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Fast Approximation Schemes
for Euclidean Multi-connectivity Problems ?

(Extended Abstract)
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Abstract. We present new polynomial-time approximation schemes (PTAS) for
several basic minimum-cost multi-connectivity problems in geometrical graphs.
We focus on low connectivity requirements. Each of our schemes either signifi-
cantly improves the previously known upper time-bound or is the first PTAS for
the considered problem.

We provide a randomized approximation scheme for finding a biconnected graph
spanning a set of points in a multi-dimensional Euclidean space and having the
expected total cost within(1+ε) of the optimum. For any constant dimension and
ε, our scheme runs in timeO(n log n). It can be turned into Las Vegas one with-
out affecting its asymptotic time complexity, and also efficiently derandomized.
The only previously known truly polynomial-time approximation (randomized)
scheme for this problem runs in expected timen · (log n)O((log log n)9) in the
simplest planar case. The efficiency of our scheme relies on transformations of
nearly optimal low cost special spanners into sub-multigraphs having good de-
composition and approximation properties and a simple subgraph connectivity
characterization. By using merely the spanner transformations, we obtain a very
fast polynomial-time approximation scheme for finding a minimum-costk-edge
connected multigraph spanning a set of points in a multi-dimensional Euclidean
space. For any constant dimension,ε, andk, this PTAS runs in timeO(n log n).

Furthermore, by showing a low-cost transformation of ak-edge connected graph
maintaining thek-edge connectivity and developing novel decomposition prop-
erties, we derive a PTAS for Euclidean minimum-costk-edge connectivity. It is
substantially faster than that previously known.

Finally, by extending our techniques, we obtain the first PTAS for the problem
of Euclidean minimum-cost Steiner biconnectivity. This scheme runs in time
O(n log n) for any constant dimension andε. As a byproduct, we get the first
known non-trivial upper bound on the number of Steiner points in an optimal
solution to an instance of Euclidean minimum-cost Steiner biconnectivity.
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1 Introduction

Multi-connectivity graph problems are central in algorithmic graph theory and have
numerous applications in computer science and operation research [2,10,22]. They are
also very important in the design of networks that arise in practical situations [2,10].
Typical application areas include telecommunication, computer and road networks. Low
degree connectivity problems for geometrical graphs in the plane can often closely
approximatesuch practical connectivity problems (see, e.g., the discussion in [10,22]).

In this paper, we provide a thoroughtheoretical studyof these problems in Euclidean
space (i.e., for geometrical graphs). We consider several basic connectivity problems
of the following form: for a given setS of n points in the Euclidean spaceRd, find a
minimum-cost subgraph of a complete graph onS that satisfies a priori given connectivity
requirements. The cost of such a subgraph is equal to the sum of the Euclidean distances
between adjacent vertices.

The most classical problem we investigate is the(Euclidean) minimum-costk-vertex
connected spanning subgraph problem. We are given a setS of n points in the Euclidean
spaceRd and the aim is to find a minimum-costk-vertex connected graph spanning points
in S (i.e., a subgraph of the complete graph onS). By substituting the requirement
of k-edge connectivity for that ofk-vertex connectivity, we obtain the corresponding
(Euclidean) minimum-costk-edge connected spanning subgraph problem. We term the
generalization of the latter problem which allows for parallel edges in the output graph
spanningS as the(Euclidean) minimum-costk-edge connected spanning sub-multigraph
problem.

The concept of minimum-costk-connectivity naturally extends to include that ofEu-
clidean Steinerk-connectivityby allowing the use of additional vertices, calledSteiner
points. The problem of(Euclidean) minimum-cost Steinerk-vertex- (or,k-edge-) con-
nectivity is to find a minimum-cost graph on asupersetof the input point setS in R

d

which isk-vertex- (or,k-edge-) connected with respect toS. Fork = 1, it is simply the
famousSteiner minimal tree(SMT) problem, which has been very extensively studied
in the literature (see, e.g., [11,16]).

Since all the aforementioned problems are known to beNP-hard when restricted to
even two-dimensions fork ≥ 2 [8,18], we focus on efficient constructions of good ap-
proximations. We aim at developing apolynomial-time approximation scheme, aPTAS.
This is a family of algorithms{Aε} such that, for each fixedε > 0, Aε runs in time
polynomial in the size of the input and produces a(1 + ε)-approximation [15].

