatures and hence the deflec-
tions become larger, the restraint on movement of the frame Jjoints
causes the horizontal frame member to be acted upon by a tensile
force, and the deflection of the frame with restrained frame joints
is then less than that of the frame in which movement of the Jjoints
is not prevented. It was also found in the study (19) that the
eritical temperature in frames where horizontal movement of the
Joints was prevented was consistently higher than for frames in

which there was no restraint on horizontal movement of the joints.
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FIG, %0,

Comparison of the recorded central deflections y, as
functions of the temperature 4, in a model frame in

which horizontal movement of the joints is prevented

G~——} and one in which there is no restraint on horizontal
movement of the joints (---). The width of the horizontal
portion of the frame is 0.63 cm and its depth is 0,42 em.
The dimensions of the legs of the frame are 0.63 x 0.63
¢m, The load P is 72,5% of the limiting load for the frame
at room temperature, ecalculated by means of the limit
state theory, and the rate of heating is approximately
SGC/hin. Owing to the relatively slow heating and the
small dimensions of the frame, it may be assumed that the
temperature is uniform over the frame,
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If the deflection critericn y = ngh.SOO sccording to Eg. (28)

is applied as the criterion of failure also to a beam which is
completely prevented from moving horizontally at its supports,
then, as shown in FIG. 39, the critical temperature for such a
beam will be either higher or lower than that for s similar heam
whose expansion is not resirained, depending, inter aliaz, on the
magnitude of the lcad and the stiffness. The greater the load and
the more slender the beam, the grester the probability that the
eritical temperature in the beam which cannot move at the supports

will be higher than in the beam whose movement i1s not prevented.

One of the reasons why the deflection criterion according to
Equation (28) can be considered suitable as the criterion of
failure for a steel beam under fire exposure conditions (6) is
that the inerease in the deflection of the beam, on a rise in
temperature, is sufficiently large once & deflection according to
Equation {28) has been reached. As will be seen in FIG. 39, this
evidently does not apply for a beam which cannot move at its
supports. The increase in deflection, after the deflection has
become so large that tensile forces arise, 1s considerably slower
than in & beam which can expand longitudinally without restraint.
A certain modification of the criterion of failure may therefcore
be necessary in the case of beams which cannot move axially at
their supports.In practice, however, it is difficult to make a
guantitative assessment of much accuracy of the movements in a
beam when this is exposed to fire. Owing to e.g. clearance at the
points of attachment and plastic flow in these, it is probable that
actual conditions are often intermediate between full restraint on
axial movement at the supports and complete freedom to do so.
Owing to the difficulty of making a relevant assessment of the
possibility of movement at the supports, it would seem therefore
appropriate from the practical point of view to base estimation
of the load carrying capacity of a steel beam under fire exposure
conditions on the assumption that there is no restraint on long-
itudinal expansion of the beam. This implies that the deflect-
ion of & beam whose axial movement at the supports is limited may
be a little greater than that corresponding to the deflection
criterion of y = Lg/h.BOO, particularly when the depth of the

beam is large in relation tc its length and the lcoad is small.
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The ultimate load of such a beam, however, - if the term ultimate
load is taken to mean the highest load which the beam itself is
capable of supporting at a certain temperature without consideratilon
of the magnitude of the deflection - is always greater than that of

4 Bimilar beam which can expand longitudirnally without restraint.

An spproximete caleulation of the conditions at which the
deflection in a beam in which axisl movements are completely
prevented at the supports will be greater than that in a beam
whose longitudinal movement is not restrained, can be made in the
following way. In order that there should be no imposed forces,
the length of the neutrsl axis of the deflected beam less the
length of the chord between the rigid points of support of the
beam must be the same as the expansion which would have taken
place in the beam if it had been completely free to move axially
on a rise in temperature. This disregards any plastic contraction
along the neutral axis of the beam, and the results of deflection
calculations also show that this contraction is normally very
limited. It is possible to draw up a relationship between the
central deflection y of the beam, its depth/span ratio h/L and
the temperature 4, such that the above condition, that there
should be no imposed forces, will be satisfied. The particuiar
form of this relation depends on the shape which it is assumed
the deflection curve has along the beam. If the deflection curve
is approximated to two straight lines, from each support to the

centre of the deflected beam, then the relation is

h _ V{0.26 . & + 0.0013 .8} h (31)
e T2 200 "L
L
where y = central deflection (em)
h = depth of beam (ecm)
L = length of beam {cm)
& = temperature (°c)

The coefficient of longitudinal expansion has been assumed to have

6

a mean value of 13 X 10~ per °¢.

