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Abstract. We present new polynomial-time approximation schemes (PTAS) for
several basic minimum-cost multi-connectivity problems in geometrical graphs.
We focus on low connectivity requirements. Each of our schemes either signifi-
cantly improves the previously known upper time-bound or is the first PTAS for
the considered problem.

We provide a randomized approximation scheme for finding a biconnected graph
spanning a set of points in a multi-dimensional Euclidean space and having the
expected total cost withifll 4 ¢) of the optimum. For any constant dimension and

€, our scheme runs in tim@(n log n). It can be turned into Las Vegas one with-
out affecting its asymptotic time complexity, and also efficiently derandomized.
The only previously known truly polynomial-time approximation (randomized)
scheme for this problem runs in expected time (logn)((°&1°s™°) in the
simplest planar case. The efficiency of our scheme relies on transformations of
nearly optimal low cost special spanners into sub-multigraphs having good de-
composition and approximation properties and a simple subgraph connectivity
characterization. By using merely the spanner transformations, we obtain a very
fast polynomial-time approximation scheme for finding a minimum-éestige
connected multigraph spanning a set of points in a multi-dimensional Euclidean
space. For any constant dimensienandk, this PTAS runs in tim&(n logn).
Furthermore, by showing a low-cost transformation éfedge connected graph
maintaining thek-edge connectivity and developing novel decomposition prop-
erties, we derive a PTAS for Euclidean minimum-ckstdge connectivity. It is
substantially faster than that previously known.

Finally, by extending our techniques, we obtain the first PTAS for the problem
of Euclidean minimum-cost Steiner biconnectivity. This scheme runs in time
O(n logn) for any constant dimension ard As a byproduct, we get the first
known non-trivial upper bound on the number of Steiner points in an optimal
solution to an instance of Euclidean minimum-cost Steiner biconnectivity.
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1 Introduction

Multi-connectivity graph problems are central in algorithmic graph theory and have
numerous applications in computer science and operation reserdh [2,10,22]. They are
also very important in the design of networks that arise in practical situafidns [2,10].
Typical application areas include telecommunication, computer and road networks. Low
degree connectivity problems for geometrical graphs in the plane can often closely
approximatesuch practical connectivity problems (see, e.g., the discussionlin [10,22]).

In this paper, we provide a thorougteoretical studpf these problems in Euclidean
space (i.e., for geometrical graphs). We consider several basic connectivity problems
of the following form: for a given se$ of n points in the Euclidean spa®?, find a
minimum-cost subgraph of a complete graptbdhat satisfies a priori given connectivity
requirements. The cost of such a subgraph is equal to the sum of the Euclidean distances
between adjacent vertices.

The most classical problem we investigate is(faaclidean) minimum-cogtvertex
connected spanning subgraph probléfve are given a sét of n points in the Euclidean
spaceR and the aimis to find a minimum-costvertex connected graph spanning points
in S (i.e., a subgraph of the complete graph.®n By substituting the requirement
of k-edge connectivity for that of-vertex connectivity, we obtain the corresponding
(Euclidean) minimum-cogt-edge connected spanning subgraph problésa term the
generalization of the latter problem which allows for parallel edges in the output graph
spannings as thgEuclidean) minimum-coétedge connected spanning sub-multigraph
problem

The concept of minimum-cotconnectivity naturally extends to include thataf-
clidean Steinek-connectivityby allowing the use of additional vertices, callBteiner
points The problem of Euclidean) minimum-cost Steinksvertex- (or,k-edge-) con-
nectivityis to find a minimum-cost graph onsaipersebf the input point sefs in R¢
which isk-vertex- (or,k-edge-) connected with respect§oFork = 1, it is simply the
famousSteiner minimal tre¢SMT) problem, which has been very extensively studied
in the literature (see, e.gl, [11]16]).

Since all the aforementioned problems are known té/tie-hard when restricted to
even two-dimensions fdt > 2 [B/18], we focus on efficient constructions of good ap-
proximations. We aim at developingpalynomial-time approximation schenaPTAS
This is a family of algorithmg.A. } such that, for each fixed > 0, A, runs in time
polynomial in the size of the input and produced a+ ¢)-approximation([15].

