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ABSTRACT 

Phosphor thermometry is applied for the first time in a 
large-bore two-stroke diesel engine. The work proves the 
practicality of phosphor thermometry in large-bore engines. 
The experiments were conducted on the MAN 4T50ME-X 
marine research engine equipped with an optical cylinder head. 
By employing a thin surface coating of CdWO4 phosphor, cycle 
resolved temperature measurements of the cylinder wall were 
obtained. Motored and fired engine operations were tested at 
engine loads covering the low and medium engine load range. 
Phosphor thermometry proved to be successful in retrieving the 
temperature with standard deviations ranging around 1-8 K. 
Experimental considerations like detector linearity, coating 
thickness and an automated phosphor calibration routine will be 
addressed. 
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INTRODUCTION 

Around 90 percent of the global trade is carried overseas 
using a huge fleet of ships [1]. The introduction of tier I 
emission standards in 2000 signified the beginning of an era of 
strict NOx, SOx and particulate matter ship emission limits. 
Later on, tier II came into effect in 2011 enforcing even more 
stringent emission limits. Even lower limits, tier III emission 
standards, are expected to take effect in 2016. 

Since the vast majority of the marine vessels depend on 
heavy fuel oil, as the sole means of propulsion, there is an ever 
increasing demand for more environmentally sound marine 
engines. This demand is compelled by the implementation of 
more stringent legislations lowering the emission limits. In 
addition, the increase in oil prices necessitates more efficient 
engines to keep the economic cost of running the ship fleet at a 
competitive level. 

Increasing the efficiency and the specific power of internal 
combustion (IC) engines can be achieved by increasing their 
compression ratio and boost level. Latest generation large-bore 
two-stroke diesel engines typically operate at higher pressures, 
particularly at part load, than previous generations. This can 
lead to changes in cylinder heat-loads, and monitoring of 
surface temperatures on critical components is thus of large 
importance. Knowledge of combustion chamber component 
temperatures is also vital for developing the capability of this 
type of engine to run on alternative fuel sources, such as 
liquefied natural gas (LNG) or liquefied petroleum gas (LPG) 
[2]. 

In-cylinder temperature measurements have proven to 
suffer from a high level of complexity due to the fast thermal 
changes occurring during engine operation. Two measurement 
techniques are currently used to obtain temporally and spatially 
resolved cylinder wall temperature. The first utilizes highly 
responsive thermocouples, which are placed in contact with the 
surface whose temperature is to be measured [3-6]. 
Thermocouples inherently provide a highly temporally resolved 
zero-dimensional temperature, but positioned in a distributed 
cluster they can provide quasi-two dimensional data. Handling 
a group of thermocouples can be challenging and impractical, 
especially when placed on moving engine parts. The 
intrusiveness of thermocouples cannot be ignored when precise 
and accurate temperature measurements are needed. 

Recently, a semi-nonintrusive temperature measurement 
technique known as phosphor thermometry has been employed 
to obtain in-cylinder temperature information. The phosphor 
thermometry technique exploits the temperature dependence of 
the phosphorescence properties to attain the temperature of the 
phosphor material. The observed temperature-dependent 
phosphor properties are the spectral intensity and the 
phosphorescence decay-time. The measurement methodologies 
employed to obtain temperature information from different 
thermographic phosphors have been discussed and reported 
extensively, see e.g. [7-10]. Several zero-dimensional and two-
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considering an accuracy of 1.5 K reported by the manufacturer 
of the thermocouples.  

Detector Linearity 
Photodetectors are used to convert the transient 

phosphorescence decay into an electric signal to be measured 
by an oscilloscope. Special attention must be paid to ensure that 
the detector used is behaving linearly under the prevailing 
conditions. Severe signal distortions can occur to the measured 
signal if the detector is operating in its nonlinear region. The 
importance of detector linearity in phosphor thermometry was 
characterized and reported by Knappe et al. [25, 26]. The 
studies showed that photodetectors can severely distort the 
shape of the exponentially decaying signals. These distortions 
are mainly influenced by electronic gain, light intensity, and 
distinct properties of photodetectors. Depending on the 
electrical gain and the light intensity, the calculated decay times 
manifested variations up to a factor of three at a specific 
temperature. The magnitude of variations indicates that signal 
intensity compensation by detector gain modifications would 
heavily affect the calculated decay time and thus the measured 
temperature. In case detector gain change is necessary to 
compensate for low phosphorescence signal, different 
calibration curves must be acquired, each corresponding to the 
different detector settings implemented. 

