
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Teaching programming to young learners using Scala and Kojo

Regnell, Björn; Pant, Lalit

Published in:
LTHs Pedagogiska Inspirationskonferens

2014

Link to publication

Citation for published version (APA):
Regnell, B., & Pant, L. (2014). Teaching programming to young learners using Scala and Kojo. In LTHs
Pedagogiska Inspirationskonferens (Vol. 8). Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/251806ee-8c6c-4e98-a56d-7dfc877d9d08


LTHs 8:e Pedagogiska Inspirationskonferens, 17 december 2014

Teaching programming to young learners
using Scala and Kojo

Björn Regnell*, Lalit Pant+
*Dept. Computer Science, Lund University, Sweden, bjorn.regnell@cs.lth.se

+Kogics, Dehradun, India, lalit@kogics.net

Abstract—This paper presents an approach to teaching pro-
gramming and abstract thinking to young learners using Scala
and Kojo. Kojo is an open source IDE for the Scala programming
language. The approach is based on Scala APIs for turtle graphics
and functional pictures, a process of interactive exploration
and discovery, and structured learning material that guides
learners. The approach encourages playful self-learning of basic
programming principles such as sequential execution, repetition,
primitives, composition, abstraction, parametrized abstraction,
and nested abstractions. It also includes tools to help children
read and understand programs. Results from the use of Kojo
and Scala in the teaching of young learners in Sweden and India
are presented, along with a discussion of experiences and future
development.

Index Terms—computer science education, first language,
Scala, Kojo, turtle graphics, functional picture graphics

I. INTRODUCTION

This paper describes how Scala and Kojo can be used to
teach programming and abstract thinking to young learners.
Kojo is an open source Integrated Development Environment
(IDE) for the Scala programming language [3], targeting
beginners and young learners. The approach includes a step-
wise introduction of basic programming principles such as
sequential execution, repetition, composition, and abstraction.
Experiences from the application of Kojo and Scala in teaching
of young learners in Sweden and India are presented, along
with a discussion of some advantages and challenges with
using Scala as a first language for young beginners. The paper
concludes with a list of ideas for further improvement of the
pedagogical material and tools.

II. BACKGROUND

The Kojo project [2] was started in 2009, by its main
contributor Lalit Pant, with the goal of providing an interactive
learning environment for children in the areas of program-
ming, mathematics, science, art, and more. Kojo combines a
programming environment for Scala with graphics capabilities.
The programming environment supports syntax high-lighting,
code completion, code templates, evaluation worksheets, inter-
active program manipulation, and program tracing. For graph-
ics, Kojo features a turtle graphics Application Programming
Interface (API) inspired by Papert’s LOGO and constructivist
learning ideas [4]. The turtle API is combined with an API for
functional picture generation and transformation that together
can be used to make drawings and games with concise
code. Kojo also includes features for interactive exploration

of geometry and algebra. Kojo is free software under the
GNU GPL licence. Pull requests are invited on all aspects
of the project, including the core framework, the graphics
API, translation, and documentation. Learning resources are
also open source. Kojo includes code from several other open
source projects such as Piccolo2D [5], and Geogebra [1].

There are many programming environments aimed at help-
ing young learners, including environments based on a pro-
gramming language especially designed for young learners,
such as Scratch [8], and environments using a general, pro-
fessional programming language, such as DrRacket (based on
a Lisp dialect) [7]. Kojo is, to the best of our knowledge, the
first environment for young learners that is based on Scala.

III. APPLICATION

This section presents the application of Scala and Kojo in
teaching in two cases – in Sweden (case 1) and in India (case
2). The contexts are described and some results are provided,
together with examples of challenges given to young learners.

A. Case 1: Science Center LTH, Sweden

A project called ”Programming for Everybody” (subse-
quently denoted PfE) started in 2012 at the Science Center
LTH at Lund University. The general goal of the science
center is to reach out to pre-university education and help to
increase the interest in engineering education among the youth
in southern Sweden. The science center opened in September
2009 and has since then had more than 121,000 visitors of all
ages (as of January 2014). Visitors during weekdays range
from school groups to company events and training. The
center also takes bookings for a variety of different events
and celebrations. It is open to the public on weekends and
school holidays, when everyone is invited to try out interactive
experiments, attend a show, or see an exhibition. Before 2012,
our science center experiments focused on areas such as
physics, chemistry, and electronics, but the area of computer
science was lacking. The main goals of the PfE project are
to (1) develop programming experiments for visitors with
particular focus on school groups, and (2) to develop teacher
training so that pre-university schools for all ages can help
kids to discover the excitement and importance of computer
programming.

