
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Reduced Complexity Window Decoding Schedules for Coupled LDPC Codes

Ul Hassan, Najeeb; Pusane, Ali Emre; Lentmaier, Michael; Fettweis, Gerhard; Costello Jr.,
Daniel J.
Published in:
2012 IEEE Information Theory Workshop

DOI:
10.1109/ITW.2012.6404660

2012

Link to publication

Citation for published version (APA):
Ul Hassan, N., Pusane, A. E., Lentmaier, M., Fettweis, G., & Costello Jr., D. J. (2012). Reduced Complexity
Window Decoding Schedules for Coupled LDPC Codes. In 2012 IEEE Information Theory Workshop (pp. 20-
24). IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ITW.2012.6404660

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ITW.2012.6404660
https://portal.research.lu.se/en/publications/63f01460-a9ce-4977-8a54-8a25c03d4eca
https://doi.org/10.1109/ITW.2012.6404660


Reduced Complexity Window Decoding Schedules
for Coupled LDPC Codes

Najeeb ul Hassan†, Ali E. Pusane∗, Michael Lentmaier†, Gerhard P. Fettweis†, and Daniel J. Costello, Jr.‡
†Vodafone Chair Mobile Communications Systems, Dresden University of Technology (TU Dresden), Dresden, Germany,

{michael.lentmaier, najeeb.ul.hassan, fettweis}@ifn.et.tu-dresden.de
∗Dept. of Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey, ali.pusane@boun.edu.tr
‡Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana, USA, costello.2@nd.edu

Abstract—Window decoding schedules are very attractive for
message passing decoding of spatially coupled LDPC codes. They
take advantage of the inherent convolutional code structure and
allow continuous transmission with low decoding latency and
complexity. In this paper we show that the decoding complexity
can be further reduced if suitable message passing schedules
are applied within the decoding window. An improvement based
schedule is presented that easily adapts to different ensemble
structures, window sizes, and channel parameters. Its combi-
nation with a serial (on-demand) schedule is also considered.
Results from a computer search based schedule are shown for
comparison.

I. INTRODUCTION

When a sequence of LDPC code blocks are coupled together
to form a terminated convolutional code [1], a remarkable
threshold saturation effect is observed: the belief propagation
(BP) decoding threshold of the coupled ensembles converges
to the optimal maximum a-posteriori probability (MAP) de-
coding threshold of the underlying block ensemble as the
number L of coupled blocks increases [2], [3]. On the other
hand, for channel parameters close to the threshold, the
decoding complexity per symbol increases linearly with L if
a standard BP block decoder is used [4]. Such a complexity
increase occurs not only for a parallel (flooding) schedule but
also for a serial (on-demand) schedule [5], [6], [7] if every
check node and variable node is updated at each decoding
iteration, i.e., if the schedule is uniform. Examples of non-
uniform schedules for which the complexity is independent of
L are the improvement based schedule (MPS-III) introduced
in [8] and the sliding window decoder discussed in [9]. The
window decoder has the additional advantage of a limited
decoding delay.

While the node updates in [9] are restricted to a sliding
window of size W , they are still performed according to
a uniform parallel schedule within the decoding window. In
this paper we investigate the combination of sliding window
decoding with different serial and/or non-uniform update rules
within the window, which are shown to further reduce the
decoding complexity.

This work was supported in part by the DFG in the CRC 912 HAEC,
European Social Fund in the framework of the Young Investigators Group
3DCSI, TÜBİTAK Grant 111E276, EU FP7 Marie Curie IRG Grant 268264,
and NSF Grant CCF-1165714.

II. EFFICIENT MESSAGE PASSING SCHEDULES

A. Parallel and Serial Schedules

For BP decoding of LDPC block codes the message passing
schedule that is most commonly used is the flooding schedule:
in each decoding iteration all check nodes are updated first
and then all variable nodes are updated. At every node update
all incoming messages are processed to create new outgoing
messages that are then passed back to each neighboring
node. Since the processing at the nodes can be performed
independently in parallel, this schedule is also known as a
parallel schedule.