By testing an array of different photodetectors, the authors 
have identified a detector that provides superior linearity 
response among the tested photodetectors [26]. This detector is 
the Hamamatsu H11526-20-NF. Based on the conclusions of 
the linearity studies, the same detector was chosen for this 
measurement. 

Phosphor coating thickness considerations  
Applying thermographic phosphor in thermally unsteady 

environments requires extensive attention to phosphor coating 
thickness. Thermal gradients within the phosphor coating can 
lead to hidden inaccuracy of the measured temperature. A 
recent theoretical study reported by Atakan and Roskosch [27] 
showed that even very thin layers of phosphor coating could 
influence the maximum temperature measured during a 
transient combustion process, such as that occurring in 
combustion engines. Other factors like film absorptivity and 
conductivity also significantly affected the phosphor 
temperature. They have issued a recommendation to apply 
strongly absorbing films of thicknesses around 1µm.  

Pilgrim et al [28] published another theoretical model 
predicting the temperature gradients as a function of thermal 
barrier coating (TBC) thickness. They reported that in the case 
of an unknown thermal gradient, a TBC of 20 µm thickness can 
manifest a maximum temperature variation of 7 K.  

While previously presented studies dealt with the issue of 
thermal gradients within phosphor layer from a theoretical 
aspect, Knappe et al. [29, 30] presented experimental studies on 
this topic. The studies, presented by Knappe et al., were the 
first to characterize temperature variations induced by phosphor 
layer thickness. By applying coatings of different thicknesses 

onto a quartz liner of a homogeneous charge compression 
ignition engine and simultaneously exciting the front and back 
side of the phosphor layer, a comprehensive study of the effect 
of layer thickness could be performed. According to the study, 
spray coatings of thickness ≤ 20 µm did not show significant 
temperature gradients across the layer.  

Although the thinnest possible layer is favored to avoid a 
temperature gradient within the coating, high phosphorescence 
emission intensity is required to obtain a good signal-to-noise 
ratio, especially in experimentally harsh environments like the 
ones present in a combustion engine. It all comes down to 
finding an optimum coating thickness that provides a 
compromise between temperature gradient minimization and 
adequate signal intensity. 

Airbrush coating is a commonly used technique for the 
application of phosphor films onto the surface of interest. This 
technique provides thin and robust coatings that can endure 
typical in-cylinder conditions. The key aspect of airbrush 
coatings is the flexibility to apply coatings on a wide variation 
of surfaces with a great ease, giving it a significant advantage 
over other thin film deposition techniques like physical or 
chemical deposition. With care, sufficiently thin coatings can be 
sprayed satisfying the minimum thermal gradient requirement 
for reliable temperature measurements.  

Automatic Phosphor Calibration 
In previous work performed at Lund University, an 

automatic routine for calibration of thermographic phosphor 
was developed. The routine logs the phosphorescence decay 
signal and temperature simultaneously and continuously over 
the calibration temperature range. Compared to the 
conventional calibration method, the automated calibration 
introduced an improvement of 1-2 K to the overall accuracy of 
the calibration [24].  

The generated phosphor calibration took the form of a 
database which was later used to develop a Signal Shape 
Recognition algorithm (SSR) for temperature extraction [31]. 
The SSR is a library-based algorithm that relies on the 
comparison of the measured exponential decay with the 
calibration database rather than fitting a theoretical model, 
usually a single exponential function, to the measured signal. 
By comparing the shape of the signals, uncertainty arising from 
an ill-imposed fit is avoided.  

 
EXPERIMENTAL CONDITIONS 

Engine Conditions 
The engine used is a turbocharged low-speed two-stroke 

diesel engine, fully equipped for extensive testing. The main 
characteristic data of the 4T50ME-X engine in standard 
configuration is summarized in Table 1. 
 

