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Formulating an Optimization Problem for

Minimization of Losses due to Utilities

Anna Lindholm ∗ Pontus Giselsson ∗

∗ Department of Automatic Control, Lund University, Lund, Sweden,
(e-mail: anna.lindholm@control.lth.se).

Abstract: Utilities, such as steam and cooling water, are often shared between several
production areas at industrial sites, and the effects of disturbances in utilities could thus be
hard to predict. In addition, production areas could be connected because of the product flow
at the site. This paper introduces a simple modeling approach for modeling the relation between
utility operation and production. Using this modeling approach, an optimization problem can be
formulated with the objective to minimize the economical losses due to disturbances in utilities
by controlling the production of all areas at a site. The formulation of the problem is general,
and thus the optimization can be performed for any site with similar structure. The results
are useful for investigating the impact of plant-wide disturbances in utilities, and can provide
decision support for how to control the production at utility disturbances. To enable online
advise to operators on how to control the production, the posed optimization problem is solved
in receding horizon fashion.

Keywords: Enterprise modelling; Optimization problems; Production control; Utility;
Chemical industry; Model-based control; Decision support systems.

1. INTRODUCTION

Complex chemical plants are often hard to model in detail
(Kano and Nakagawa (2008)), and for some applications, a
detailed model might not be needed. In this paper, distur-
bances in utilities, that affect one or more production areas
at a site, are studied. These disturbances are important
to handle well since utility costs often represent a large
part of the total operating cost of chemical plants (Iyer
and Grossmann (1998)). The objective in this study is to
determine how the production in all areas at a site should
be controlled at disturbances in the supply of utilities in
order to minimize the economical effects. Buffer tanks or
inventories at the site should also be used optimally to
achieve this. The key idea is to model the network of areas
at a site without including detailed complex dynamics
within each area. Modeling of a site at a similar abstraction
level is performed in Wassick (2009). However, in Wassick
(2009) the focus is on production planning and scheduling
on a longer time horizon, and not on real-time disturbance
management as in this paper.

Utilities have been studied by several researchers, but
mainly, the focus has been on the synthesis of utilities
to satisfy a given demand. Work within this area includes
among others Papoulias and Grossmann (1983), Hui and
Natori (1996), Maia et al. (1995), Velasco-Garcia et al.
(2011), Iyer and Grossmann (1998) and Wilkendorf et al.
(1998). In most of these studies, the synthesis problem
has been formulated as a mixed-integer linear program
(MILP). Mainly, the focus in these papers are on util-
ities for heat and power production. The present study
enables consideration of other utilities, such as nitrogen
and instrument air, as well. The objective in this study, as
opposed to previous studies, is to determine how the utility

resources should be divided among the production areas of
a site at each time instance, to minimize economical losses.
This could be seen as to determine how to transfer the
variability of a process from sensitive locations to locations
where it does less damage, as discussed in Qin (1998) and
Luyben et al. (1999).

In order to optimize the supply of utilities to each area,
the effect of utility disturbances on production has to
be modeled. Modeling of utilities may be very complex,
but if only the utilities’ effect on production is relevant,
a detailed model might not be needed. In this paper,
a simple modeling approach is suggested based on the
assumption that utility resources may be interpreted as
volumes or power, which is shared by the production
areas. A linear relation between assigned utility volume
and maximum possible production in an area is assumed.
This representation is used to formulate an optimization
problem for minimizing the economical losses due to utility
disturbances. The formulation of the optimization problem
is similar to the formulation in Kondili et al. (1993) for
scheduling of batch operations. However, in the present
study, the use of integer variables has been avoided and a
quadratic cost function has been used, with the objective
to produce solutions that are more robust to parameter
changes.

A receding horizon formulation of the optimization prob-
lem is used to enable online advice to plant operators,
given an estimated disturbance trajectory. A cost function
that aims to reduce the revenue loss due to disturbances is
designed, with weights that could be chosen to find a good
trade-off between keeping the buffer tank levels at the site
at desirable levels, and maximizing profit.
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2. ROLE-BASED EQUIPMENT HIERARCHY

According to the standard ISA-95.00.01 (2009), a site
consists of one or more production areas, where each
area produces either end products or intermediates. The
intermediate products may either be sold on the market
or refined to end products in other areas at the site. Buffer
tanks could be placed between areas to serve as inventory
of the intermediates or as buffer tanks with the purpose to
allow independent operation of upstream and downstream
areas. Thus, the production at a site may be viewed as a
network of areas, with intermediate buffer tanks between
some areas. An example is given in Fig. 1.