It is a consequence of the parallel node update that newly
calculated messages cannot be directly reused within the same
decoding iteration. Such a direct update of messages, which
leads to a faster message flow through the graph, is enabled by
a serial schedule: in each decoding iteration all check nodes
are serially updated in a predefined order. At each check node
update, all neighboring variable nodes are requested to produce
new messages for the active check node using their latest set
of incoming messages. These newly produced messages are
then used by the active check node to produce new outgoing
messages to be sent back to each neighboring variable node.
This serial check node (or on-demand variable node) schedule
can also be modified to a dual serial variable node (or on-
demand check node) schedule. Such direct message update
schedules typically reduce the required number of iterations by
a factor two [5], [6], [10] and further reductions are possible
with some generalizations [7].

B. Spatial Coupling: LDPC Convolutional Codes

Consider the transmission of a sequence of codewords vt,
t = 1, . . . , L, using a protograph based LDPC code. An
essential feature of LDPC convolutional (LDPCC) codes [1]
is that the blocks at different time instants are interconnected.
Instead of encoding all codewords independently, the blocks
vt are coupled by the encoder over various other time instants.
The maximal distance between a pair of coupled blocks defines
the memory mcc of the convolutional code. The coupling of
consecutive blocks can be achieved by an edge spreading
procedure [11] that divides the edges from variable nodes
at time t among equivalent check nodes at times t + i,
i = 0, . . . ,mcc. This procedure is illustrated in Fig. 1 for a



B

B = [3, 3]
=⇒

B0 = B1 = B2 = [1, 1]

B0 B1 B2

5

t = 1 t = 2 t = 5t = 3 t = 4 t = 6

Fig. 1. Illustration of edge spreading: the protograph of a (3,6)-regular
block code with base matrix B is repeated L = 6 times and the edges are
spread over time according to the component base matrices B0, B1, and B2,
resulting in a terminated LDPC convolutional code.

whose weights are reduced as a result of the termination at

the ends of the convolutional ensemble. The corresponding

check nodes at the start and end of the protograph have lower

degrees (see also Fig. 1), resulting in a slight irregularity

with stronger protection of the symbols associated with the

connected variable nodes. As L → ∞, the fraction of lower

degree check nodes vanishes and the degree distribution of

the coupled ensemble B[1,L] converges to that of the original

block code ensemble B. As a consequence, the ensemble of

terminated LDPC convolutional codes considered in Fig. 1

(which we subsequently refer to as Ensemble A) forms an

example of asymptotically regular LDPC codes. Despite of

the vanishing fraction of stronger check nodes, it turns out that

the coupled ensembles have a substantially better BP decoding

threshold than the block ensembles they are constructed from.

In particular, as L → ∞ the BP decoding threshold of the

coupled ensembles converges to the optimal MAP decoding

threshold of the underlying block ensemble. For regular LDPC

codes this threshold saturation phenomenon has been proven

analytically for the BEC in [3], and it can be observed em-

pirically for the AWGN channel as well. The slight structured

irregularity of the coupled ensembles leads to BP decoding

thresholds that approach the Shannon limit as the node degrees

increase.

III. COMPLEXITY ANALYIS FOR DIFFERENT MESSAGE

PASSING SCHEDULES

We assume that transmission takes place over the AWGN

channel and consider BP decoding with log-likelihood ratios

(LLRs) acting as messages. Let Lch(i) denote the channel LLR

of code symbol i and Lc(e) and Lv(e) denote the messages

passed from a check node and a variable node along an edge

e, respectively. The edges connected to a variable node i or a

check node m are labeled by evi,j or ecm,k. The j-th edge of

variable node i is connected to the k-th edge of check node

m if evi,j = ecm,k. Before decoding, all messages Lv(e) are

initialized with the incoming channel LLRs and all messages

Lc(e) are set to zero.

A. Conventional Flooding Schedule (MPS-I)

The message passing schedule that is most frequently used

for BP decoding of LDPC codes is the flooding schedule.

10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

I=300

I=340I=200I=100

I=50
I=10

P
b
(t
)

t

Fig. 2. Ensemble A, L = 100, σ = 0.923: Density evolution bit error
probability Pb(t), corresponding to symbols at time instants t = 1, . . . , L,
after different numbers of iterations I .