If the deflection curve is assumed to be circular, then the

relation will be
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h h h h
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L2 L (Ef} + (Y-;E)
= 32
& 0.000013 (32)

In order, therefore, that there should be nc imposed forces on the
beam, the values of y, h, L and & must satisfy Egquation (31) or
Equation (32), depending on the shape of the assumed deflection
curve, Normally, the deflection curve of a beam which is exposed
to fire is somewhere between these two assumed curves. The relations
according to Equations (31) and (32) are reproduced in FIG. L1

for three different values of the stiftfness h/L. The curves in
this Figure will give an approximate idea of the deflection at
which the imposed forces in a beam exposed tc fire, in which axial
movement at the supports at the level of the centroid is fully
prevented, change from compression to tension. At deflections
larger than this, the inecrease in deflection in such & beam is
slower than in a similar beam whose longitudinal expansion is not
prevented. It is seen from FIG. 39 that the change from compression
to tension, for & beam with a lcad % and a depth/span ratio of
1/30, occurs for a deflection of O.OOl9.h/L2 and a temperature of
57500. At the lower lozd 4y the corresponding figures are Just
over O.OOQO.h/L2 and 67500. These figures are in good agreement
with the relastions illustrated in FIG. 41. Furthermore, FIG. L0
shows that the change from compression to tension tszkes place in
the model frame at a deflection of 1.4 em - which is equivalent

to a wvalue of y.h/L2 of around (0.0C35 - and s temperature of
26000. The value of the ratio h/L for the frame is approximately
1/100. Even these relations between deflection and temperature are

in good agreement with the relations illustrated in FIG. 4I,

If movement of a beam under fire exposure conditions is limited

at the supports and it is in addition sufficiently slender in the
direction of the minor axis, then there is & risk that the beam
will deflect Iaterslly owing to the action of the imposed forces.
There is however no question whatever of & buckling failure, since

the compressive force decreases as the beam deflects, and an
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41, Relations between central beam deflection y, length of
beam L, depth of beam h and temperature #, according %o
Equation (31) {-—-) and Equation (32) (---).
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equilibrium position is attained, This is the fundamental
difference in relation to the state of affairs in a column, where
an increase in deflection causes an increase in the moment, due
to the fact that the vertical load on the column subjects this to
an axial compressive force during the whole of the deflection
process. The increased moment may therefore, in turn, result in

yet larger deflecticns, and so on.

Even though a steel beam which is acted upon by imposed forces
owing to a restraint on its longitudinal expansion as a result

of exposure to fire cannot fail by buckling, lateral deflection
may nevertheless cause the beam to be subjected to torsional
moments, If, however, the restraint on longitudinal expansion of
the beam is due to its connection with a stiff floor slab, this
slab will in most cases provide effective lateral support for the
beam and lateral deflection of this is therefore prevented or

greatly reduced.

As has been pointed cut before, the risk of latersl deflection,
under fire exposure conditions, of a beam which cannot move axially
at the supports and is not restrained laterally by a floor slab

or in & similar manner, is not directly comparable with the risk

of buckling in a column. In spite of this, comparison with columns
may give an idea of the factors which have an effect on the risk

of lateral deflection in such a beam. During calculaticn of the
beam deflections shown in FIG. 39, the magnitudes of the imposed
stresses Ot were alsc obtained for the various beams as a function
of the temperature #. On the basis of the design diagrams presented
in (5), the buckling stress o has therefore been determined as a
function of the temperature € for columns which have slenderness
ratios the same as those of the beams in the direction of the minor

axis. In calculating the slenderness ratiosX, it was assumed that

the beams are pin jointed at both ends.