Fig. 1. An example of a site hierarchy.

In this paper, the dynamics of production areas are ig-
nored, i.e. it is assumed that the production of an area is
directly proportional to the inflow to the area, i.e.

qinj = qjyij (1)

where qinj is the inflow of product i to area j, qj the
production of area j, and yij is denoted the conversion
factor between product i and product j. This assumption
is reasonable since the area dynamics are usually fast
compared to the dynamics of the production network.

3. MODELING OF UTILITIES

Utilities are support processes that are utilized in produc-
tion, but that are not part of the final product. Common
utilities include steam, cooling water, electricity, com-
pressed air, and water treatment. Some of these utilities
operate continuously, such as steam, cooling water, feed
water and vacuum systems, whereas some utilities have
on/off characteristics. Examples of such utilities are elec-
tricity and nitrogen.

The measurements related to utilities are often parameters
like temperature, flow or pressure of the utility. The
mapping from these measurements of utility properties to
the constraints it imposes on production is not trivial, and
might look different for different utilities. Thus, operation
outside its normal limits might give very different effects
on the production of the areas that require the utility.
Furthermore, a utility might be shared between several
production areas. If the effects of disturbances in utilities
at an entire site should be studied, this must also be
modeled in some way.

The suggestion in this paper is to represent the utilities as
volumes, or power, which all areas that require the utilities

have to share. This interpretation makes sense for example
for cooling water and steam utilities, where all areas that
require these utilities have to split the total cooling or
heating power. The amount of a utility that an area is
assigned is assumed to give a constraint on the production
of the area according to

qj ≤ cijuij +mij (2)

where qj ≥ 0 is the production of area j, uij ≥ 0
the assignment of utility i to area j and cij ≥ 0 and
mij ≥ 0 are constants. If cij > 0, this model should
correspond quite well to many utilities with continuous
characteristics. For example, for cooling water: The cooling
water utility produces a certain cooling power, that is
shared between production areas that are connected to the
cooling water system. If an area is assigned more cooling
water power, it should be able to produce at a higher
production speed, within the normal range of production
rates. The constraint in (2) is presented graphically for
m = 0 and some cij > 0 in Fig. 2.

Fig. 2. A continuous utility’s constraints on production.

If cij = 0, (2) corresponds to representation of a utility
with on/off characteristics, where the area can produce at
some maximum speed if the supply of utility is greater
than zero, and not at all when it does not get assigned
any amount of the utility. This is represented in Fig. 3.

Fig. 3. An on/off utility’s constraints on production.

In reality, there could be a minimum amount of a utility
that is required for a production area to be able to op-
erate, here denoted umin

ij . Also, there could be an upper
limit, umax

ij , such that supplying more utility than umax
ij

does not permit higher production than the maximum
possible production if umax

ij is assigned to the area. This
modification to the constraint in (2) could be captured by
setting maximum and minimum constraints on the pro-
duction rates. If these constraints are taken into account,
the representation of the continuous type and on/off type
utilities become as in Fig. 4.

Fig. 4. Utility representations with production constraints.
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As mentioned previously, utilities are often shared between
several production areas at a site. The volume represen-
tation of utilities makes it possible to represent this by
constraints of the form

∑

j

uij ≤ Ui, i = 1, . . . , nu (3)

where uij is the amount of utility i assigned to area j, Ui is
the total amount of utility i, and nu the number of utilities
used at the site. This is used to formulate the optimization
problem in Section 4.

4. FORMULATING THE OPTIMIZATION PROBLEM

The formulation of the optimization problem for mini-
mizing the economical effects of disturbances in utilities
consists of defining the model and the constraints, and
shaping the objective function. The input to the optimiza-
tion is estimated utility disturbance trajectories over the
prediction horizon, i.e. an estimation of the total available
amount of all utilities, Ui(t), at each time t. After having
defined the optimization problem, the problem is solved
in receding horizon fashion to enable online use. The opti-
mization results can be used as online advice to operators
or, if possible, applied directly to form closed loop model
predictive control (MPC).

4.1 Model

The model of the site is given by the connections of its
production areas. An example of what the site structure
could look like is given in Fig. 1. The connections of areas
are represented by the mass balances at the internal buffer
tanks, i.e.