Previous work.Despite the practical relevance of the multi-connectivity problems for
geometrical graphs and the vast amount of practical heuristic results reported (see, e.g.,
[9,10,22,23]) very little theoretical research has been done towards developing efficient
approximation algorithms for these problems. This contrasts with the very rich and
successful theoretical investigations of the corresponding problems in general metric
spaces and for general weighted graphs (see, e.g., [10,12,15,17]). Even for the simplest
(and most fundamental) problem considered in our paper, that of finding a minimum-cost
biconnected graph spanning a given set of points in the Euclidean plane, for a long time
obtaining approximations achieving better than a3

2 ratio had been elusive and only very
recently has a PTAS been developed [6]. For any fixedε > 0, this algorithm outputs
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a (1 + ε)-approximation in expected timen (log n)O((log log n)9). The approximation
scheme developed in [6] can be extended to arbitraryk andd, but in the general case the
dependence onk and particularly ond makes the algorithm impractical. For anε > 0, the

algorithm runs in expected timen · 2(log log n)
2 d+(2 d

2 )·((O(d k2/ε))d log(ε−1))!. Note thatd
plays a large role in the running time of these schemes. In fact, the result from [6] implies
that for everyd = Ω(log n), even fork = 2 no PTAS exists unlessP = NP. Thus,
the problem of finding a minimum-cost biconnected spanning subgraph does not have
a PTAS (unlessP = NP) even in the metric case. Hence, our restriction to Euclidean
graphs in low dimensions plays an essential role in these schemes.

A related, but significantly weaker result has been also presented in [5]. Here an
optimal solution to the problem without allowing Steiner points is approximated to an
arbitrarily close degree via the inclusion of Steiner points.

When Steiner points are allowed in the minimum-cost Steinerk-vertex- (ork-edge-)
connectivity problem, the only non-trivial results are known fork = 1, i.e., for the
minimum Steiner tree problem (SMT). In the breakthrough paper [3], Arora designed a
PTAS for SMT for all constantsd. Mitchell independently obtained a similar result for
d = 2 [19]. Soon after Rao and Smith [20] offered a significantly faster PTAS for SMT
running in timeO(n log n) for a constantd. Fork ≥ 2, the only result we are aware of
is a

√
3-approximation in polynomial-time fork = 2 [14].

New results.In this paper we present new polynomial-time approximation schemes for
several of the aforementioned connectivity problems in geometric graphs. We focus on
low connectivity requirements. Each of our approximation schemes either significantly
improves the previously known upper time-bound or is the first PTAS for the considered
problem.

Ourmain new resultis a fast polynomial-time (randomized) approximation scheme
for finding a biconnected graph spanning a set of points in ad-dimensional Euclidean
space and having expected cost within(1 + ε) of optimum. For any constantd andε,
our algorithm runs in expected timeO(n log n). Our scheme is a PTAS for the problem

in R
d for all d such that2dc d2

= poly(n), for some absolute constantc. We can turn
our randomized scheme into a Las Vegas one without affecting its asymptotic time
complexity. With a very slight increase of the running time (a constant factor provided
thatd andε are constant) we can also obtain a deterministic(1+ ε)-approximation. Our
scheme is significantly, i.e., by a factor of at least(log n)O((log log n)9), faster than that
from [6].

Since a minimum-cost biconnected graph spanning a set of points in a metric space
is also a minimum-cost two-edge connected graph spanning this set, our PTAS yields
also the corresponding PTAS for the Euclidean minimum-cost two-edge connectivity.

We extend the techniques developed for the biconnectivity algorithms and present a
fast randomized PTAS for finding a minimum costk-edge connectedmultigraphspan-
ning a set of points in ad-dimensional Euclidean space. The running time of our Las
Vegas scheme isO(n log n) + n 2kO(k)

for any constantd andε.
We are also able to improve upon thek-edge connectivity results from [6] signifi-

cantly. By showing a low-cost transformation of ak-edge connected graph maintaining
the k-edge connectivity and developing novel decomposition properties, we derive a
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PTAS for Euclidean minimum-costk-edge connectivity which for any constantd, ε,
andk, runs in expected timen (log n)O(1). The corresponding scheme in [6] requires
n (log n)O((log log n)9) time whend = 2 and for any constantε, k.