Previous work.Despite the practical relevance of the multi-connectivity problems for
geometrical graphs and the vast amount of practical heuristic results reported (see, e.g.,
[QI10;2Z,23]) very little theoretical research has been done towards developing efficient
approximation algorithms for these problems. This contrasts with the very rich and
successful theoretical investigations of the corresponding problems in general metric
spaces and for general weighted graphs (see,[€.d.,]10/[12,15,17]). Even for the simplest
(and most fundamental) problem considered in our paper, that of finding a minimum-cost
biconnected graph spanning a given set of points in the Euclidean plane, for a long time
obtaining approximations achieving better tha%1 l@tio had been elusive and only very
recently has a PTAS been developed [6]. For any fixed 0, this algorithm outputs
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a (1 + ¢)-approximation in expected time (log n)?((°glez™)®) The approximation
scheme developed inl[6] can be extended to arbittadd, but in the general case the
dependence anand particularly o makes the algorithm impractical. Foran- 0, the

- 2d
algorithm runs in expected time. 2(oglog w5 (oar o)y log(=™"))! Note thatd
plays a large role in the running time of these schemes. In fact, the resultfrom [6] implies
that for everyd = 2(logn), even fork = 2 no PTAS exists unlesB = N'P. Thus,
the problem of finding a minimum-cost biconnected spanning subgraph does not have
a PTAS (unles® = N'P) even in the metric case. Hence, our restriction to Euclidean
graphs in low dimensions plays an essential role in these schemes.

A related, but significantly weaker result has been also presented in [5]. Here an
optimal solution to the problem without allowing Steiner points is approximated to an
arbitrarily close degree via the inclusion of Steiner points.

When Steiner points are allowed in the minimum-cost Steinegrtex- (ork-edge-)
connectivity problem, the only non-trivial results are known foe= 1, i.e., for the
minimum Steiner tree problem (SMT). In the breakthrough pager [3], Arora designed a
PTAS for SMT for all constantd. Mitchell independently obtained a similar result for
d = 2 [19]. Soon after Rao and Smith [20] offered a significantly faster PTAS for SMT
running in timeO(n log n) for a constant. Fork > 2, the only result we are aware of
is a+/3-approximation in polynomial-time fot = 2 [14].

New results.In this paper we present new polynomial-time approximation schemes for
several of the aforementioned connectivity problems in geometric graphs. We focus on
low connectivity requirements. Each of our approximation schemes either significantly
improves the previously known upper time-bound or is the first PTAS for the considered
problem.

Ourmain new results a fast polynomial-time (randomized) approximation scheme
for finding a biconnected graph spanning a set of pointsdrdanensional Euclidean
space and having expected cost withint ) of optimum. For any constamtande,
our algorithm runs in expected tin@@(n logn). Our scheme is a PTAS for the problem

in RY for all d such thag®"* = poly(n), for some absolute constantWe can turn

our randomized scheme into a Las Vegas one without affecting its asymptotic time
complexity. With a very slight increase of the running time (a constant factor provided
thatd ande are constant) we can also obtain a determinigtie )-approximation. Our
scheme is significantly, i.e., by a factor of at le@ist; ) ((eglee™)®) faster than that
from [6].

Since a minimum-cost biconnected graph spanning a set of points in a metric space
is also a minimum-cost two-edge connected graph spanning this set, our PTAS yields
also the corresponding PTAS for the Euclidean minimum-cost two-edge connectivity.

We extend the techniques developed for the biconnectivity algorithms and present a
fast randomized PTAS for finding a minimum césedge connectenhultigraphspan-
ning a set of points in d-dimensional Euclidean space. The running time of our Las
Vegas scheme ®(n logn) +n 2+°" for any constant ande.

We are also able to improve upon theedge connectivity results from|[6] signifi-
cantly. By showing a low-cost transformation ofadge connected graph maintaining
the k-edge connectivity and developing novel decomposition properties, we derive a
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PTAS for Euclidean minimum-cogt-edge connectivity which for any constadite,
andk, runs in expected time (logn)°("). The corresponding scheme In [6] requires
n (log n)©((eeloen)?) time whend = 2 and for any constant, k.