Vi(t+1) = Vi(t)+qi(t)−qmi (t)−
∑

j∈Ni

qj(t)yij , i = 1, . . . , nb

(4)
where Vi(t) is the volume in the buffer tank for product i
at time t, qi(t) the production of product i at time t, qmi (t)
the flow to the market of product i at time t, and yij the
conversion factor between product i and j (see (1)). Ni is
the set of areas directly downstream of area i, and nb is
the number of internal buffer tanks.

4.2 Constraints

Constraints are imposed on buffer tanks and production
rates. Disturbances in the supply of utilities give time-
varying constraints on production rates.

Buffer Tanks The levels in the buffer tanks have to be
kept between some high and low limits, i.e. we have

V min
i ≤ Vi(t) ≤ V max

i , i = 1, . . . , nb (5)

The maximum and minimum limits, V max and V min,
might correspond to the entire buffer tank, or it could
correspond to a part of the tank that is reserved for
handling disturbances in utilities.

Production Rates Limited capacity of production areas
give upper constraints on the production rates, qmax.
There is also a minimum rate at which an area could

operate, qmin, which could be greater than zero. Shutdown
and start-up of areas is often very expensive and should
be avoided. One way to model this is to impose a soft
constraint on the production rates. The way this is done
is by introducing a slack variable, si, such that

qmin
i + si(t) ≤ qi(t) ≤ qmax

i (6)

−qmin
i ≤ si(t) ≤ 0 (7)

The slack variable is penalized in the objective function to
avoid shutdown of areas, if it is not necessary.

An alternative way of doing this is to use integer variables
and punish shut-down of areas in the objective function.
This is done for penalizing shutdown/start-up of different
utility generation units in Iyer and Grossmann (1997) and
Velasco-Garcia et al. (2011), which results in a mixed-
integer linear program.

Utilities At a disturbance in the supply of a utility, the
available amount of the utility might not be enough to
supply all areas with the amount they need for maximum
production. If utilities are modeled according to Section 3,
this constraint is represented by requiring (3) to hold for
all times t, e.g.

∑

j∈Mi

uij(t) ≤ Ui(t), i = 1, . . . , nu (8)

where uij(t) is the amount of utility i that is assigned
to area j at time t, Ui(t) is the total amount of utility i
available at time t, and nu the number of utilities used at
the site. Mi is the set of areas that require utility i. If
(2) holds for all areas j and utilities i, these constraints
become time-varying constraints of the production rates of
all areas that share a utility, since Ui(t) varies over time.
It can be assumed that equality holds in (2) since it would
not be optimal for an area to not use all its assigned utility
volume to produce its product, as the production in other
areas might be limited by the same utility. For continuous
utilities, (8) can be rewritten using (2) as

∑

j∈Mi

kijqj(t)− dij ≤ Ui(t), i = 1, . . . , nuc (9)

where kij = 1/cij and dij = mij/cij are positive constants
for utility i, area j. nuc is the number of utilities of
continuous type.

For on/off utilities, (2) becomes equivalent to the max-
imum constraint on the production rate, (6). The areas
that require the utility can operate at maximum speed at
time t if the utility is available at time t, and can not
operate if the utility is unavailable. This constraint may
be written as

qj(t) =

{

qmax
j if Ui(t) = 1 j ∈ Mi

0 if Ui(t) = 0, i = nuc + 1, . . . , nu

(10)

if all utilities all utilities at the site are either of continuous
or on/off type.

4.3 Objective Function

Before the dynamic optimization problem can be cast,
reference values need to be computed. The production
and the flows to the market that give the optimal profit,
pref , is determined by a steady-state optimization, i.e. by
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assuming that there are no disturbances in utilities, and no
buffer tanks between areas. The optimal production rates
and flows to the market and the optimal profit from the
steady-state optimization are used as a reference values
for the dynamic optimization, where the objective is to
minimize the economical effects of disturbances in the
supply of utilities. The dynamic optimization is given an
estimated disturbance trajectory some steps ahead, and
the problem is solved in receding horizon fashion. The
optimization result is used as advice to the operators at
the site on how to control the production.