FIG. 42 illustrates the relationship between the stresses a. and
Ok’ caleulated as above, as a function of the temperatured . It
is evident from the curves in the Figure that the risk of lateral
deflection, under fire exposure conditions, of a steel beam which

is prevented from mcoving at the supports and is not resirained
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FIG., 42, Relationship between the imposed stress oy, under fire exposure

conditions, in beams where movement is completely prevented at
the supports, with the buckling stress Ok in columns of different
sienderness ratios, caleulated on the basis of the diagrams shown
in (5). The ratio of 0y to 0y is plotted as a function of the
temperature 4, In calculating the values of g, , it was assumed
that the slenderness ratio of the columns is equal to that of

the beams in the direction of the minor axis and that the beams
are pin jointed at both ends, The transverse load on the beam is
denoted by q, while gg is the load which causes the yield stress
to be reached at room temperature in the most highly stressed
cross section. The depth of the beam is denoted h and 1ts length

L,
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in the lateral direction, appears Lo increase as the slenderness
ratio A increases and to decrease as the vertical load g increases.
The Figure also shows that the grestest risk of lateral deflection
occurs within the temperature range of 100-200°C. The difference
between a beam and a column which is of fundamental significance
in this context, i.e. that the column buckles at a stress equal

to 0, while the beam, owing to its deflection, is subjected to

k
a gradually diminishing imposed stress, must however be borne in

mind.
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9 COMPARISON, FOR STEEL BEAMS EXPOSED TC TEE ACTION OF FIRE,
OF THE CRITICAL LOADS DETERMINED FROM CALCULATED DEFORMATTIONS
WITH THOSE DETERMINED OW THE BASIS OF THE YIELD STRESS OR 0.2%
PROOF STRESS AT ELEVATED TEMPERATURES

Estimation of the load carrying capacity of a steel beam under
fire exposure conditions is often based on the limit state theory.
Since ordinary structural steels have no clearly defined yield
regions at elevated temperatures, the yield stress is replaced by
the 0.2% proof stress. The actual stress—strain curves at the
different temperatures are simplified in the course of calculations
to ideal elasto-plastic stress-strain curves which are assumed to
be elastic up to the 0.2% proof stress at the temperature in
question. FIG. 43 shows the 0.2% proof stress and the modulus of
elasticity as functions of the temperature (h). The 0.2% proof
stress was determined in this case on the basis of tensile tests
st elevated temperatures in which the load was applied slowly, and
a not inconsiderable proportion of the 0.2% proof stress at

elevated temperatures is therefore due to creep strain.

For a simply supported beam of length L which is loaded with a

central concentrated load P, the maximum moment is
PL
M = =& (33)

According to the limit state theory, it is assumed that the load
carrying capacity of the beam is completely exhausted when the
whole cross section has become plastic. The maximum capacity Mg
of the cross section to resist a moment at a temperature & can

therefore be written

= yield stress (0.2% proof stress) at the

3

0]

H

41

Q
p

|

temperature &

plastic section modulus of the cross section

=
[
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FIG, 43,
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Variation of the 0,2% proof stress 054 {(—) and of the
modulus of elasticity Eg {---) with the temperature &
in an ordinary carbon steel (4). The symbols og and E
denote the yield stress and medulus of elasticity
respectively at room temperature,



By combining Eguations (33) and (34), the limiting load Pg of

the beam is obtained as

0‘6 -
p, = L2 (35)

The lcad Ps which, at the most highly stressed cross section,
gives rise to an extreme fibre stress equal to the yield stress

0 at room temperature can be written

g . W . 1L
s L

=
g
)
t3
o
a

1}

yield stress at room temperature

elsstic section modulus of the cross section

If Equation (35) is divided by Equation {36), we obtain the

ratio 81 between the critical load under fire exposure conditions
— estimated on the basis of the limit state theory - and the load
Ps_which causes the most highly stressed cross section to reach

the yield stress at room temperature
GS’B .
p, = == (37)

For an I section, the ratio WP/W msy be put at 1.13. The
coefficient Bl is comparable with the coeffieient B in the
disgrams in FIG. 30, but it is based on an estimation of failure
according to the limit state theory instead of deflection

calculations.