Furthermore, we present a series of new structural results about minimum-cost bicon-
nected Euclidean Steiner graphs, e.g., a decomposition of a minimum-cost biconnected
Steiner graph into minimal Steiner trees. We use these results to derfirstRFAS for
the minimum-cost Steiner biconnectivity and Steiner two-edge connectivity problems.
For any constant ande, our scheme runs in expected tiit¥n logn). As a byproduct
of the aforementioned decomposition, we also obtain the first known non-trivial upper
bound on the minimum number of Steiner points in an optimal solution te-paint
instance of Euclidean minimum-cost Steiner biconnectivity, whicdnis- 2.

Techniques.The only two known PTAS approaches to Euclidean minimum-éest
vertex- (ork-edge-) connectivity (segl[5,6]) are based on decompositionsohnected
Euclidean graphs combined with the general framework proposed recently by/Arora [3]
for designing PTAS for Euclidean versions of TSP, Minimum Steiner Tree, Min-Cost
Perfect Matchingk-TSP, etc. (For another related framework for geometric PTAS see
[19].) In contrast to all previous applications of Arora’s framework using Steiner points
in the so-called patching procedurg$ [3,5], a patching method free of Steiner points is
given [6]. (Steiner points of degree at least three are difficult to removedonnectivity
whenk > 2. This should be compared to the problems considered by Arora [3] and Rao
and Smith[[20] where the output graphs have very simple connectivity structure.) This
disallowance inl[6] makes it hard to prove strong global structural properties of close
approximations with respect to a given geometric partition.

Structural theorems in Arora’s framework typically assert the existence of a recur-
sive partition of a box containing the input points (perturbed to nearest grid points)
into cubes such that the optimal solution can be closely approximated by a so called
(m,r)-light solution in which, for every cube, there are very few edges crossing its
boundaries. The structural theorem |in [6] yields only weaker structural properties of
approximate solutions({z, r)-grayness andm, r)-blueness) which bound solely the
number of crossings between the cube boundaries and the edges having exactly one end-
point within the cube. That bound is constant for “short edges” (i.e., edges having length
within a constant factor of the side-length of the cube) and@ (&g logn) for “long
edges” (assuming that d, ande are constant). Furthermore, most of the crossings are
located in one o2 d prespecified points. The weaker structural properties (especially the
fact that there might be as many@slog log n) edges having exactly one endpointin a
cube in the partition) lead to the high time complexity of the main dynamic programming
procedure in the PTAS presented.in [6].

We take a novel approach in order to guarantee stronger structural properties of
approximate solutions disallowing Steiner points. Our approach is partly inspired by the
recent use of spanners to speed-up PTAS for Euclidean versions of TSP by Rao and
Smith [20]. In effect, fork = 2, we are able to prove a substantially stronger structural
property ¢-local-lightness, see Theorém13.1) than that’in [6]. It yields a constant upper
bound on the number of long edges with exactly one endpoint in a cube in the partition
provided that! ande are constant.
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Our proof relies on a series of transformations ¢f & §)-spanner for the input point
set, having low cost and the so calledlation propertyl], into anr-locally-light k-edge
connected multigraph spanning the input set and having nearly optimal cost. Without
any increase in the cost, in cake= 2, the aforementioned multigraph is efficiently
transformed into a biconnected graph spanning the input point set. Furthermore, for
the purpose of dynamic programming, we succeed to use a more efficient subgraph
connectivity characterization in case= 2 than that used in_[5,6].

By using merely the aforementioned spanner transformations, we also obtain the fast
randomized PTAS for finding a minimum-cdstedge connecteohultigraphspanning
a set of points in a multi-dimensional Euclidean space.

It seems unlikely that a cost-efficient transformation df-adge connected multi-
graph into &-edge connected graph on the same point set exists. For this reason, in case
of k-edge connectivity, we consider an arbitrargdge connected graph on the input
point set instead of a spanner, and derive a series of cost-efficient transformations of
the former into am-locally-light k-edge connected graph on the input set. The transfor-
mations yield the fastest known randomized PTAS for Euclidean minimumkeedge
connectivity.