In each decoding iteration first all check nodes and then

all variables nodes are updated. Since within each decoding

iteration the check node updates and variable node updates of

all nodes can be performed in parallel it is also called parallel

schedule.

Message Passing Schedule I (MPS-I)

1) Check node update:

For all check nodes m = 1, . . . , LNnc

For all edges ecm,k update the outgoing messages

according to

Lc(e
c
m,k) = 2tanh−1


∏

k′ 6=k

tanh

(
Lv(e

c
m,k′)

2

)


2) Variable node update:

For all variable nodes i = 1, . . . , LNnv

For all edges evi,j update the outgoing messages

according to

Lv(e
v
i,j) = Lch(i) +

∑

j′ 6=j

Lc(e
v
i,j′)

For a code with sufficiently large girth, the probability

distribution of the messages Lc(e) and Lv(e) exchanged

during the iterations can be computed by density evolution

within the protograph. We have used the discretized density

evolution technique by Chung [10] for a convergence analysis

of coupled codes from Ensemble A. For a decoder with MPS-

I the bit error probability Pb(t) corresponding to messages

Lv(e) from variable nodes at time t is shown in Fig. 2 for

different numbers of iterations. As expected, for all iterations

the symbols at the start and end of the protograph are better

protected due to the lower check node degrees from the

termination. Furthermore, the curves show that this improved

performance propagates through toward the center as the

number of iterations increases until, eventually, a low Pb(t)
can be observed for all t.

B. Target Probability Based Schedule (MPS-II)

The results in Fig. 2 show that the number of iterations

required to guarantee a particular target error probability

Fig. 1. Illustration of edge spreading: the protograph of a (3,6)-regular
block code with base matrix B is repeated L = 6 times and the edges are
spread over time according to the component base matrices B0, B1, and B2,
resulting in a terminated LDPC convolutional code.

(3,6)-regular protograph with nv = 2 variable nodes, nc = 1
check node, and base matrix B = [3, 3]. In order to maintain
the degree distribution and structure of the original ensemble,
a valid edge spreading should satisfy the condition

mcc∑

i=0

Bi = B . (1)

The resulting ensemble can be described by means of a
convolutional protograph with base matrix

B[1,L] =




B0

...
. . .

Bmcc
B0

. . .
...

Bmcc



(L+mcc)nc×Lnv

. (2)

The corresponding sequence of coupled code blocks forms a
codeword v = [v1,v2, . . . ,vt, . . . ,vL] of a terminated LDPC
convolutional code. Note that the mccnc additional check
nodes result in a rate loss due to termination. The block coding
ensemble with disconnected protographs corresponds to the
special case mcc = 0 and B0 = B. The ensembles considered
in this paper are defined in Table I.

C. Decoding Schedules for Coupled LDPC codes

It is widely known that the special structure of convolutional
codes is well-suited for efficient pipeline decoding [1], [10].
Note that the output of the original pipeline decoder in [1] is
equivalent to the output of a standard flooding schedule de-
coder applied to the overall sequence of length L. However, the
pipeline decoder allows for continuous windowed transmission
without any termination or, more practically, termination after
an arbitrarily large number L of consecutively encoded blocks.
A pipeline decoder with a serial (or on-demand) schedule was
considered in [10].

A major drawback of the flooding schedule (and hence the
classical pipeline decoder), is that the number of required
decoding iterations increases with the parameter L for channel
parameters close to the threshold of the coupled ensemble
[4]. Such a dramatic increase in decoding complexity can
be avoided by employing efficient message passing schedules

TABLE I
COMPONENT MATRICES USED IN THE EDGE SPREADING:

Code B mcc Bi

Ensemble A [3 3] 2 B0,1,2 = [1 1]

Ensemble B [3 3] 1 B0 = [2 2],B1 = [1 1]

Ensemble C [4 4] 2 B0 = [2 2],B1,2 = [1 1]

1 2 3 4 5 6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

w
P
b
(p
,w

)

Ip =1

Ip =21

Ip =41

Ip =61

Ip =77

2 3 4 5 6
10

−2

10
−1

10
0

Fig. 2. Bit error probability Pb(p, w), w = 1, . . . ,W , for a window at
position p for Ensemble B on a BEC with the flooding schedule (W = 6,
ε = 0.48).

that make use of the convolutional structure of coupled LDPC
codes. An attractive, practical implementation of such a sched-
ule is the sliding window decoder proposed in [12], [9], for
which both latency and complexity are independent of L. A
two-sided version of such a window decoder has also been
considered using a density evolution analysis in [3].