Table 1. 4T50ME-X research engine specifications. 
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Figure 4. Experimental setup for 
4T50ME-X research engine platform. The Abbreviations 

represent the following, 
(λ>400 nm), F2: Interference filter (center wavelength at 
nm, 40 nm FWHM), 
-Broca prism, PM

tube, RCWI

CdWO4 was excited using the fourth harmoni
of a pulsed Nd:YAG laser
spatial profile of the laser pulse is of Gaussian nature with a 
temporal full width at half maximum (FWHM) of 6
divergent lens, the laser beam is expanded from an initi
diameter of 9 mm up to 60

to compensate for beam deviations induced by vigorous 
engine vibration and beam steering caused by thermal 
gradients. Due to the proximity of the setup to the engine, the 
thermally controlled fourth harmonic generation unit of the 
Nd:YAG laser would experience energy fluctuations. 
Thermally-induced laser energy drifts 
placing the laser beneath a protective shell that utilized 
controlled air flow for thermal stabilization.
was stabilized around a value of 11 mJ per pulse throughout the 
entire measurement.

CdWO4 has a broad phosphorescence emission centered 
around 470 nm [33]
with a FWHM of 40 nm was sel
detected phosphorescence. To further suppress any scattered 
laser radiation, a long
400 nm was mounted in front of the interference filter. A 

 

Elcometer 456
coating thickness factor was discussed 

Experimental setup for phosphor
X research engine platform. The Abbreviations 

represent the following, DM: dichroic mirror, 
: Interference filter (center wavelength at 

nm FWHM), L: plano-convex lens (f = 100
PM: laser power

RCWI: removable cylinder wall insert. 
 

was excited using the fourth harmoni
of a pulsed Nd:YAG laser at a rate of 10 Hz. The temporal and 
spatial profile of the laser pulse is of Gaussian nature with a 
temporal full width at half maximum (FWHM) of 6
divergent lens, the laser beam is expanded from an initi

mm up to 60 mm at the phosphor coat
to compensate for beam deviations induced by vigorous 

engine vibration and beam steering caused by thermal 
gradients. Due to the proximity of the setup to the engine, the 

lled fourth harmonic generation unit of the 
Nd:YAG laser would experience energy fluctuations. 

induced laser energy drifts 
placing the laser beneath a protective shell that utilized 
controlled air flow for thermal stabilization.
was stabilized around a value of 11 mJ per pulse throughout the 
entire measurement. 

has a broad phosphorescence emission centered 
]. An Interference filter centered at 450 nm 

with a FWHM of 40 nm was selected to spectrally narrow the 
phosphorescence. To further suppress any scattered 

laser radiation, a long-pass filter with a cutoff wavelength at 
400 nm was mounted in front of the interference filter. A 
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divergent lens, the laser beam is expanded from an initi
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was excited using the fourth harmonic, at 266 nm, 
at a rate of 10 Hz. The temporal and 

spatial profile of the laser pulse is of Gaussian nature with a 
temporal full width at half maximum (FWHM) of 6 ns. Using a 
divergent lens, the laser beam is expanded from an initial 

mm at the phosphor coated cylinder 
to compensate for beam deviations induced by vigorous 

engine vibration and beam steering caused by thermal 
gradients. Due to the proximity of the setup to the engine, the 

lled fourth harmonic generation unit of the 
Nd:YAG laser would experience energy fluctuations. 
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placing the laser beneath a protective shell that utilized 

The laser energy 
was stabilized around a value of 11 mJ per pulse throughout the 

has a broad phosphorescence emission centered 
. An Interference filter centered at 450 nm 

ected to spectrally narrow the 
phosphorescence. To further suppress any scattered 

pass filter with a cutoff wavelength at 
400 nm was mounted in front of the interference filter. A 
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the detector. An illustration of the complete setup is 
Figure

 
RESULTS AND DISCUSSI

To assess the validity of 
technique in 
the four cylinders 
measurement
and motored mode. In motored mode, the measurement 
cylinder was motored 
order to differentiate between different motoring conditions, the 
load at which the driving cylinders are operating at will be 
mentioned further on.
cylinder pressure versus crank
center (TDC) and bottom dead center (BDC) piston positions 
refer to 

Large
up to 130
0.5-1 
full potential of the 10 Hz laser can be exploited. 
for several measurement events in a single cycle. The number 
of possible temperature measurements per cycle 
the engine speed. F
measurement events were acquired per cycle achieving quasi
single cycle resolved temperature measurements. All of the 
temperatures presented are averaged over 50 single
measurements with error bars represent

Motored Engine Operation
The 

motored operations
were selected for the driving 
As mentioned earlier,
to the loads at which the driving cylinders are operating. The 
temperature profile registered by the
follows 
cylinder
can be 
thermal gradients and increased flow turbulence. 
seen in the temperature distribution is attributed to the fact that 
the engine temperature was
measurement. That 
different sets of acquired measurements.