Furthermore, we present a series of new structural results about minimum-cost bicon-
nected Euclidean Steiner graphs, e.g., a decomposition of a minimum-cost biconnected
Steiner graph into minimal Steiner trees. We use these results to derive thefirst PTAS for
the minimum-cost Steiner biconnectivity and Steiner two-edge connectivity problems.
For any constantd andε, our scheme runs in expected timeO(n log n). As a byproduct
of the aforementioned decomposition, we also obtain the first known non-trivial upper
bound on the minimum number of Steiner points in an optimal solution to ann-point
instance of Euclidean minimum-cost Steiner biconnectivity, which is3n − 2.

Techniques.The only two known PTAS approaches to Euclidean minimum-costk-
vertex- (or,k-edge-) connectivity (see [5,6]) are based on decompositions ofk-connected
Euclidean graphs combined with the general framework proposed recently by Arora [3]
for designing PTAS for Euclidean versions of TSP, Minimum Steiner Tree, Min-Cost
Perfect Matching,k-TSP, etc. (For another related framework for geometric PTAS see
[19].) In contrast to all previous applications of Arora’s framework using Steiner points
in the so-called patching procedures [3,5], a patching method free of Steiner points is
given [6]. (Steiner points of degree at least three are difficult to remove fork-connectivity
whenk ≥ 2. This should be compared to the problems considered by Arora [3] and Rao
and Smith [20] where the output graphs have very simple connectivity structure.) This
disallowance in [6] makes it hard to prove strong global structural properties of close
approximations with respect to a given geometric partition.

Structural theorems in Arora’s framework typically assert the existence of a recur-
sive partition of a box containing then input points (perturbed to nearest grid points)
into cubes such that the optimal solution can be closely approximated by a so called
(m, r)-light solution in which, for every cube, there are very few edges crossing its
boundaries. The structural theorem in [6] yields only weaker structural properties of
approximate solutions ((m, r)-grayness and(m, r)-blueness) which bound solely the
number of crossings between the cube boundaries and the edges having exactly one end-
point within the cube. That bound is constant for “short edges” (i.e., edges having length
within a constant factor of the side-length of the cube) and it isO(log log n) for “long
edges” (assuming thatk, d, andε are constant). Furthermore, most of the crossings are
located in one of2 d prespecified points. The weaker structural properties (especially the
fact that there might be as many asΘ(log log n) edges having exactly one endpoint in a
cube in the partition) lead to the high time complexity of the main dynamic programming
procedure in the PTAS presented in [6].

We take a novel approach in order to guarantee stronger structural properties of
approximate solutions disallowing Steiner points. Our approach is partly inspired by the
recent use of spanners to speed-up PTAS for Euclidean versions of TSP by Rao and
Smith [20]. In effect, fork = 2, we are able to prove a substantially stronger structural
property (r-local-lightness, see Theorem 3.1) than that in [6]. It yields a constant upper
bound on the number of long edges with exactly one endpoint in a cube in the partition
provided thatd andε are constant.
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Our proof relies on a series of transformations of a(1+δ)-spanner for the input point
set, having low cost and the so calledisolation property[1], into anr-locally-lightk-edge
connected multigraph spanning the input set and having nearly optimal cost. Without
any increase in the cost, in casek = 2, the aforementioned multigraph is efficiently
transformed into a biconnected graph spanning the input point set. Furthermore, for
the purpose of dynamic programming, we succeed to use a more efficient subgraph
connectivity characterization in casek = 2 than that used in [5,6].

By using merely the aforementioned spanner transformations, we also obtain the fast
randomized PTAS for finding a minimum-costk-edge connectedmultigraphspanning
a set of points in a multi-dimensional Euclidean space.

It seems unlikely that a cost-efficient transformation of ak-edge connected multi-
graph into ak-edge connected graph on the same point set exists. For this reason, in case
of k-edge connectivity, we consider an arbitraryk-edge connected graph on the input
point set instead of a spanner, and derive a series of cost-efficient transformations of
the former into anr-locally-light k-edge connected graph on the input set. The transfor-
mations yield the fastest known randomized PTAS for Euclidean minimum-costk-edge
connectivity.

Our investigations of spanners with the isolation property, theexplicit use of multi-
graphs instead of graphs, and the proof that nearly optimal, low cost spanners possessing
the isolation property inducer-locally-light sub-multigraphs having good approxima-
tion properties are the main sources of the efficiency of the approximation schemes for
Euclidean minimum-cost connectivity problems (without Steiner points) presented in
this paper.