In the following, using density evolution, we investigate
alternative message passing schedules within the decoding
window that reduce the complexity compared to the windowed
flooding schedules that have been considered so far.

III. WINDOW DECODING SCHEDULES WITH FURTHER
COMPLEXITY REDUCTION

The sliding window decoder of size W operates on a section
of W · nc rows and W · nv columns of the protograph B[1,L]

in (2). For a window at position p, only the first nv symbols,
termed target symbols, are decoded. After a certain number of
iterations Ip are performed at position p, the window slides
nc rows down and nv columns right in B[1,L].

The probabilities of error Pb(p, w), w = 1, . . . ,W , within a
window at position p for Ensemble B on a binary erasure
channel (BEC) with erasure probability ε and the flooding
schedule are shown in Fig. 2. As iterations are performed the
bit error probability for the target symbols within the window
(w = 1) converges to a target error probability Pmax

b = 10−6.
It can be observed from the inset plot of Fig. 2 that increasing
the number of iterations has little effect on the probabilities of
the variable nodes for w > 1. We now discuss two schedules
that utilize this property of the window decoder and apply
a non-uniform update schedule within a window in order to
reduce the complexity of the decoder.



A. Computer search based decoding schedules

One possible way to identify good schedules to decode
a given code ensemble within a window is to perform an
exhaustive search of all possible decoding schedules. In order
to make this schedule search tractable some assumptions need
to be made regarding the decoding schedule structure.

We start by defining a parameter ρW of a decoding schedule
that describes the ratio of the number of node updates to the
number required by the flooding schedule within a window of
size W . As an example, for a window decoder with W = 4
(consisting of 4 check nodes and 8 variable nodes), a decoding
schedule with ρW = 1 updates 4 check nodes and 8 variable
nodes, which could include multiple activations of some nodes.
Similarly, ρW = 3 corresponds to a total of 12 check node
and 24 variable node updates. We further define an iteration
period consisting of ρW ·W iterations and require that each
node within the window is updated at least once within this
period.

Another assumption we make regarding the decoding sched-
ule structure is that the variable nodes at a given time are ac-
tivated following the activation of the associated check nodes.
Let cw and vw, w = 1, . . . ,W , denote the nc check nodes
and the nv variable nodes of the protograph, respectively, at
each position w inside a decoding window of size W . We
then apply the constraint that the variable nodes at position
w are activated following the activation of the check nodes
at position w. This shrinks the search space for the optimum
decoding schedule drastically, since we just need to enumerate
all possible activations of check nodes and the variable node
activations are determined from these.

Following the general philosophy of the window decoder,
one final assumption is made to enforce causality on the order
of the check node activations, i.e., within a window a check
node cw′ cannot be updated after cw′′ for 1 ≤ w′ < w′′ ≤W .

Based on these assumptions a decoding schedule is opti-
mized and repeatedly applied to the window until a maximum
number of repetitions, or iteration periods, is reached or a
correct decision is achieved. For Ensemble B with W = 4,
one iteration period for an optimized schedule with ρW = 2.5,
consisting of 10 iterations, is presented in Fig. 3(a), where the
dots indicate the order in which the check nodes are updated
within one iteration period. Throughout the iterations plotted
in Fig. 3(a), a slight bias is observed towards activating the
check nodes with lower indices (located towards the left side
of the window) more frequently than the others. A similar
and more pronounced effect is observed in Fig. 3(b), where
a decoding schedule optimized for the same ensemble with
window size W = 8 and ρW = 2.25 is plotted. Although
these decoding schedules do not alter the iterative decoding
threshold of the ensemble, they nevertheless reduce the number
of iterations required to achieve the threshold and hence reduce
the decoding complexity. As an example, at ε = 0.48564,
which is the threshold of the ensemble for W = 8, the
optimized decoding schedule requires 964 iteration periods for
reaching Pmax

b = 10−6. This corresponds to 964×2.25 = 2169
flooding iterations, whereas applying the classical flooding