T
are constant around 435
load. The peak temperat
463. The volume of inlet air increases with increasing load, thus 
higher temperatures were observed at higher loads. 
temperature drop is noticed around 120 CAD. 
drop 
and was estimated to be around 5 K

To further analyze the results obtained at different loads
the baseline temperatures and the peak temperatures are 
compared. The baseline temperature obtained for the 23% load 
is about 10

 

Hamamatsu H11526
the detector. An illustration of the complete setup is 

ure 4. 

RESULTS AND DISCUSSI
To assess the validity of 

technique in a large
the four cylinders 
measurements occurred 
and motored mode. In motored mode, the measurement 
cylinder was motored 
order to differentiate between different motoring conditions, the 
load at which the driving cylinders are operating at will be 
mentioned further on.
cylinder pressure versus crank
center (TDC) and bottom dead center (BDC) piston positions 
refer to 0 CAD and 180 CAD

Large-bore engines run at relatively low speeds (
up to 130 rpm). A 

 second. By utilizing an advanced triggering system, the 
full potential of the 10 Hz laser can be exploited. 
for several measurement events in a single cycle. The number 
of possible temperature measurements per cycle 
the engine speed. For engine speeds of 75 and 100 rpm, 8 and 6 
measurement events were acquired per cycle achieving quasi
single cycle resolved temperature measurements. All of the 
temperatures presented are averaged over 50 single
measurements with error bars represent

Motored Engine Operation
The cycle-averaged

motored operations 
were selected for the driving 
As mentioned earlier,
to the loads at which the driving cylinders are operating. The 
temperature profile registered by the
follows the trends observed by the pressure trace inside the 
cylinder. The increase in the standa
can be attributed to lower signal due to beam steering caused by 
thermal gradients and increased flow turbulence. 
seen in the temperature distribution is attributed to the fact that 
the engine temperature was
measurement. That 
different sets of acquired measurements.

The registered 
are constant around 435
load. The peak temperat

The volume of inlet air increases with increasing load, thus 
higher temperatures were observed at higher loads. 
temperature drop is noticed around 120 CAD. 
drop is due to the expansion of the 

was estimated to be around 5 K
To further analyze the results obtained at different loads

the baseline temperatures and the peak temperatures are 
compared. The baseline temperature obtained for the 23% load 
is about 10 K higher than that at 12% load. 

 

Hamamatsu H11526-20-NF photomultiplier tube
the detector. An illustration of the complete setup is 

RESULTS AND DISCUSSION
To assess the validity of 

large-bore engine, the wall temperature of one of 
the four cylinders was measured. The cylinder at which the 

occurred was operated 
and motored mode. In motored mode, the measurement 
cylinder was motored by use of 
order to differentiate between different motoring conditions, the 
load at which the driving cylinders are operating at will be 
mentioned further on. The temperatures are plotted along with 
cylinder pressure versus crank-angle degrees (CA
center (TDC) and bottom dead center (BDC) piston positions 

CAD and 180 CAD, respectively
bore engines run at relatively low speeds (

 single engine 
. By utilizing an advanced triggering system, the 

full potential of the 10 Hz laser can be exploited. 
for several measurement events in a single cycle. The number 
of possible temperature measurements per cycle 

or engine speeds of 75 and 100 rpm, 8 and 6 
measurement events were acquired per cycle achieving quasi
single cycle resolved temperature measurements. All of the 
temperatures presented are averaged over 50 single
measurements with error bars represent

Motored Engine Operation 
averaged wall temperatures obtained for 

 are presented in Figure 5
were selected for the driving the cylinders (12% and 23% load). 
As mentioned earlier, the loads mentioned in this section refer 
to the loads at which the driving cylinders are operating. The 
temperature profile registered by the

the trends observed by the pressure trace inside the 
. The increase in the standa

to lower signal due to beam steering caused by 
thermal gradients and increased flow turbulence. 
seen in the temperature distribution is attributed to the fact that 
the engine temperature was n
measurement. That led to a temperature difference between 
different sets of acquired measurements.

he registered baseline temperatures 
are constant around 435 K and 445
load. The peak temperatures registered were 449

The volume of inlet air increases with increasing load, thus 
higher temperatures were observed at higher loads. 
temperature drop is noticed around 120 CAD. 

is due to the expansion of the 
was estimated to be around 5 K
To further analyze the results obtained at different loads

the baseline temperatures and the peak temperatures are 
compared. The baseline temperature obtained for the 23% load 

K higher than that at 12% load. 