By extending the aforementioned techniques to include Steiner points, deriving the
decomposition of a minimum-cost biconnected Steiner graph into minimal Steiner trees,
and using the generalization of(1 + ε)-spanner to include Steiner points called(1 + ε)-
banyansin [20,21], we obtain the first PTAS for minimum-cost Steiner biconnectivity
and Steiner two-edge connectivity.

Organization of the paper.Section 2 provides basic terminology used in our approxi-
mation schemes. In Section 3 we outline our new PTAS for Euclidean minimum-cost
biconnectivity. Section 4 sketches the PTAS for Euclidean minimum-costk-edge con-
nectivity in multigraphs. In Section 5 we derive our PTAS for Euclidean minimum-cost
k-edge connectivity in graphs. Section 6 presents the PTAS for minimum-cost Steiner
biconnectivity and Steiner two-edge connectivity. Due to space limitations most of our
technical claims and their proofs are postponed to the full version of the paper.

2 Definitions

We consider geometrical graphs. Ageometrical (multi-)graphon a set of pointsS in
R

d is a weighted (multi-)graph whose set of vertices is exactlyS and for which the
costof an edge is the Euclidean distance between its endpoints. The (total) cost of the
(multi-)graph is the sum of the costs of its edges. A (multi-)graphG on S spansS if it
is connected (i.e., there is a path inG connecting any two points inS). As in [3,5,6,20],
we allow edges to deviate from straight-line segments and specify them as straight-lines
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paths (i.e., paths consisting of straight-line segments) connecting the endpoints. This
relaxation enables the edges to pass through some prespecified points (calledportals)
where they may be“bent.” When all edges are straight-line segments,G is called a
straight-line graph. For a multigraphG, thegraph induced byG is the graph obtained
by reducing the multiplicity of each edge ofG to one.

We shall denote the cost of the minimum spanning tree on a point setX by`(mst(X)).
A t-spannerof a set of pointsS in R

d is a subgraph of the complete straight-line graph
onS such that for any two pointsx, y ∈ S the length of the shortest path fromx to y in
the spanner is at mostt times the Euclidean distance betweenx andy [1].

TL BL BR TR

ROOT

Fig. 1. Dissection of a bounding cube inR2 (left) and the corresponding22-ary tree (right). In
the tree, the children of each node are ordered from left to right:Top/Left square,Bottom/Left
square,Bottom/Right square, andTop/Right square.

We hierarchically partition the space as in [3]. Abounding boxof a setS of points
in R

d is a smallestd-dimensional axis-parallel cube containing the points inS. A (2d-
ary) dissection[3] (see Figure 1) of a set of points in a cubeLd in R

d is the recursive
partitioning of the cube into smaller sub-cubes, calledregions. EachregionUd of volume
> 1 is recursively partitioned into2d regions(U/2)d. A 2d-ary tree(for a given2d-ary
dissection) is a tree whose root corresponds toLd, and whose other non-leaf nodes
correspond to the regions containing at least two points from the input set (see Figure 1).
For a non-leaf nodev of the tree, the nodes corresponding to the2d regions partitioning
the region corresponding tov, are the children ofv in the tree.

For anyd-vectora = (a1, . . . , ad), where allai are integers0 ≤ ai ≤ L, the
a-shifted dissection[3,6] of a setX of points in the cubeLd in R

d is the dissection of
the setX∗ in the cube(2 L)d in R

d obtained fromX by transforming each pointx ∈ X
to x + a. A random shifted dissectionof a set of pointsX in a cubeLd in R

d is an
a-shifted dissection ofX with a = (a1, . . . , ad) and the elementsa1, . . . , ad chosen
independently and uniformly at random from{0, 1, . . . , L}.

A crossing of an edge with a region facet of side-lengthW in a dissection is called
relevant if it has exactly one endpoint in the region and its length is at most2

√
d W .

A graph isr-gray with respect to a shifted dissection if each facet of each region in the
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dissection has at mostr relevant crossings. A graph isr-locally-light with respect to a
shifted dissection if for each region in the dissection there are at mostr edges having
exactly one endpoint in the region. A graph isr-light [3,20,6] with respect to a shifted
dissection if for each region in the dissection there are at mostr edgescrossing any of
its facets. (It is important to understand the difference between these two latter notions.)