1 2 3 4

9

7

5

3

1

w

It
er
at
io
n
in
d
ex

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

(a)

1 2 3 4 5 6 7 8

16

13

10

7

4

1

w

It
er
at
io
n
in
d
ex bc

bc
bc
bc
bc
bc
bc

bc
bc
bc
bc

bc
bc

bc
bc
bc
bc
bc

(b)

1 2 3 4 5 6 7 8

11

9

7

5

3

1

w

It
er
at
io
n
in
d
ex

bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

(c)

1 2 3 4 5 6 7 8

16

13

10

7

4

1

w

It
er
at
io
n
in
d
ex bc

bc
bc
bc
bc
bc

bc
bc
bc

bc
bc

bc
bc
bc
bc
bc

(d)

Fig. 3. One iteration period of the optimized decoding schedule for (a)
Ensemble B, W = 4, ρW = 2.5 (b) Ensemble B, W = 8, ρW = 2.25 (c)
Ensemble A, W = 8, ρW = 1.5 and (d) Ensemble C, W = 8, ρW = 2
(ε = 0.48).

1 4 6 8 10 12

20

15

10

5

1

w

It
er
at
io
n
in
d
ex

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc

bc
bc
bc
bc

(a)

1 2 3 4 5 6 7 8

1

20

40

60

w

It
er
at
io
n
in
d
ex

bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc

bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc

bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc
bcbc

bcbc
bcbc
bcbc
bc

bcbc
bcbc
bcbc

bcbc
bcbc
bc

bc

bc bc

(b)

1 2 3 4 5 6 7 8

20

15

10

5

1

w
It
er
at
io
n
in
d
ex

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc
bc

bc
bc
bc

bc
bc
bc

bc
bc
bc

(c)

Fig. 4. Schedules adopted by improvement based schedule for (a) Ensemble
A, W = 12 (b) Ensemble B, W = 8 (c) Ensemble C, W = 8 (ε = 0.48).

schedule would require 4636 decoding iterations.
A similar decoding schedule optimization for Ensemble A,

whose result is given in Fig. 3(c), reveals that not all ensembles
enjoy decoding schedules with more frequent check node acti-
vations on the left side of the window. The optimum decoding
schedule consists of activating the check and variable nodes
in the window homogeneously, i.e., the optimum decoding
schedule resembles the flooding schedule with no particular
emphasis given to any part of the window. As another exam-
ple, the optimum decoding schedule for Ensemble C is also
presented in Fig. 3(d).

B. Improvement based decoding schedules

In this section we re-introduce the improvement based
schedule proposed as MPS-III in [8]. In the case of a non-
window decoder, it was observed in [8, Fig. 2] that, at
the center of the protograph, there is little influence from
the strong check nodes at the start of the iterative process.



Similarly, when windowed decoding is applied (see Fig. 2),
there is little improvement in terms of bit error probability for
the nodes at the right side of the window after the first few
decoding iterations.

We apply the improvement based schedule within a window
with an extra constraint that updates are allowed only on the
nodes within the current window. In order to measure the
improvement, we define the fractional bit error improvement
∆P i

b (w)1 for the nodes within the window in the ith iteration
as follows,

∆P i
b (w) =

(P i−1
b (w)− P i

b (w))

P i−1
b (w)

, 1 ≤ i ≤ Ip

In the first iteration all the nodes in the window are up-
dated and the probability is initialized by the channel values
(P 0

b (w) = ε). In the following iterations, the new probabilities
are calculated for each position w within the window. The
variable nodes in iteration i for which ∆P i

b (w) < θ are
excluded from the update list for the (i+ 1)th iteration along
with the check nodes connected to those variable nodes. The
iterations stop once the target error probability Pmax

b is reached
for the target symbols.