 

NF photomultiplier tube
the detector. An illustration of the complete setup is 
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To assess the validity of the phosphor thermometry 

bore engine, the wall temperature of one of 
measured. The cylinder at which the 

operated in two modes, fired mode 
and motored mode. In motored mode, the measurement 

use of the other three
order to differentiate between different motoring conditions, the 
load at which the driving cylinders are operating at will be 
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center (TDC) and bottom dead center (BDC) piston positions 
respectively.  

bore engines run at relatively low speeds (
engine cycle would 

. By utilizing an advanced triggering system, the 
full potential of the 10 Hz laser can be exploited. 
for several measurement events in a single cycle. The number 
of possible temperature measurements per cycle 

or engine speeds of 75 and 100 rpm, 8 and 6 
measurement events were acquired per cycle achieving quasi
single cycle resolved temperature measurements. All of the 
temperatures presented are averaged over 50 single
measurements with error bars representing standard deviations.
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was estimated to be around 5 K. 
To further analyze the results obtained at different loads

the baseline temperatures and the peak temperatures are 
compared. The baseline temperature obtained for the 23% load 
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Temperature standard deviations averaged over 50 engine 

cycles are mostly within the order of 0.4
temporal deviations
measurement points close to the CADs corresponding to t
opening of the exhaust valve. 
variations introduced by 
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Figure 5. Average cylinder wall insert temperature as function of 
crank angle degrees for 

cylinders load of 
averaged over 50 engine cycles with the corresponding 

Fired Engine Operation
Two main engine 

fired engine operation and are listed in 
results in Figure 6
measured at operating

. The engine load and rpm were varied simultaneously to 
simulate a propeller load. 

 

temperature is almost 14 K higher than 
in the temperatures can be attributed to the increase 

in cylinder peak pressure and hence, gas temperature, at 23% 

Temperature standard deviations averaged over 50 engine 
cycles are mostly within the order of 0.4
temporal deviations of up to ±7 K are present at the 
measurement points close to the CADs corresponding to t
opening of the exhaust valve. 
variations introduced by local 

Average cylinder wall insert temperature as function of 
crank angle degrees for motored engine operation at driving 

cylinders load of (a) 12% (60 rpm) and 
averaged over 50 engine cycles with the corresponding 

standard deviations.
 

Fired Engine Operation 
Two main engine operating conditions 

ne operation and are listed in 
 6 show the cylinder insert temperature 

ing load of 23% (
The engine load and rpm were varied simultaneously to 

simulate a propeller load.  
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K higher than that at 
in the temperatures can be attributed to the increase 

in cylinder peak pressure and hence, gas temperature, at 23% 

Temperature standard deviations averaged over 50 engine 
cycles are mostly within the order of 0.4-1.5

of up to ±7 K are present at the 
measurement points close to the CADs corresponding to t
opening of the exhaust valve. This could be due to the 

local turbulence created 

Average cylinder wall insert temperature as function of 
motored engine operation at driving 

12% (60 rpm) and (b) 23%
averaged over 50 engine cycles with the corresponding 

standard deviations. 
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show the cylinder insert temperature 
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The engine load and rpm were varied simultaneously to 

Copyright © 2014 by ASME

that at 12% load. The 
in the temperatures can be attributed to the increase 

in cylinder peak pressure and hence, gas temperature, at 23% 

Temperature standard deviations averaged over 50 engine 
1.5 K, but larger 

of up to ±7 K are present at the 
measurement points close to the CADs corresponding to the 

This could be due to the 
turbulence created by this 

Average cylinder wall insert temperature as function of 
motored engine operation at driving 