An m-regular set of portals in a (d − 1)-dimensional region facetNd−1 is an
orthogonal lattice ofm points in the facet where the spacing between the portals is
(N + 1) · m−1/(d−1) (cf. [3]). If a graph isr-locally-light and for each facet in any
region every edge crosses through one of them portals in the facet then the graph is
called(m, r)-locally-light.

3 Algorithm for Euclidean Biconnectivity

In this section wesketcha randomized algorithm that finds a biconnected graph spanning
a setS of n points inR

d whose cost is at most(1+ε) times of the minimum. We specify
here only a key lemma and the structural theorem and defer the detailed description of
the algorithm and its analysis to the full version of the paper.

Our algorithm starts by finding a smallest bounding box for the input point setS,
rescaling the input coordinates so the bounding box is of the form[0,O(n

√
d (1 +

1/ε))]d, and moving the points inS to the closest unit grid points. We shall term the per-
turbed point set aswell-rounded(see also [3,6]). Next, the algorithm finds an appropriate
(1+Θ(ε))-spanner of the well-rounded point set which has the so-called(κ, c)-isolation
propertyfor appropriate parametersκ andc [1].

Definition 3.1. Let c, 0 < c < 1, be a constant and letκ ≥ 1. A geometrical graphG
on a set of points inRd satisfies the(κ, c)-isolation property, if, for each edgee of G of
lengthl, there is a cylinderC of length and radiusc l and with its axis included ine such
thatC intersects at mostκ edges ofG.

In the next step, the algorithm chooses a random shifted dissection and builds the
corresponding shifted2d-ary tree for the perturbedS.

The following key lemma yields a low upper bound on the number of crossings of
the boundaries of a region in the dissection by long edges of the spanner having exactly
one endpoint within the region.

Lemma 3.1. LetG be a geometrical graph spanning a setS of points inR
d and satisfy-

ing the(κ, c)-isolation property, where0 < c < 1 is a constant. There exists a constant
c′ such that for any region in a shifted dissection ofS the number of edges ofG of length
at leastc′ √d times the side-length of the region that have precisely one endpoint within
the region isκ · (d/ε)O(d).

Combining this lemma, with several lemmas that describe graph transformations
reducing the number of crossings of the boundaries of a region in the dissection by short
edges, we obtain the following structural theorem.

Theorem 3.1. Let ε, λ be any positive reals and letk be any positive integer. Next, let
S be a(1 + ε)-spanner for a well-rounded setS of points inR

d that satisfies the(κ, c)-
isolation property with constantc, 0 < c < 1, κ = (d/ε)O(d), and hasn · (d/ε)O(d)
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edges whose total cost equalsLS. Choose a shifted dissection uniformly at random.
Then one can modifyS to a graphG spanningS such that

– G is r-locally-light with respect to the shifted dissection chosen, wherer = 2d+1 ·
d · k2 + d · (O(λ · d3/2))d + (d/ε)O(d), and

– there exists ak-edge connected multigraphH which is a spanning subgraph ofG
with possible parallel edges (of multiplicity at mostk), whose expected (over the
choice of the shifted dissection) cost is at most(1 + ε + k·LS

λ·`(mst) ) times cost of the
minimum-cost ofk-edge connected multigraph spanningS.

Furthermore, this modification can be performed in timeO(d · L · log L) + n · 2dO(d)
+

n · (d/ε)O(d), whereL is the side-length of the smallest bounding box containingS.

Further, our algorithm modifies the spanner according to Theorem 3.1 producing
anr-locally-light graphG wherer is constant for constantε andd. In the consecutive
step, the algorithm runs a dynamic programming subroutine for finding a minimum-cost
two-edge connected multigraph for which the induced graph is a subgraph ofG (note
that by Theorem 3.1 the multigraph has expected cost very close to that of the minimum-
cost of ak-edge connected multigraph spanning the perturbedS). The efficiency of the
subroutine relies on a new, forest-like characterization of the so called connectivity type
of a multigraph within a region of the dissection. It is substantially more concise than
the corresponding one used in [5,6]. Next, the algorithm transforms the multigraph to
a biconnected (straight-line) graph without any increase in cost. Finally, it modifies the
biconnected graph to a biconnected graph on the input set by re-perturbing its vertices.