By applying an improvement based schedule to a window
decoder, the unnecessary updates on the right side of the
window can be avoided. Figure 4 shows the nodes which
are updated at a particular iteration for Ensembles A, B,
and C for an erasure probability of ε = 0.48. All iterations
until the bit error probability converges to Pmax

b are shown in
this figure since, unlike the schedules in Section III-A, this
schedule is no longer periodic. In the first few iterations all
the nodes show an improvement, and hence are updated, but
after a certain number of decoding iterations are performed
the fractional bit error improvement for the nodes on the right
side of the window is less than θ and hence these nodes are
not updated in the following iteration. This results in a non-
uniform schedule and the decoding complexity is reduced by
eliminating unnecessary updates within the window. We note
that, for a given ensemble, the improvement based decoding
schedule tends to resemble the computer search based schedule
in the sense that a bias in terms of updates is observed for the
nodes on the left side of the window.

IV. RESULTS AND DISCUSSIONS

In this section different window decoding schedules are
compared based on their decoding complexity. To fairly com-
pare complexity, the following observations are made: 1) due
to the sliding window nature of decoding, each node at position
t is updated in multiple window positions and 2) in both
schedules defined in the previous section, not all the nodes
within the window are updated in each decoding iteration.
Based on these observations, let Ut denote the number of times
a variable node and check node at position t are updated during
the iterative process. Furthermore, the average number of node

1The position p of the window is omitted here for simplicity of notation.

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

400

450

t

U
t

Flooding

On−demand

Computer search

Improvement based

On−demand improvement based

Fig. 5. Number of updates Ut for symbols at time t = 1, . . . , L. Ensemble
B, W = 8, ε = 0.48, L = 100.

updates required per symbol is defined as follows [8],

Uavg =
1

L

L∑

t=1

Ut . (3)

For a uniform schedule, all the nodes in the window are
updated in every decoding iteration, and hence Ut is given
as

U uniform
t =

t∑

p=t−W :1≤p≤L
Ip, 1 ≤ t ≤ L . (4)

The values Ut for the schedules discussed in the previous
section are depicted in Fig. 5 for Ensemble B, window size
W = 8, termination length L = 100, and erasure probability
ε = 0.48. For the improvement based schedule, the value
of θ that gives the lowest complexity was experimentally
determined to be 0.001 for all cases. A uniform on-demand
schedule gives us an improvement in complexity, but one can
even gain more by using the improvement based schedule
together with on-demand, as shown in Fig. 5. Furthermore, if
we restrict ourselves to parallel schedules, both the computer
search based schedule and the improvement based schedule
give a significant reduction in complexity compared to the uni-
form flooding schedule, due to avoiding unnecessary updates
for nodes on the right side of the window.

The average updates required per symbol Uavg, as a function
of the erasure probability, is shown in Fig. 6 for Ensembles
B and C. The computer search based schedule provides some
gain compared to the improvement based schedule, but it must
be optimized for the channel value, whereas the improvement
based schedule is more robust and can adapt to the channel
conditions. The computer search based schedule presented
in Fig. 6 is optimized for ε = 0.4856 and ε = 0.4946,
respectively, and hence for ε < 0.44 it is slightly more
complex than the flooding schedule, whereas the improvement
based schedule remains less complex than flooding for the full
range of ε.

Figure 7 shows Uavg as a function of the window size W for
Ensembles B and C. The average node updates for Ensemble
C are lower than for Ensemble B for all schedules, due to the
better threshold of the (4, 8) LDPCC code compared to the
(3, 6) LDPCC code. The improvement based schedule gives
a reduction in complexity for both ensembles compared to



0.4 0.42 0.44 0.46 0.48
0

50

100

150

200

250

300

350

400

ǫ

U
av
g

Flooding

Computer search

Improvement based

(a)

0.4 0.42 0.44 0.46 0.48 0.5
0

50

100

150

200

250

300

350

400

450

ǫ

U
av
g

Flooding

Computer search

Improvement based

(b)
Fig. 6. Average node updates as a function of erasure probability for W = 8
(a) Ensemble B (b) Ensemble C.

4 5 6 7 8

50

100

150

200

250

300

350

W

U
av
g

Flooding

On−demand

Improvement based

On−demand improvement based

Ensemble C

Ensemble B

Fig. 7. Average node updates for Ensemble B (solid lines) and Ensemble C
(dashed lines) as a function of W , L = 100, ε = 0.48.

the uniform (flooding and on-demand) schedules. The gains
are further enhanced by applying on-demand updates together
with an improvement based schedule.