Results. Within the PfE project, a Swedish turtle graphics
API translation has been developed, together with a set of
programming ’challenges’ in Swedish – targeting kids of age



LTHs 8:e Pedagogiska Inspirationskonferens, 17 december 2014

TABLE I
EXAMPLES OF CHALLENGES FOR BEGINNERS THAT PROGRESSIVELY INTRODUCE BASIC PROGRAMMING CONCEPTS.

Challenge Image key Solution Programming concept

Your first program:
forward

forward Using an existing abstraction (pro-
cedure)

Draw a square using:
forward; right

forward; right
forward; right
forward; right
forward; right

Sequence

Draw a square using:
repeat(4){ ??? } repeat(4){ forward; right } Repetition

Draw a human/alien/robot using:

forward(100)
right(180)
left(180)
hop(100)
jumpTo(100,100)

//not shown for brevity Using existing, parametrized ab-
stractions (procedures with param-
eters) in sequence

Define your own, reusable square and use it
to draw two squares:

def square = ???

def square =
repeat(4){ forward; right }

square; hop; square

Creating a new abstraction (proce-
dure)

Define a procedure that draws a
stack of 10 squares:

def stack = ???

def square =
repeat(4){ forward; right }

def stack =
repeat(10){ square; hop }

stack

Creating nested abstractions (a pro-
cedure calling a procedure)

Define a procedure that can draw squares of
different sizes:

def square(s: Int) = ???

def square(s: Int) =
repeat(4){
forward(s); right

}
square(100)

Creating abstractions with parame-
ters (a procedure with one integer
parameter)

7 and upwards, with the only pre-requisite being the ability
to read from a computer screen and use a keyboard and
mouse. Since the PfE project started, we have had more
than 7000 kids trying our programming experiments. More
than 60 teachers have passed our programming courses com-
prising 2 half-days with assignments in between, to try out
programming in class using Scala and Kojo. The introduction
to programming to both young learners and to their teachers
is based on a series of programming ’challenges’ that covers a
progression including sequential execution, repetition, abstrac-
tion, parametrized abstraction, and nested abstractions. These
challenges have been iteratively developed based on feedback
from kids and teachers. Table I illustrates how the progression
of basic programming concepts are introduced through turtle
graphics challenges, here translated into English. In Swedish,
the solution to the challenge of drawing a square (”kvadrat”)
is: def kvadrat(s: Heltal) = upprepa(4){fram(s); höger}
This is enabled by Scala’s ability to use åäö in identifiers.
We have iterated the Swedish turtle API translation, based on

feedback from kids and teachers, aiming at Swedish terms that
are short and easy to write and spell. The complete Swedish
translation and the programming challenges in Swedish are
available on-line [6].

B. Case 2: The Kalpana Center and Himjyoti school, India

Kojo was introduced by Lalit Pant at Himjyoti school,
Dehradun, India, in late 2009. Himjyoti is a school for bright,
underprivileged girls from the state of Uttarakhand, India.
At that time, Lalit was a volunteer teacher at Himjyoti.
The motivation for the introduction of Kojo was a desire to
introduce girls of ages 11 – 13 at Himjyoti to an interactive
learning environment, where they could play with concepts in
the areas of programming, math, and science. Kojo was used
at Himjyoti till mid-2011 during one hour long activity classes
that were carried out five times per week.

In mid-2011, Lalit started the Kalpana Research and Learn-
ing center at Dehradun, India, to provide exposure to computer
based interactive learning to children in his neighbourhood,



LTHs 8:e Pedagogiska Inspirationskonferens, 17 december 2014

and to serve as a research lab for his ongoing work with Kojo.
One hour long activity classes are held at the Kalpana center
three evenings a week. The teaching is based on a few key
ideas – interactive exploration and discovery, trial and error,
playfulness, and self-learning.

Results. More than one hundred kids have participated in
the project since its inception – sixty for about six months,
thirty for about twelve months, fifteen for about eighteen
months, and five for more than twenty four months. All the
kids were introduced to procedural and functional abstraction
(via def) while working with the turtle API. Kids who worked
with Kojo for more than a year were also introduced to the
functional pictures API. Table II shows how the pictures API
can be used to progressively build richer drawings using the
basic programming ideas of primitives, composition, abstrac-
tion, and transformation.