Steady-state Optimization If there are no disturbances,
and no buffer tanks between areas, the optimal profit can
be determined by the linear program

pref = maximize pT qm (11)
subject to (4), (6), (7)

with variables q, qm and s, where p contains the contri-
bution margins of all products, and qm the flows to the
market of all products. The flows that give the optimal
profit are denoted qref , qmref .

Dynamic Optimization Based on the solution to the
steady-state optimization problem and reference levels
Vref for the buffer tanks, we form the following objective
function

J (q,qm,V, s) =
N−1
∑

τ=0

Jt (q(τ), q
m(τ), V (τ), s(τ)) (12)

with variables

q =
[

q(0)T . . . q(N − 1)T
]T

qm =
[

qm(0)T . . . qm(N − 1)T
]T

V =
[

V (0)T . . . V (N − 1)T
]T

s =
[

s(0)T . . . s(N − 1)T
]T

and

Jt (q(t), q
m(t), V (t), s(t)) =

(

pT qm(t)− pref
)2

Qp

+∆V T (t)Q∆V (t)

+∆qT (t)R∆q(t)

− gT s(t) + sT (t)Qss(t)

with

∆V (t) = V (t)− Vref

∆q(t) = q(t)− qref

Qp > 0 is a scalar weight, g a positive weighting vector,
and Q, R, and Qs are positive definite weighting matrices.
The optimization problem becomes

minimize J (q,qm,V, s) (13)
subject to (4), (5), (6), (7), (9), (10)

The objective function consists of four parts:

• (pT qm(t)− pref)2Qp

To penalize deviation from the reference profit.

• ∆V T (t)Q∆V (t)

To penalize deviations from reference buffer tank lev-
els, to avoid solutions where all inventories are sold.

• ∆qT (t)R∆q(t)

To penalize deviations from nominal production.

• −gT s(t) + sTQss(t)

To inflict extra cost to area shutdown.

The constraints (9) and (10) have to be supplied with
an estimate of the available amount of each utility at
each time step, Ui(t). Initial conditions V (0) to (4) are
given from measurements. The optimization problem (13)
is solved in receding horizon fashion, or when operators
need advice.

The posed optimization problem has a structure that
makes it possible to solve it in a distributed fashion.
Therefore, the solution method presented in Giselsson
et al. (2011) is used to solve the problem.

5. AN EXAMPLE

In this section, the optimization problem formulation
presented in Section 4 is used to formulate and solve a
specific problem. The site that is considered is the site with
six production areas given in Fig. 1. Table 1 summarizes
the maximum and minimum production rates of all areas,
qmax and qmin, the contribution margins of all products,
p, the maximum and minimum volume of all buffer tanks,
V max and V min, and the reference volumes for the buffer
tanks, Vref .

Table 1. Production data.

qmin qmax p V min V max Vref

Product 1 0.10 1 0.4 0 0.5 0.5

Product 2 0.05 0.5 0.7 0 0.5 0.5

Product 3 0.02 0.2 0.1 0 0.5 0.5

Product 4 0.01 0.1 0.5 - - -

Product 5 0.02 0.2 0.8 - - -

Product 6 0.02 0.2 1.0 - - -

Three utilities are considered at the example site; high
pressure (HP) steam, middle pressure (MP) steam, and
cooling water. Table 2 shows which utilities that are
required at each area. It is assumed that, at maximum
production, the utilities are shared equally between the
areas that require them.

Table 2. Utilities required at each area.

Area → 1 2 3 4 5 6

Steam HP x x

Steam MP x x x

Cooling water x x x x x x

5.1 Model

The mass balances at all buffer tanks at the site give
V1(t+ 1) =V1(t) + q1(t)− qm1 (t)

− q2(t)− q3(t)− q4(t) (14)
V2(t+ 1) =V2(t) + q2(t)− qm2 (t)− q5(t) (15)
V3(t+ 1) =V3(t) + q3(t)− qm3 (t)− q6(t) (16)

As can be seen in the equations, all conversion factors, yij ,
are chosen to be equal to one in the example, for simplicity.
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5.2 Constraints

Buffer Tanks Upper and lower level constraints are given
by (5) for the three buffer tanks, i = 1, 2, 3. The limits
V max and V min are given in Table 1.

Production Rates Minimum and maximum limitations
on production rates give constraints according to (6) and
(7), where also slack variables are introduced to be able to
penalize shutdown of areas. The limits qmax and qmin are
given in Table 1.