Figure 8 shows the complexity as a function of W for
Ensemble A. Here we present the results for W ≥ 10, since for
ε = 0.48 a larger window must be used for coupled ensembles
with single edges in the convolutional protograph (see Fig. 1).
The uniform on-demand schedule already provides a large
improvement compared to the flooding schedule, and little
additional gain is obtained by using the improvement based
schedule. The same can also be observed for the (4, 8)-regular
LDPCC code with single edges (not plotted here). This shows
that for ensembles with single edges, the on-demand schedule
is already close to optimal and little gain is obtained by using
a non-uniform schedule. On the other hand, a large value
of W is required for these ensembles, which, for the case
of latency constrained applications, can be a problem [13].
The ensembles with double edges were proposed in [12] to
achieve the target error probability with a smaller W . For
this case the gain in terms of complexity when using the on-
demand schedule is smaller than for the non-uniform schedules
discussed here.

V. CONCLUSION

While previous considerations of window decoding assume
a uniform flooding schedule within the decoding window,
we have shown that, especially for channel parameters close

10 11 12 13 14

50

100

150

200

250

300

350

W

U
av
g

Flooding

On−demand

Improvement based

On−demand improvement based

Serial

Parallel

Fig. 8. Average node updates for Ensemble A as a function of W , L = 100,
ε = 0.48.

to the threshold, the complexity can be further reduced by
schedules with non-uniform updates. Both parallel and serial
(on-demand) update rules have been considered. A flexible
adaptive improvement based schedule is proposed as an alter-
native to extensive computer searches for optimal schedules
that become unfeasible as the window size increases and the
channel parameter varies.

REFERENCES

[1] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convo-
lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181 –2191, Sep. 1999.

[2] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via
spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834,
Feb. 2011.

[3] M. Lentmaier, A. Sridharan, D. Costello, and K. Zigangirov, “Iterative
decoding threshold analysis for LDPC convolutional codes,” IEEE Trans.
Inf. Theory, vol. 56, no. 10, pp. 5274 –5289, Oct. 2010.

[4] M. Lentmaier and G. Fettweis, “Coupled LDPC codes: Complexity
aspects of threshold saturation,” in Proc. IEEE Information Theory
Workshop (ITW), Oct. 2011, pp. 668 –672.

[5] J. Zhang and M. Fossorier, “Shuffled belief propagation decoding,” in
Proc. Thirty-Sixth Asilomar Conf. on Signals, Systems and Computers,
vol. 1, Nov. 2002, pp. 8–15.

[6] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief
propagation decoding,” Physica A: Statistical Mechanics and its Appli-
cations, vol. 330, pp. 259 – 270, 2003.

[7] E. Sharon, N. Presman, and S. Litsyn, “Convergence analysis of gen-
eralized serial message-passing schedules,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 6, pp. 1013 –1024, Aug. 2009.

[8] M. Lentmaier, M. Prenda, and G. Fettweis, “Efficient message passing
scheduling for terminated LDPC convolutional codes,” in Proc. IEEE
International Symposium on Information Theory (ISIT), Aug. 2011, pp.
1826 –1830.

[9] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[10] A. Pusane, A. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov, and
D. Costello, “Implementation aspects of LDPC convolutional codes,”
IEEE Trans. Commun., vol. 56, no. 7, pp. 1060 –1069, Jul. 2008.

[11] M. Lentmaier, G. Fettweis, K. Zigangirov, and D. Costello, “Approach-
ing capacity with asymptotically regular LDPC codes,” in Proc. Infor-
mation Theory and Applications Workshop (ITA), Feb. 2009, pp. 173
–177.

[12] M. Papaleo, A. Iyengar, P. Siegel, J. Wolf, and G. Corazza, “Windowed
erasure decoding of LDPC convolutional codes,” in Proc. IEEE Infor-
mation Theory Workshop (ITW), Jan. 2010, pp. 1 –5.

[13] N. Ul Hassan, M. Lentmaier, and G. Fettweis, “Comparison of LDPC
block and LDPC convolutional codes based on their decoding latency,”
in Proc. 7’th International Symposium on Turbo Codes & Iterative
Information Processing, Aug. 2012.