The values of 81 and 8 are compared in FIG. Lk for a beam with a
central concentrated load. The wvalues of the ratio Gee/os given
in FIG. L3 have been used in calculating the values of Bl
according to Equation (37). As will be evident on comparing the
values of Band Sl in FIG. 44, the critical load determined on the
basis of the limit state theory is considerably lower than the
equivalent load determined on the basis of deflection calculations.
This may be explained by the fact that the stress—strain curves
at elevated temperatures are softly rounded, which means that the
load carrying capacity is not exhausted in spite of the fact that
the stresses in a cross section are the same as the 0.2% proof

gtress.

n7
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FIG, 44, Comparison, in a simply supported beam of carbon steel of
constant I section with a central concentrated load, of
the values of B (——) and those of By (~--) as functions
of the maximum steel temperature smax' It is assumed that
there is no restraint on longitudinal expansion of the
beam and that the temperature is the same all over the
beam. The different branches of the B curve correspond
to the rates of heating and cooling according to curves
I, IT and III in FIG., 30,
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Another difference between these two methods of estimating the
critical load is that it is difficult, in estimating the load on
the basis of the 1imit state theory, to take into account the
influence of the creep strain satisfactorily. It is further
evident from Equation (37) that the value of Bi and hence of the
eritical load, when this is estimated according to the limit state
theory, is directly proportional to the wvalue of the ratio Wﬁ/w
for the cross section. According to the discussion 1n Subsection
8.3.4, this i1s not the case when the load carrying capacity is

estimated on the basis of deflecticn calculations.

The relation applicable to Bl in the case of a beam rigidly
restrained ggainst rotation at both ends, which is loaded with a
uniformly distributed lecad, is

16 O g WP
2 W c
- L . p  _s8 -
Bl =Ta 5 T L33y - (38)
5 s
L2

The corresponding relation for a beam with & uniformly distributed

load which is rigidly restrained at one end is

1.7 . o_g . W
2 W o
_ L . o _sb
By =8 . 5 . W =LA . == g (392
] S
2

It will be evident from Equations (38) and {39) that the value of

Bl
of the beam, as expressed by the ratio of the support moments

is directly proportional to the moment redistribution capacity

calculated according to the elasiic thecry to those calculated on
the basis of the limit state theory.As discussed in Subsection
8.3.2, this is not the case as regards the value of B8 ., Complete
equalisation of the moments according to the limit state theory

has not taken place when the deflection is in accordance with the
failure criterion expressed by Eguation (28). This state of affairs
ig siso illustrated in FIG. 45 in which the values of B and Bl are
plotted as functions of the temperature emax for a beam with a
uniformly distributed load when it is rigidly restrained at one end

and at both ends respectively. The ratio between the values of
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FIG, 45.
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The values of B (.—) and of B (---) for beams of carbon
steel of constant I section with a uniformly distributed
load, The upper full and dashed curves refer to the case
when the beam is rigidly restrained at one end, while the
lower full and dashed curves refer to a beam rigidly
restrained at both ends, It is assumed that there is no
restraint on longitudinal expansion of the beams and that
the temperature is the same all over the beams, The values
of B are shown only for the lowest rates of heating and
cooling according to curve III in FIG., 30.



Bl for the beam when it is rigidly restrained at one end and at both
ends is equivalent - independently of the temperature - to the
rotio of the moment redistribution capacity of the beam when it

is restrained at one end only to its capacity when restralned at
both ends. The ratioc of the value of B for the beam when it is
restrained at one end to that when the beam is restrained at both
ends is however less than the ratio between the values of 81’
although the absolut values of B are consistently higher than the

corresponding values of Bl.

Summing up, it mey be stated that the estimation of the load
carrying capacity of a beam under fire exposure conditions can

be made with considerably greater accuracy by calculating the
deflections of the beam during the fire than by means of the
limit state theory on the basis of idealised stress—strain curves.
By using the former method, it is also possible to take into
account the influence exerted, on the deflection and the load
cerrying capacity, of creep strains and differences from the
assumed ideal conditions regarding, for instance, the temperature
distribution in the beam and the extent to which it can move
horizontal. The ability to calculate the deformations of a beam
during a fire facilitates the prediction of the extent of damege
and alsoc makes possible a more reliable assessment of the

economical consequences of a fire,

12t
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