Our investigations of spanners with the isolation propertyett@icit use of multi-
graphs instead of graphs, and the proof that nearly optimal, low cost spanners possessing
the isolation property induce-locally-light sub-multigraphs having good approxima-
tion properties are the main sources of the efficiency of the approximation schemes for
Euclidean minimum-cost connectivity problems (without Steiner points) presented in
this paper.

By extending the aforementioned techniques to include Steiner points, deriving the
decomposition of a minimum-cost biconnected Steiner graph into minimal Steiner trees,
and using the generalization @f + ¢)-spanner to include Steiner points callgd- ¢)-
banyansn [20/21], we obtain the first PTAS for minimum-cost Steiner biconnectivity
and Steiner two-edge connectivity.

Organization of the paperSectior 2 provides basic terminology used in our approxi-
mation schemes. In Sectigéh 3 we outline our new PTAS for Euclidean minimum-cost
biconnectivity. Sectiofi]4 sketches the PTAS for Euclidean minimum+eesige con-
nectivity in multigraphs. In Sectidr 5 we derive our PTAS for Euclidean minimum-cost
k-edge connectivity in graphs. Sectign 6 presents the PTAS for minimum-cost Steiner
biconnectivity and Steiner two-edge connectivity. Due to space limitations most of our
technical claims and their proofs are postponed to the full version of the paper.

2 Definitions

We consider geometrical graphs.geometrical (multi-)graplon a set of pointss' in

R? is a weighted (multi-)graph whose set of vertices is exa$tlgnd for which the
costof an edge is the Euclidean distance between its endpoints. The (total) cost of the
(multi-)graph is the sum of the costs of its edges. A (multi-)gré&pbn S spanssS if it

is connected (i.e., there is a pathGitonnecting any two points ifi). As in [3|5,6,20],

we allow edges to deviate from straight-line segments and specify them as straight-lines
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paths (i.e., paths consisting of straight-line segments) connecting the endpoints. This
relaxation enables the edges to pass through some prespecified pointsoetiési
where they may bébent” When all edges are straight-line segmeidtsis called a
straight-line graph For a multigraphG, thegraph induced by~ is the graph obtained
by reducing the multiplicity of each edge Gfto one.
We shall denote the cost of the minimum spanning tree on a poifitlbgt (MsT(X)).
A t-spannerof a set of pointss in R is a subgraph of the complete straight-line graph
on S such that for any two points, y € S the length of the shortest path framto y in
the spanner is at mostimes the Euclidean distance betweeandy [1].

Fig. 1. Dissection of a bounding cube & (left) and the correspondirgr-ary tree (right). In
the tree, the children of each node are ordered from left to ribbp/L eft squareBottomL eft
squareBottomRight square, an@ op/Right square.

We hierarchically partition the space as[ih [3]baunding boxof a setS of points
in R¢ is a smallesti-dimensional axis-parallel cube containing the point§'im (2¢-
ary) dissectior3] (see Figuréll) of a set of points in a cubé in R? is the recursive
partitioning of the cube into smaller sub-cubes, calégions EachregionU ¢ of volume
> 1 is recursively partitioned intd? regions(U/2)%. A 2¢-ary tree(for a given2¢-ary
dissection) is a tree whose root correspondd.fp and whose other non-leaf nodes
correspond to the regions containing at least two points from the input set (see[frigure 1).
For a non-leaf node of the tree, the nodes corresponding to2Aeegions partitioning
the region corresponding tg are the children of in the tree.

For anyd-vectora = (aq,...,aq), Where alla; are integerd < a; < L, the
a-shifted dissectiof3l6] of a setX of points in the cubd.? in R¢ is the dissection of
the setX* in the cubg2 L)? in R? obtained fromX by transforming each point € X
to x + a. A random shifted dissectioof a set of pointsX in a cubeL? in R is an
a-shifted dissection o with a = (a4, ... ,a4) and the elements,, ... , a4 chosen
independently and uniformly at random frof, 1, ... , L}.