23% (75 rpm) 
averaged over 50 engine cycles with the corresponding 

were used for the 
able 2. The presented 

show the cylinder insert temperature 
) and 54% (100 

The engine load and rpm were varied simultaneously to 

Copyright © 2014 by ASME 

12% load. The 
in the temperatures can be attributed to the increase 

in cylinder peak pressure and hence, gas temperature, at 23% 

Temperature standard deviations averaged over 50 engine 
K, but larger 

of up to ±7 K are present at the 
he 

This could be due to the 
by this 

 
Average cylinder wall insert temperature as function of 

were used for the 
able 2. The presented 

show the cylinder insert temperature 
) and 54% (100 

The engine load and rpm were varied simultaneously to 



 

Table 

 
Some of the measurements acquired just after the start of 

fuel injection (around 3 CAD) suffered from very low signal
to-noise ratio and 
The drop in the signal
intensity and phosphorescence signal intensity attenuation by 
the sooty 

The peak temperatures reached were 470
23% and 54% load
baseline temperatures were 450
than the baseline temperatures obtained from the motored 
engine operation
generated by 
inside the cylinder
were around 2
deviations 
valve. The peak cylinder pressures attained were 63
23% and 107
a high capability to provide accurate temperature measurements 
at high pressures.
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A feasibility
large-
importance of aspects such as detector linearity and phosphor 
coating thickness 
were 
wall 
conditions.
motored and fired engine operations. Two different loads were 
selected for each operation mode covering the low to medium 
engine load range. 
the 1-
and around 120
flow occurred

The present work has demonstrated the feasibility of in
surface temperature measurements in a ru
marine diesel engine.
demonstrated here to also measure the surface temperature of 
critical in
instrument with fast thermocouples. The exhaust valve, the 
piston and fuel injectors are examples of such components.
opens up the possibility for monitoring the cycle resolved 
surface temperature on critical in
the exhaust valve, as a function of engine operating parameters 
as well 
could assist in identifying areas where coatings of base 

 

able 2. Engine conditions during fired operation mode

Engine configuration

Load [%] 

Engine speed [rpm]

Start of injection [CAD]

Injection duration [CAD]

Injection duration [ms]

Injected fuel [g/cycle]

 
Some of the measurements acquired just after the start of 

fuel injection (around 3 CAD) suffered from very low signal
noise ratio and were 

The drop in the signal
intensity and phosphorescence signal intensity attenuation by 

sooty swirling flame inside the large
The peak temperatures reached were 470

23% and 54% load
baseline temperatures were 450
than the baseline temperatures obtained from the motored 
engine operation. The increase of the baseline temperatures is 
generated by the additional
nside the cylinder. Standard deviations obtained for 50 cycles 

were around 2-3 K with the exception of the large standard 
deviations of ±8 K, 
valve. The peak cylinder pressures attained were 63
23% and 107 bar for 54% load.
a high capability to provide accurate temperature measurements 
at high pressures. 
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A feasibility study 
-bore two-stroke marine engine 

importance of aspects such as detector linearity and phosphor 
coating thickness for 
were discussed. The temperature of a phosphor

 segment was 
conditions. Wall temperatures were acquired under both 
motored and fired engine operations. Two different loads were 
selected for each operation mode covering the low to medium 
engine load range. 

-3 K range except near TDC 
and around 120 CAD where 
flow occurred due to exhaust blow

The present work has demonstrated the feasibility of in
surface temperature measurements in a ru
marine diesel engine.
demonstrated here to also measure the surface temperature of 
critical in-cylinder components, which can be hard to 
instrument with fast thermocouples. The exhaust valve, the 

ton and fuel injectors are examples of such components.
opens up the possibility for monitoring the cycle resolved 
surface temperature on critical in
the exhaust valve, as a function of engine operating parameters 
as well as fuel injector arrangement. Such novel information 
could assist in identifying areas where coatings of base 

 

Engine conditions during fired operation mode

Engine configuration 

Engine speed [rpm] 

Start of injection [CAD] 

Injection duration [CAD] 

Injection duration [ms] 

Injected fuel [g/cycle] 

Some of the measurements acquired just after the start of 
fuel injection (around 3 CAD) suffered from very low signal

were deemed unfit for temperature extraction. 
The drop in the signal-to-noise ratio is attributed to laser 
intensity and phosphorescence signal intensity attenuation by 

swirling flame inside the large
The peak temperatures reached were 470

23% and 54% load, respectively (presented in 
baseline temperatures were 450 K and 470
than the baseline temperatures obtained from the motored 

The increase of the baseline temperatures is 
additional heat 
. Standard deviations obtained for 50 cycles 