Theorem 3.2. The algorithm finds a biconnected graph spanning the input set ofn
points inR

d and having expected cost within(1 + ε) from the optimum. The running

time of the algorithm isO(n · d3/2 · ε−1 · log(n d/ε)) + n · 2(d/ε)O(d2)
. In particular,

whend andε are constant, then the running time isO(n log n). For a constantd and

arbitrary s = 1
ε ≥ 1 the running time isO(n s log(n s) + n 2sO(1)

). The algorithm can
be turned into a Las Vegas one without affecting the stated asymptotic time bounds.

Although we have used many ideas from [6] in the design of our algorithm, we have
chosen the method of picking a random shifted dissection given in [3,20,21]. Therefore
we can apply almost the same arguments as those used by Rao and Smith [21, Sections 2.2
and 2.3] to derandomize our algorithm at small increase of the cost

Theorem 3.3. For every positiveε there exists a deterministic algorithm running in

timen (d/ε)O(1) log n + n 2(d/ε)O(d2)
that for every set ofn points inR

d produces a
biconnected graph spanning the points and having the cost within(1+ε) of the minimum.
In particular, whend andε are constant, the running time isO(n log n). For a constant

d and arbitrarys = 1
ε ≥ 1 the running time isO(n sO(1) log n + n 2sO(1)

).

4 Euclideank-Edge Connectivity in Multigraphs

We can extend the techniques developed in the previous sections to the problem of finding
a low-costk-edge connectedmultigraphspanning a set of points inRd fork ≥ 2. To begin
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with, we follow the PTAS from Section 3 up and inclusive the spanner-modification step,
only changing some parameters. The resulting graphG is r-locally-light graph forr =
kd ·(d/ε)O(d2). By Theorem 3.1, there exists ak-edge connected multigraphH such that
the induced graph is a subgraph ofG and the expected cost ofH is at most(1+ ε

4 ) times
larger than the minimum-costk-edge connected multigraph spanningS. As was the case
for the PTAS from Section 3, we can apply dynamic programming to find a minimum-
costk-edge connected multigraphH∗ for which the induced graph is a subgraph ofG.
This time we use a more general (but less efficient) connectivity characterization from
[5] yielding 2O(r!) different connectivity types. In effect, the dynamic programming is
more expensive, and the total running time isn ·2O(r!). Now, it is sufficient to re-perturb
the vertices of the multigraphH∗ (correspondingly to the last step of the PTAS from
Section 3) in order to obtain the following theorem.

Theorem 4.1. Let k be an arbitrary positive integer. There exists an algorithm that
finds ak-edge connected multigraph spanning the input set ofn points inR

d and having
expected cost within(1 + ε) from the optimum. The running time of the algorithm is

O(n · d3/2 · ε−1 · log(n d/ε)) + n · 2O((kd·(d/ε)O(d2))!). In particular, whend and ε

are constant, then the running time isO(n log n) + n 2kO(k)
. For a constantd and an

arbitrary s = 1
ε ≥ 1 the running time isO(n s log(n s)) + n 2(k s)O(k s)

. The algorithm
can be turned into a Las Vegas one without affecting the stated asymptotic time bounds.

Recall the use of Steiner points in the first attempt of deriving PTAS for the Eu-
clidean minimum-costk-connectivity in [5] by allowing them solely on the approxima-
tion side. As a byproduct, we can substantially subsume the results on minimum-cost
k-connectivity from [5] in the complexity aspect by using Theorem 4.1.

5 Euclideank-Edge Connectivity in Graphs

Our spanner approach to biconnectivity relies on an efficient transformation of a two-
edge connected multigraph into a biconnected graph on the same point set without
any cost increase. Unfortunately, it seems that fork > 2 there is no any similar cost-
efficient transformation betweenk-edge connectedmultigraphsandk-vertex- ork-edge
connectedgraphs. We show in this section that an arbitrary (in particular, minimum-
cost) k-edge connected graph spanning a well-rounded point set admits a series of
transformations resulting in anr-locally-light k-edge connected graph on this set with a
small increase in cost. By some further small cost increase, we can make the latter graph
(m, r)-locally-light in order to facilitate efficient dynamic programming.