A crossing of an edge with a region facet of side-lenigthin a dissection is called
relevant if it has exactly one endpoint in the region and its length is at maét 1V.
A graph isr-gray with respect to a shifted dissection if each facet of each region in the



862 A. Czumaj and A. Lingas

dissection has at mostrelevant crossings. A graphislocally-light with respect to a
shifted dissection if for each region in the dissection there are at medges having
exactly one endpoint in the regioA graph isr-light [3120.6] with respect to a shifted
dissection if for each region in the dissection there are at medgescrossing any of
its facets (It is important to understand the difference between these two latter notions.)
An m-regular set of portals in a (d — 1)-dimensional region faceN¢~! is an
orthogonal lattice ofn points in the facet where the spacing between the portals is
(N + 1) - m~Y(@=1 (cf. [3]). If a graph isr-locally-light and for each facet in any
region every edge crosses through one ofithgortals in the facet then the graph is
called(m, r)-locally-light.

3 Algorithm for Euclidean Biconnectivity

In this section weketcha randomized algorithm that finds a biconnected graph spanning

a setS of n points inR¢ whose cost is at most + ) times of the minimum. We specify

here only a key lemma and the structural theorem and defer the detailed description of
the algorithm and its analysis to the full version of the paper.

Our algorithm starts by finding a smallest bounding box for the input poinf set
rescaling the input coordinates so the bounding box is of the ford(nv/d (1 +
1/¢))]¢, and moving the points ifi to the closest unit grid points. We shall term the per-
turbed point set asell-rounded(see alsd [3.6]). Next, the algorithm finds an appropriate
(14+6O(e))-spanner of the well-rounded point set which has the so-c@tieg-isolation
propertyfor appropriate parameteksandc [1].

Definition 3.1. Lete, 0 < ¢ < 1, be a constant and let > 1. A geometrical graplts
on a set of points iR satisfies thér, c)-isolation property, if, for each edgeof G of
lengthl, there is a cylinde€ of length and radius ! and with its axis included ia such
thatC intersects at most edges of5.

In the next step, the algorithm chooses a random shifted dissection and builds the
corresponding shifte@?-ary tree for the perturbes.

The following key lemma yields a low upper bound on the number of crossings of
the boundaries of a region in the dissection by long edges of the spanner having exactly
one endpoint within the region.

Lemma 3.1. LetG be a geometrical graph spanning a setf points inR¢ and satisfy-

ing the(k, c)-isolation property, wher@ < ¢ < 1 is a constant. There exists a constant

¢’ such that for any region in a shifted dissectiorsahe number of edges 6f of length

at least’ v/d times the side-length of the region that have precisely one endpoint within
the region isx - (d/e)°(@.

Combining this lemma, with several lemmas that describe graph transformations
reducing the number of crossings of the boundaries of a region in the dissection by short
edges, we obtain the following structural theorem.

Theorem 3.1. Lete, A be any positive reals and Iétbe any positive integer. Next, let
& be a(1 + ¢)-spanner for a well-rounded sétof points inR¢ that satisfies théx, c)-
isolation property with constant, 0 < ¢ < 1, k = (d/)°@, and hasn - (d/)°@
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edges whose total cost equdlg;. Choose a shifted dissection uniformly at random.
Then one can modifg to a graphG spanningS such that

— G is r-locally-light with respect to the shifted dissection chosen, whefe2¢+1 .
d-k>+d-(O(\-d*?))4 4 (d/e)°D, and
— there exists &-edge connected mulUgrapH which is a spanning subgraph 6f
with possible parallel edges (of multiplicity at mdgt whose expected (over the
choice of the shifted dissection) cost is at mast ¢ + A’z(ﬁfﬂ) times cost of the
minimum-cost ok-edge connected multigraph spannifig
Furthermore, this modification can be performed in i@l - L -log L) +n - 247 |
n - (d/e)°@, whereL is the side-length of the smallest bounding box contaising

Further, our algorithm modifies the spanner according to Thebréim 3.1 producing
anr-locally-light graphG wherer is constant for constartandd. In the consecutive
step, the algorithm runs a dynamic programming subroutine for finding a minimum-cost
two-edge connected multigraph for which the induced graph is a subgraphraite
that by Theorem 311 the multigraph has expected cost very close to that of the minimum-
cost of ak-edge connected multigraph spanning the pertufjedhe efficiency of the
subroutine relies on a new, forest-like characterization of the so called connectivity type
of a multigraph within a region of the dissection. It is substantially more concise than
the corresponding one used If [5,6]. Next, the algorithm transforms the multigraph to
a biconnected (straight-line) graph without any increase in cost. Finally, it modifies the
biconnected graph to a biconnected graph on the input set by re-perturbing its vertices.