K with the exception of the large standard 
K, seen during

valve. The peak cylinder pressures attained were 63
for 54% load. Thermographic phosphors show 

a high capability to provide accurate temperature measurements 

CONCLUSIONS AND OUTLOOK
study of using phosphor thermometry 

stroke marine engine 
importance of aspects such as detector linearity and phosphor 

for the accuracy
he temperature of a phosphor

was effectively measured at different operati
Wall temperatures were acquired under both 

motored and fired engine operations. Two different loads were 
selected for each operation mode covering the low to medium 
engine load range. Temporal standard deviations were within 

except near TDC 
CAD where significant

due to exhaust blow
The present work has demonstrated the feasibility of in

surface temperature measurements in a ru
marine diesel engine. One can envisage extending the approach 
demonstrated here to also measure the surface temperature of 

cylinder components, which can be hard to 
instrument with fast thermocouples. The exhaust valve, the 

ton and fuel injectors are examples of such components.
opens up the possibility for monitoring the cycle resolved 
surface temperature on critical in-
the exhaust valve, as a function of engine operating parameters 

as fuel injector arrangement. Such novel information 
could assist in identifying areas where coatings of base 

 

Engine conditions during fired operation mode

# 1 

23 

75 

 3 

 10.3 

22.9 
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Some of the measurements acquired just after the start of 
fuel injection (around 3 CAD) suffered from very low signal

deemed unfit for temperature extraction. 
noise ratio is attributed to laser 

intensity and phosphorescence signal intensity attenuation by 
swirling flame inside the large-bore cylinder.  

The peak temperatures reached were 470 K and 486
respectively (presented in 

K and 470 K, which is higher 
than the baseline temperatures obtained from the motored 

The increase of the baseline temperatures is 
heat release from fuel

. Standard deviations obtained for 50 cycles 
K with the exception of the large standard 

ring the opening of the exhaust 
valve. The peak cylinder pressures attained were 63

Thermographic phosphors show 
a high capability to provide accurate temperature measurements 

OOK 
of using phosphor thermometry 

stroke marine engine is presented. The 
importance of aspects such as detector linearity and phosphor 

accuracy of phosphor thermometry 
he temperature of a phosphor-

measured at different operati
Wall temperatures were acquired under both 

motored and fired engine operations. Two different loads were 
selected for each operation mode covering the low to medium 

standard deviations were within 
except near TDC where combustion is initiated, 

significant changes in in
due to exhaust blow-down process

The present work has demonstrated the feasibility of in
surface temperature measurements in a running two

One can envisage extending the approach 
demonstrated here to also measure the surface temperature of 

cylinder components, which can be hard to 
instrument with fast thermocouples. The exhaust valve, the 

ton and fuel injectors are examples of such components.
opens up the possibility for monitoring the cycle resolved 

-cylinder components, such as 
the exhaust valve, as a function of engine operating parameters 

as fuel injector arrangement. Such novel information 
could assist in identifying areas where coatings of base 
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Some of the measurements acquired just after the start of 
fuel injection (around 3 CAD) suffered from very low signal

deemed unfit for temperature extraction. 
noise ratio is attributed to laser 

intensity and phosphorescence signal intensity attenuation by 
bore cylinder.   

K and 486 K for 
respectively (presented in Fig. 6). The 

K, which is higher 
than the baseline temperatures obtained from the motored 

The increase of the baseline temperatures is 
release from fuel combustion

. Standard deviations obtained for 50 cycles 
K with the exception of the large standard 

the opening of the exhaust 
valve. The peak cylinder pressures attained were 63 bar for 

Thermographic phosphors show 
a high capability to provide accurate temperature measurements 

of using phosphor thermometry in 
presented. The 

importance of aspects such as detector linearity and phosphor 
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-coated cylinder 
measured at different operating 

Wall temperatures were acquired under both 
motored and fired engine operations. Two different loads were 
selected for each operation mode covering the low to medium 
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One can envisage extending the approach 
demonstrated here to also measure the surface temperature of 

cylinder components, which can be hard to 
instrument with fast thermocouples. The exhaust valve, the 

ton and fuel injectors are examples of such components. This 
opens up the possibility for monitoring the cycle resolved 

cylinder components, such as 
the exhaust valve, as a function of engine operating parameters 

as fuel injector arrangement. Such novel information 
could assist in identifying areas where coatings of base 
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