The following lemma plays a crucial role in our analysis. Intuitively, it aims at
providing a similar transformation of the input graph as that presented in Lemma 3.1.
The main difficulty here is in the fact that the input graph may be arbitrary (while in
Lemma 3.1 we have analyzed graphs having the isolation property).

Lemma 5.1. Let G be a spanning graph of a well-rounded point setS in R
d. For any

shifted dissection ofS, G can be transformed into a graphG′ satisfying the following
three conditions:

– if G′ is different fromG then the total cost ofG′ is smaller than that ofG,
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– for any region of sizeW in the dissection there are positive realsxi, i = 1, . . . , 2O(d),
greater than4

√
d W such that the number of edges having theirs lengths outside

any of the intervals[xi, 2 xi), and each having precisely one endpoint within the
region is2O(d),

– if G is k-edge connected then so isG′.

Lemma 5.1 guarantees that in the graph resulting from the transformation provided
in the lemma no region in the dissection is crossed by too many long edges having their
length outside finite number of intervals of the form[x, 2x), x > 4

√
d W and one point

inside the region. The following lemma reduces the number of the remaining edges.

Lemma 5.2. Let G be anr-gray spanning graph of a well-rounded setS of points in
R

d. Let Q be a region of sizeW in the dissection ofS, and letxi, i = 1, . . . , 2O(d),
be positive reals greater than4

√
d W . If there areL edges having their lengths outside

the intervals[0, 2
√

d W ], [xi, 2 xi), i = 1, . . . , 2O(d), and such that each has precisely
one endpoint inQ, then there are at mostL+ r 2O(d) edges crossing the facets ofQ and
having one endpoint inQ.

By these two lemmas, we obtain our structure theorem fork-edge connectivity.

Theorem 5.1. Letε > 0, and letS be a well-rounded set ofn points inR
d. A minimum-

costk-edge connected graph spanningS can be transformed to ak-edge connected
graphH spanningS such that

– H is (m, r)-locally-light with respect to the shifted dissection, wherem = (O(ε−1 ·√
d · log n))d−1 andr = (O(k2 · d3/2 / ε))d, and

– the expected (over the choice of the shifted dissection) cost ofH is at most(1 + ε)
times larger than that of the minimum-cost graph.

The concept of(m, r)-local-lightness is a very simple case of that of(m, r)-blueness
used in [6]. Therefore, we can use a simplified version of the dynamic programming
method of [6] involving thek-connectivity characterization from [5] in order to find an
(m, r)-locally-light k-edge connected graph on a well-rounded point set satisfying the
requirements of Theorem 5.1. This yields a substantially faster PTAS for the Euclidean
minimum-costk-edge connectivity than that presented in [6].

Theorem 5.2. Let k be an arbitrary positive integer and letε > 0. There exists a ran-
domized algorithm that finds ak-edge connected graph spanning the input set ofn points
in R

d and having expected cost within(1 + ε) from the optimum. The expected running

time of the algorithm isn · (log n)(O(k2·d3/2 / ε))d · 2O(((k2·d3/2 / ε)d)!). In particular,
whenk, d, andε are constant, then the running time isn (log n)O(1).

6 Euclidean Steiner Biconnectivity

In this section we provide the first PTAS for Euclidean minimum-cost Steiner biconnec-
tivity and Euclidean minimum-cost two-edge connectivity. For any constant dimension
andε, our scheme runs in timeO(n log n). Our proof relies on a decomposition of a
minimum-cost biconnected Steiner graph into minimal Steiner trees and the use of the
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so called(1 + ε)-banyansintroduced by Rao and Smith [20,21]. As a byproduct of
the decomposition, we derive the first known non-trivial upper bound on the minimum
number of Steiner points in an optimal solution to ann-point instance of Euclidean
minimum-cost Steiner biconnectivity which is3n − 2.

Since for any set of pointsX in R
d the minimum-cost of a biconnected graph

spanningX is the same as the minimum-cost of a two-edge connected graph spanning
X, in the remaining part of this section we shall focus only on the Euclidean minimum-
cost Steiner biconnectivity problem. By a series of technical lemmas, we obtain the
following characterization of any optimal graph solution to the Euclidean minimum-
cost Steiner biconnectivity problem.

Theorem 6.1. LetG be a minimum-cost Euclidean Steiner biconnected graph spanning
a setS of n ≥ 4 points inR

d. ThenG satisfies the following conditions:
(i) Each vertex ofG (inclusive Steiner points) is of degree either two or three.