Theorem 3.2. The algorithm finds a biconnected graph spanning the input set of
points inR¢ and having expected cost withfih + ¢) from the optimum. The running
time of the algorithm i€0(n - d*/2 - e~ - log(nd/e)) +n - 2(4/9°) | particular,
whend ande are constant, then the running timed¥n logn). For a constant/ and
arbitrary s = 1 > 1 the running time i(n s log(n s) +n 257 ). The algorithm can
be turned into a Las Vegas one without affecting the stated asymptotic time bounds.

Although we have used many ideas from [6] in the design of our algorithm, we have
chosen the method of picking a random shifted dissection given inl[3/20,21]. Therefore
we can apply almost the same arguments as those used by Rao and Smith[21, Sections 2.2
and 2.3] to derandomize our algorithm at small increase of the cost

Theorem 3.3. For every positives there exists a deterministic algorithm running in

timen (d/e)°® logn + n 2(¢/9°“" that for every set of, points inR? produces a
biconnected graph spanning the points and having the cost withia) of the minimum.
In particular, whend ande are constant, the running time@(n log n) For a constant

d and arbitrary s = 1 > 1 the running time i€ (n s®™M) logn + n2s° )

4 Euclidean k-Edge Connectivity in Multigraphs

We can extend the techniques developed in the previous sections to the problem of finding
alow-cost-edge connectenultigraphspanning a set of pointsRf for £ > 2. To begin
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with, we follow the PTAS from Sectidd 3 up and inclusive the spanner-modification step,
only changing some parameters. The resulting gi@ir-locally-light graph forr =

k. (d/e)°@). By Theoreni311, there existsaedge connected multigragh such that

the induced graph is a subgraphtéfind the expected cost &f is at most(1 + £) times
larger than the minimum-costedge connected multigraph spannfgis was the case

for the PTAS from Sectiohnl3, we can apply dynamic programming to find a minimum-
costk-edge connected multigragti* for which the induced graph is a subgraphcaf

This time we use a more general (but less efficient) connectivity characterization from
[5] yielding 2°(") different connectivity types. In effect, the dynamic programming is
more expensive, and the total running time i2° ") . Now, it is sufficient to re-perturb

the vertices of the multigrapi * (correspondingly to the last step of the PTAS from
Sectiorf B) in order to obtain the following theorem.

Theorem 4.1. Let & be an arbitrary positive integer. There exists an algorithm that
finds ak-edge connected multigraph spanning the input setdints inR? and having
expected cost withifil + ¢) from the optimum. The running time of the algorithm is

O(n - d3? - e71 . log(nd/e)) + n - 20((K*-(d/)°“)) " In particular, whend and ¢
are constant, then the running time@n logn) + n 2k°™ For a constant/ and an

arbitrary s = 1 > 1 the running time i©)(n s log(n s)) +n 2 9" The algorithm
can be turned into a Las Vegas one without affecting the stated asymptotic time bounds.

Recall the use of Steiner points in the first attempt of deriving PTAS for the Eu-
clidean minimum-cost-connectivity in [5] by allowing them solely on the approxima-
tion side. As a byproduct, we can substantially subsume the results on minimum-cost
k-connectivity from[[5] in the complexity aspect by using Theoiem 4.1.

5 Euclideank-Edge Connectivity in Graphs

Our spanner approach to biconnectivity relies on an efficient transformation of a two-
edge connected multigraph into a biconnected graph on the same point set without
any cost increase. Unfortunately, it seems thatifos 2 there is no any similar cost-
efficient transformation betweénedge connecteahultigraphsandk-vertex- ork-edge
connectedgraphs We show in this section that an arbitrary (in particular, minimum-
cost) k-edge connected graph spanning a well-rounded point set admits a series of
transformations resulting in anlocally-light k-edge connected graph on this set with a
small increase in cost. By some further small cost increase, we can make the latter graph
(m, r)-locally-light in order to facilitate efficient dynamic programming.