IV. EXPERIENCES

Below, we have collected some of our experiences and
reflections in applying Scala and Kojo in the previously
described cases. We start with some of our general views on
the application of Kojo and then continue with some of our
views on Scala-specific matters.
• The power of the turtle. In line with Papert’s original ideas

[4], we have found the turtle metaphor to be a powerful tool in
helping learners to understand programming through the act of
drawing. Writing a sequence of commands to make the turtle
create a desired drawing is a natural way to start learning how to
program for most of the learners we have met.

• Learning by trial and error with simple building blocks. It
is interesting to see how far learners can go in the process of
making drawings and games using just a very simple subset
of Scala (via vals and defs). Playing with working code
examples that show something in action can help understanding
significantly. This is facilitated by the quick edit-execution cycle
in the IDE. The interactive program manipulation feature of
Kojo also encourages learners to quickly try out many different
ideas (using a slider), while program tracing helps them to gain
insights into what the program does as it runs. If the teacher can
help the learner to find this process of experimental coding joyful
and rewarding, it is more likely that an eagerness to continue
with programming is preserved.

• Understanding abstraction. For many learners, the introduc-
tion of user-defined commands (i.e., procedural abstraction) is
an aha! moment, where they appreciate the power that has
just been handed to them. Some learners, however, struggle to
understand the significance of abstraction, and need to see more
examples and to repeatedly experience the benefits of achieving
more with less before they get it. We have found that the pace
and sequencing of programming challenges and advancement
in abstraction mechanisms need to be carefully adapted to each
individual learner’s current level. It is easy to loose confidence
and interest when programs seem to become needlessly complex
and do not run as you want. An important role of the teacher is
to help young learners overcome such obstacles and at the same
time find ways to demonstrate the utility of abstraction in con-
crete solutions to programming challenges that are interesting
and relevant to the young learner. Real-world analogies are also
helpful in getting learners to relate to abstraction.

• Parameters and types. As soon as kids try procedural ab-
straction with parameters, they run into the concept of types.

TABLE II
EXAMPLES OF CHALLENGES THAT PROGRESSIVELY INTRODUCE

PROGRAMMING CONCEPTS USING KOJO’S FUNCTIONAL PICTURES API.

Image key Solution

// Defining a primitive:

def p = Picture {
repeat(4){ forward(100); right(90) }

}
draw(p)

// Using composition to combine
// primitives; nested composition:

draw(picRow(p, picCol(p, p), p))

// Using abstraction to give names to
// compositions; nested abstraction:

def p2 = picRow(p, picCol(p, p), p)
val p3 = picCol(p2, p2)
draw(p3)

// Using and composing transformations:

def p2 = penColor(darkGray) ->
picRow(p, picCol(scale(1.1) -> p,
fillColor(blue) * rot(30) -> p),
p)

val p3 =
picCol(flipX -> p2, trans(0, 5) -> p2)

draw(p3)

// Applying effects:

val p3 = picCol(
flipX * fade(250) * blur(2) -> p2,
trans(0, 5) -> p2

)
draw(p3)

// A more elaborate drawing:

def star = fillColor(yellow) *
penColor(noColor) -> Picture {
repeat(5){
forward(150)
right(720/5)

}
}

cleari()
setBackground(Color(0, 149, 145))
val pic = picStack(
weave(30, 10, 30, 10) *
fillColor(red) *
trans(-200, -200) ->
PicShape.rect(400, 400),

star,
flipX * fade(140) * blur(2) -> star

)
draw(pic)



LTHs 8:e Pedagogiska Inspirationskonferens, 17 december 2014

The slower learners have initial trouble with this, while the
faster learners experience this as an opportunity to learn more.
When they achieve the level of making and using their own
parameterized abstractions, young learners often express the joy
of having ”done it myself”. This in turn can be a strong driver for
their internal motivation to continue learning, despite the efforts
needed to overcome challenging concepts.

A. Advantages and Challenges of Scala as First Language

Next, we list some of our subjective reflections on the of
using Scala as a first language for young learners. These
reflections need to be investigated further, before any firm
conclusions can be drawn on advantages and disadvantages
of using Scala as a first language for young learners.

The advantages that we have perceived include:
• A ”real”, general purpose, professional programming lan-

guage. We have found that many young learners, as well as many
of their teachers, appreciate learning how to program using a
”real” programming language – in the sense of a full-fledged,
professionally used language, rather than a special language for
kids.