(ii) By splitting each vertexv of G corresponding to an input point intodeg(v) indepen-
dent endpoints of the edges, graphG can be decomposed into a number of minimal
Steiner trees.

(iii) G has at most3n − 2 Steiner points.

6.1 PTAS

Our spanner-based method for Euclidean minimum-cost biconnectivity cannot be ex-
tended directly to include Euclidean minimum-cost Steiner biconnectivity since spanners
do not include Steiner points. Nevertheless, the decomposition of an optimal Steiner so-
lution into minimum Steiner trees given in Theorem 6.1 opens the possibility of using
the aforementioned banyans to allow Steiner points for the purpose of approximating
the Euclidean minimum Steiner tree problem in [20].

Definition 6.1. [20] A (1 + ε)-banyan of a setS of points inR
d is a geometrical

graph on a superset ofS (i.e., Steiner points are allowed) such that for any subsetU
of S, the cost of the shortest connected subgraph of the banyan which includesU , is at
most(1 + ε) times larger than the minimum Steiner tree ofU .

Rao and Smith have proved the following useful result on banyans in [20].

Lemma 6.1. Let 0 < ε < 1. One can construct a(1 + ε)-banyan of ann-point set in
R

d which uses onlydO(d2) (d/ε)O(d) n Steiner points and has cost within a factor of
dO(d2) ε−O(d) of the minimum Steiner tree of the set. The running time of the construction
is dO(d2) (d/ε)O(d) n + O(d n log n).

By combining the definition of(1+ε)-banyan with Theorem 6.1 (2) and Lemma 6.1,
we get the following lemma.

Lemma 6.2. For a finite point setS in R
d let B be a(1 + ε/4)-banyan constructed

according to Lemma 6.1. LetBm be the multigraph obtained fromB by doubling its
edges. There is a two-edge connected sub-multigraph ofBm which includesS and whose
cost is within(1 + ε/4) of the minimum cost of two-edge connected multigraph on any
superset ofS.
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Let B∗
m be the multigraph resulting from scaling and perturbing all the vertices (i.e.,

also the Steiner points) of the multigraphBm specified in Lemma 6.2 according to the
first step in Section 3. The vertices ofB∗

m are on a unit grid[0, L]d and, by arguing
analogously as in Section 3, a minimum-cost two-edge connected sub-multigraph of
B∗

m that includesS is within (1 + ε/4) of a minimum-cost two-edge connected sub-
multigraph ofBm that includesS.

The patching method of [5] applied toB∗
m yields the following structure theorem.

Theorem 6.2. Choose a shifted dissection of the set of vertices of the banyanB at
random. ThenB∗

m can be modified to a multigraphB′
m such that:

– B′
m is r-light with respect to the shifted dissection, wherer = (O(

√
d/ε))d−1,

– the set of vertices ofB′
m includes that ofB∗

m and some additional vertices placed
at the crossings between the edges ofB∗

m and the boundaries of the regions in the
shifted dissection,

– there exists a two-edge connected sub-multigraph ofB′
m includingS whose expected

cost is within(1+ ε/4) of the minimum-cost of two-edge connected sub-multigraph
of B∗

m that includesS.

To find such a subgraph ofB′
m efficiently we apply a simplification of the dynamic

programming method used by the PTAS from Section 3 to the set of vertices ofB∗
m

(it would be even simpler to use a modification of the dynamic programming approach
from [5]). In effect we can findB′

m in expected timeO(n log n) for constantε andd.
By combining this with Lemma 6.2, Theorem 6.2, and the efficient transformation of
two-edge connected multigraphs into biconnected graphs, we obtain the main result in
this section.

Theorem 6.3. There exists an approximation algorithm for the minimum-cost Steiner
biconnectivity (and two-edge connectivity) which for anyε > 0 returns a Euclidean
Steiner biconnected (or two-edge connected) graph spanning the input set ofn points in
R

d and having expected cost within(1 + ε) from the optimum. The running time of the

algorithm isO(n d3/2 ε−1 log(n d/ε)) + dO(d2) (d/ε)O(d) n + n 2(
√

d/ε)d (O(
√

d/ε))d−1

.
In particular, whend and ε are constant, then the running time isO(n log n). The
algorithm can be turned into a Las Vegas one without affecting asymptotic time bounds.
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