Utilities It is assumed that the total amount of each
utility is equal to one (U1 = U2 = U3 = 1) when it operates
at maximum capacity. The utilities in the example are of
continuous type (see Section 3), and it is assumed that zero
assignment of a utility to an area gives zero production,
i.e. cij , kij > 0 and mij = dij = 0 for all utilities i and
areas j. The time-varying constraints on the production
rates due to shared utilities are obtained from (9) using
Table 2. We get

k11q1(t) + k13q3(t) ≤ U1(t) (17)
k22q2(t) + k24q4(t) + k26q6(t) ≤ U2(t) (18)

6
∑

i=1

k3iqi(t) ≤ U3(t) (19)

where Ui(t) is equal to one if utility i operates at maximum
capacity at time t, and less than one otherwise. Since the
utilities in the example are shared equally at maximum
production, we get

k11 =
1

2qmax
1

, k13 =
1

2qmax
3

(20)

k22 =
1

3qmax
2

, k24 =
1

3qmax
4

, k26 =
1

3qmax
6

(21)

k3i =
1

6qmax
i

, i = 1, . . . , 6 (22)

5.3 Objective Function

Since the flows to the market from the end product areas
are the same as the production in these areas, the flows
to the market from end product areas are omitted in the
optimization. Merging the production of all areas, and
the flows to the market of intermediate products to one
decision variable vector, we get

q̄ = [ q1 q2 q3 q4 q5 q6 qm1 qm2 qm3 ]
T

(23)

The extended contribution margin vector becomes

p̄ = [ 0 0 0 p4 p5 p6 p1 p2 p3 ]
T

(24)

Steady-state Optimization The steady-state solution
that maximizes (11) becomes

q̄ref = [ 1 0.5 0.2 0.1 0.2 0.2 0.2 0.3 0 ]
T

(25)

with the optimal profit pref = 0.7.

Dynamic Optimization The MPC problem formulation
for dynamic optimization is posed as (13) with constraints
(5)–(7) and (14)–(19). s consists of six slack variables that
are included to prevent unnecessary shutdown of area 1-6.

The weights for the optimization are in the example chosen
as Qp = 100, R = diag([ 0.1 0.1 0.1 10 10 10 10 10 10 ]),
Q = I3, g = 100qmax, Qs = I6. The prediction horizon was
chosen as N = 10.

5.4 Results

Estimating the disturbance trajectory ten steps ahead and
using the MPC formulation gives trajectories that suggest
how the production should be controlled to minimize
the economical effects of the disturbance. The solution
trajectories of the example problem for a disturbance in
middle pressure steam is given in Fig. 5. In this example,
it is assumed that the actual disturbance trajectory is
identical to the estimated trajectory. To give a clearer view
of how the disturbance is handled, the production and the
sales at the time of the disturbance are shown in Fig. 6.
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Fig. 5. Optimal trajectories for MP steam disturbance.
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6. CONCLUSIONS

A simple modeling approach for modeling the effects of
utility disturbances on production was introduced, that
can represent both continuous and on/off type utilities.
This representation allows formulation of an optimization
problem that aims to find production trajectories that
minimize the revenue loss due to disturbances in utilities,
when utilities are shared between one or more production
areas. The optimization results can be used to analyze the
effects of different plant-wide disturbances in utilities, or to
get advice on how to handle different types of disturbances
in utilities given certain constraints on the production
and the buffer tanks at the site. In addition, the trade-off
between keeping buffer tank levels at reference levels and
maximizing the profit can be studied by manipulating the
weights of the cost function for the optimization problem.

To enable online advice to site operators on how to control
the production at utility disturbances, the optimization
problem can be solved in receding horizon fashion, where
the disturbance trajectories estimated over the prediction
horizon are given as input to the optimization. These
predicted disturbance trajectories may be updated in each
time step, which may be useful if new information about
the disturbance becomes available.

7. FUTURE WORK

Something that is not considered in the optimization prob-
lem formulation is market constraints. A possible future
work direction is to include the supply chain, e.g. market
demand and transports, in the problem formulation. It
would also be interesting to further investigate the robust-
ness of the solution, i.e. how the behavior of the system is
affected when the estimated disturbance trajectory is not
exactly the same as the actual disturbance trajectory. A
comparison of the suggested approach with a MILP for-
mulation, robust MPC and stochastic programming should
be valuable to assess the performance and efficiency of the
proposed approach.
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