The following lemma plays a crucial role in our analysis. Intuitively, it aims at
providing a similar transformation of the input graph as that presented in Lémina 3.1.
The main difficulty here is in the fact that the input graph may be arbitrary (while in
Lemmd 3.1l we have analyzed graphs having the isolation property).

Lemma 5.1. Let G be a spanning graph of a well-rounded point $ein R¢. For any
shifted dissection of, G can be transformed into a graph’ satisfying the following
three conditions:

— if G’ is different fromG then the total cost of”’ is smaller than that o7,
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— forany region of siz&/ in the dissection there are positive realsi = 1, ... ,2°(®),
greater thand\/d W such that the number of edges having theirs lengths outside
any of the intervaldz;, 2 x;), and each having precisely one endpoint within the
region is29(4)

— if G is k-edge connected then soG.

Lemmab.1 guarantees that in the graph resulting from the transformation provided
in the lemma no region in the dissection is crossed by too many long edges having their
length outside finite number of intervals of the fopm2z), z > 4 v/d W and one point
inside the region. The following lemma reduces the number of the remaining edges.

Lemma 5.2. Let G be anr-gray spanning graph of a well-rounded setof points in
R?. LetQ be a region of sizéV in the dissection of, and letz;, i = 1,...,29),
be positive reals greater thatw/d W. If there are€ edges having their lengths outside
the intervalg0, 2 Vd W], [z;,22;),i = 1,...,2°(?, and such that each has precisely
one endpoint i, then there are at most 4 2°(9) edges crossing the facets@fand
having one endpoint if).

By these two lemmas, we obtain our structure theorentfedge connectivity.

Theorem 5.1. Lete > 0, and letS be a well-rounded set ef points inR?. A minimum-
cost k-edge connected graph spannisgcan be transformed to &-edge connected
graph H spanningS such that
— H is (m,r)-locally-light with respect to the shifted dissection, where= (O(s~*-
Vd -logn))?'andr = (O(k* - d*/? / £))?, and
— the expected (over the choice of the shifted dissection) cdsti®ft most(1 + ¢)
times larger than that of the minimum-cost graph.

The concept ofm, r)-local-lightness is a very simple case of thatwef, r)-blueness
used in [6]. Therefore, we can use a simplified version of the dynamic programming
method of [[6] involving the:-connectivity characterization fromi[5] in order to find an
(m, r)-locally-light k-edge connected graph on a well-rounded point set satisfying the
requirements of Theorem %.1. This yields a substantially faster PTAS for the Euclidean
minimum-costk-edge connectivity than that presented_in [6].

Theorem 5.2. Let k be an arbitrary positive integer and let> 0. There exists a ran-
domized algorithm that findsiaedge connected graph spanning the input setgdints

in R? and having expected cost withih + <) from the optimum. The expected running
time of the algorithm ig: - (logn)(©(**-d** /) . 20((k*-d** /) | particular,
whenk, d, ande are constant, then the running timeriglog n)°™).

6 Euclidean Steiner Biconnectivity

In this section we provide the first PTAS for Euclidean minimum-cost Steiner biconnec-
tivity and Euclidean minimum-cost two-edge connectivity. For any constant dimension
ande, our scheme runs in tim@(n logn). Our proof relies on a decomposition of a
minimum-cost biconnected Steiner graph into minimal Steiner trees and the use of the
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so called(1 + ¢)-banyansintroduced by Rao and Smith _[20]21]. As a byproduct of
the decomposition, we derive the first known non-trivial upper bound on the minimum
number of Steiner points in an optimal solution to :apoint instance of Euclidean
minimum-cost Steiner biconnectivity whichis — 2.

Since for any set of point& in R¢ the minimum-cost of a biconnected graph
spanningX is the same as the minimum-cost of a two-edge connected graph spanning
X, inthe remaining part of this section we shall focus only on the Euclidean minimum-
cost Steiner biconnectivity problem. By a series of technical lemmas, we obtain the
following characterization of any optimal graph solution to the Euclidean minimum-
cost Steiner biconnectivity problem.

Theorem 6.1. LetG be a minimum-cost Euclidean Steiner biconnected graph spanning
a setS of n > 4 points inR?. ThenG satisfies the following conditions:
(i) Each vertex of7 (inclusive Steiner points) is of degree either two or three.