• Low floor – high ceiling. Scala’s concise, light-weight syntax
and orthogonality of features makes it easy to start with a limited
part of the language. Code can be ”to the point” and the language
does not get in the way as learners go about their work. As
learners progress, more advanced abstraction mechanisms can
be introduced step by step, in a carefully thought out progres-
sion. With Scala, challenges can range from pre-school to post
graduate level, and learners can code at their level of fluency.

• Wide walls. The experimentation opportunities are wide due
to direct access to the large base of existing, open source,
Java libraries. This also supports the sense of being part of
”real-world programming”, which is motivating to many young
learners as mentioned previously.

• Flexible and pragmatic. Scala is flexible [3] in the sense that
it is up to the coder to make a pragmatic choice about what
paradigms and idioms to use. The teacher can use the same
language to contrast different paradigms and the learner can play
with different idioms without having to learn another language.
The optional operator notation also makes it easy to provide
APIs, such as Kojo’s turtle and pictures APIs, which act as
concise sub-languages.

• Native language coding. Scala’s support for UTF identifiers
enables the Swedish letters Å, Ä and Ö in Kojo’s turtle API.
Learning to program in a foreign language can be difficult.
Native coding enables not yet English-speaking learners to climb
the thresholds of computational thinking without also having to
deal with foreign concepts.

• Catching bugs at compile-time. Static typing gives feedback at
compile time, helping young learners to catch bugs earlier, and
reducing the risk of young learners giving up because of bugs in
larger programs that are too difficult to track down at run time.

There are some challenges that we have faced when using
Scala as a first language for young learners, including:
• Difficult error messages. Error messages are often difficult

for young learners to interpret and make use of. These are
expressed in compiler-oriented terminology, and the young
programmer often has no hints on what needs to be changed
in order for the program to compile. Learners are left to
work around this by using IDE functionality to locate the

line in the code where the error is, and inspecting the source
to determine the error.

• Strange types. A type annotation can be a double-edged
sword. Types can get in the way of slower learners, while
they facilitate increased learning for faster learners. Teachers
may need to prepare simple explanations and use helpful
analogies to convey what types are good for.

V. FUTURE WORK

We conclude this paper with a list of areas of particular
interest to the further development of Kojo and Scala as tools
for teaching programming, and more, to young learners.
• Empirical studies on Scala teaching. What works for which

category of learners? What are feasible progressions? What
subset of Scala is best at what stage? These questions, and more,
would be interesting to study empirically with young learners as
subjects.

• More learning material for young learners. Develop more
learning material, e.g., on how to make rich art and fun games,
with the help of math and physics, using Scala and Kojo.

• Better error messages. Provide simpler error messages with
better hints on fixes. Investigate the opportunity of using lan-
guage levels, as in Racket [7], which restrict available language
features, while providing error messages that fit the learner’s
level of knowledge.

• Improved gaming support. Improve support for sprites, col-
lision detection, and physics for more realistic games. Game-
making engages young learners, and provides opportunity for
learning mathematics, physics, and more advanced program-
ming.

• Hardware control. Introduce support for physical computing
using Arduino and the Raspberry Pi, as another area that has
the potential to engage young learners in learning robotics
and computer systems and understanding how hardware can be
controlled by software.

• More translation. Kojo’s menus are currently available in En-
glish, Swedish, French, Polish, and Dutch; the Turtle API is
available in English, Swedish, Polish, and Dutch. Translation
contributions are invited for more languages and more of the
Kojo APIs.

Acknowledgments. The PfE project is partly funded by the
Faculty of Engineering LTH, Lund University, Sweden. We thank
all contributors to the Kojo project and all the wonderful kids who
have helped us understand more about how to teach programming.
Sponsors of the Kojo project include Kogics, Lund University,
Typesafe and REACHA.

REFERENCES

[1] Geogebra home page. http://www.geogebra.org.
[2] Kojo home page. http://www.kogics.net/kojo.
[3] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian

Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. An overview of the Scala programming
language. Technical Report, IC/2004/64, EPFL Lausanne, Switzerland,
2004.

[4] Seymour Papert. Mindstorms: Children, computers, and powerful ideas.
Basic Books, Inc., 1980.

[5] Piccolo 2D home page. http://www.piccolo2d.org.
[6] Project ’Programming for everybody’ home page. http://www.lth.se/

programmera.
[7] Racket home page. http://racket-lang.org/.
[8] Scratch home page. http://scratch.mit.edu/.