(i) By splitting each vertex of G corresponding to an input point intbeqv) indepen-
dent endpoints of the edges, gra@ltan be decomposed into a number of minimal
Steiner trees.

(i) G has at mos8n — 2 Steiner points.

6.1 PTAS

Our spanner-based method for Euclidean minimum-cost biconnectivity cannot be ex-
tended directly to include Euclidean minimum-cost Steiner biconnectivity since spanners
do not include Steiner points. Nevertheless, the decomposition of an optimal Steiner so-
lution into minimum Steiner trees given in Theoreml6.1 opens the possibility of using
the aforementioned banyans to allow Steiner points for the purpose of approximating
the Euclidean minimum Steiner tree problenmin/[20].

Definition 6.1. [20] A (1 + ¢)-banyan of a sef of points inR? is a geometrical
graph on a superset d&f (i.e., Steiner points are allowed) such that for any sutiset
of S, the cost of the shortest connected subgraph of the banyan which inéludeat
most(1 + ¢) times larger than the minimum Steiner tree af

Rao and Smith have proved the following useful result on banyans|in [20].

Lemma 6.1. Let0 < ¢ < 1. One can construct &l + ¢)-banyan of am:-point set in
R? which uses onlyl®@) (d/¢)°(@ 1, Steiner points and has cost within a factor of

do(d) g—o(d) of the minimum Steiner tree of the set. The running time of the construction
isd°@) (d/e)° @ n + O(dn logn).

By combining the definition of1 + ¢)-banyan with Theoremn 6.01(2) and Lemma 6.1,
we get the following lemma.

Lemma 6.2. For a finite point setS in R? let B be a(1 + ¢/4)-banyan constructed
according to LemmB 6.1. L&8,,, be the multigraph obtained fro by doubling its
edges. There is atwo-edge connected sub-multigrap,pivhich includess' and whose
cost is within(1 + £/4) of the minimum cost of two-edge connected multigraph on any
superset of.
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LetB7, be the multigraph resulting from scaling and perturbing all the vertices (i.e.,
also the Steiner points) of the multigraf),, specified in Lemma6l2 according to the
first step in Sectiohl3. The vertices &, are on a unit grido, L]¢ and, by arguing
analogously as in Sectidd 3, a minimum-cost two-edge connected sub-multigraph of
B, that includesS is within (1 + ¢/4) of a minimum-cost two-edge connected sub-
multigraph of5,,, that includessS.

The patching method of [5] applied 88}, yields the following structure theorem.

Theorem 6.2. Choose a shifted dissection of the set of vertices of the ba#yan
random. The8}, can be modified to a multigrapgh’,, such that:

— B! is r-light with respect to the shifted dissection, where (O(v/d/e))?*,

— the set of vertices @B/, includes that of3?, and some additional vertices placed
at the crossings between the edge®¢f and the boundaries of the regions in the
shifted dissection,

— there exists atwo-edge connected sub-multigraf¥ pfncludingS whose expected
cost is within(1 4 ¢/4) of the minimum-cost of two-edge connected sub-multigraph
of B* that includess.

m

To find such a subgraph &/, efficiently we apply a simplification of the dynamic
programming method used by the PTAS from Sedfibn 3 to the set of verticBg of
(it would be even simpler to use a modification of the dynamic programming approach
from [5]). In effect we can finds/,, in expected tim&)(n logn) for constant andd.
By combining this with Lemm@&6]2, Theordm b.2, and the efficient transformation of
two-edge connected multigraphs into biconnected graphs, we obtain the main result in
this section.

Theorem 6.3. There exists an approximation algorithm for the minimum-cost Steiner
biconnectivity (and two-edge connectivity) which for any 0 returns a Euclidean
Steiner biconnected (or two-edge connected) graph spanning the input:sgoiits in

R? and having expected cost withjh + ) from the optimum. The running time of the
algorithm isO(n d*/? ¢ =1 log(nd/e)) + dO@) (d/e)PDn 4 n o(Va/e)! (OUNTT

In particular, whend and ¢ are constant, then the running time @(n logn). The
algorithm can be turned into a Las Vegas one without affecting asymptotic time bounds.
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