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These new justifications are termed ”scientific”.
But by the term ”scientific” is understood just
what was formerly understood by the term ”re-
ligious”: just as formerly everything called ”reli-
gious” was held to be unquestionable simply be-
cause it was called religious, so now all that is
called ”scientific” is held to be unquestionable.

Leo Tolstoy






Popular Science Summary

Nowadays, cutting-edge technologies require devices to be small, ultrafast,
and operational in a wide range of regimes. To fulfill these requirements
we need to go beyond the traditional materials, i.e. to solids with novel,
unconventional and tailorable properties. Great progress in this direction is
conjectured to stem from materials in which the effect of inter-particle inter-
actions (e.g. among electrons or between electrons and atomic vibrations)
strongly affects the dynamical behavior. In other words, the expectation is
that ”unforeseen” useful properties are most likely to be found in systems
exhibiting a complex behavior, which cannot be reduced to a picture where
particles act if they were mutually independent.

A theoretical description of these systems is not easy; thus, in spite
of the potentially huge technological pay-off, our current understanding
is far from complete, especially in the out-of-equilibrium regime. This
challenging state of affairs is what motivates the strong ongoing effort in
the scientific community to develop theories for systems out of equilibrium.

Often, when knowledge is at an early stage, simplified descriptions are
rewarding for preliminary insight. This strategy is used in this thesis, where
we investigate several simple models lattice systems via density-functional
theory. The latter is a well established theoretical technique (in fact, it is
the current method of choice) for investigations of real materials, which is
used here in a rather novel way. The model used by us here is the Hubbard
model (see Figure). It is one of the simplest pictures of interacting fermions
on a discrete lattice, and yet it exhibits a fascinating and rich physical be-
havior, useful for deep qualitative insight into the properties of real materi-
als where the independent-particle picture fails (materials where electron-
electron interactions make an independent-particle picture not possible, are
commonly referred to as strongly correlated materials/systems).

This thesis concern some intriguing and little-understood properties and
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Figure 0.1: Ultracold atoms moving (confined) in an optical lattice produced by optical
standing waves. For deep confinement, an effective description of this systems can be
given in terms of the Hubbard model. In this case, fermions can tunnel between nearest-
neighbor lattice sites with a tunneling energy ¢. According to the Pauli principle of
quantum mechanics, tunneling for a particle with a given spin projection is possible only
if the final lattice site is empty or occupied with an atom of a different spin projection.
Fermions on the same lattice site and with opposite spin projections have an interaction
energy U, which can be tuned to be either repulsive or attractive. The interplay between
t and U, the particle density, and possibly the underlying confining potential €; determine
the physical properties of the system.

behavior of nonequilibrium fermions.

One of them is clouds of cold atoms expanding in a disordered envi-
ronment. Within density-functional theory, we studied the the so-called
melting of the Mott insulator, a dynamical process due to a complicated in-
terplay among many-body interactions, kinetic energy, and spatial confine-
ment. We simulated large 3D systems (472 lattice sites, with disorder also
taken into account), and also considered collisions between atomic clouds.
Our results showed interesting features, which depend on dimensionality of
the system and the strength of interactions and/or disorder.

We also investigated the electronic conduction in model nanodevices
with disorder, interactions and lattice vibrations. Our main finding was a
robust evidence of a competing behavior between interactions and disorder.
By including lattice vibrations in the picture, we showed how it is possible
to manipulate in a controlled way the nuclear dynamics of a molecular
device via fast electronic external fields, a result of potential interest for
technologies employing mechanical motors at the nanoscale.

These brief remarks give an idea of the contents and the scope of this
thesis. As an outlook, if our work is of any help to improve the understand-
ing of nonequilibrium fermions in general, it is not for us to decide, and
not at this stage. In any case, we vividly hope that it will stimulate further
investigations in this beautiful and challenging field of physics research.



IlonynasipHoe BBeaeHUe

IlonmMmanmne TpUPOALI SABJICHUN KOHICHCUPOBAHHOTO COCTOSTHHS SIBJISETCS
HETPUBHUAJBHON 3aja4eil. B gacTHOCTH, M3yUeHne HEPABHOBECHBIX IIPOIEC-
COB — OJIHO U3 Ba)KHEHINUX HAmpaBjeHnii B pu3nke KOHICHCHPOBAHHOIO
COCTOSIHUSI, KaK U C (PYHIAMEHTAJbHON TOYKHU 3PEHUdA, TaK U C IO3UIUU
[IpUMEHEHUsI STUX 3HaHWil Ha npakTuke. COBpeMeHHbIE TEOPETUIECKHE UC-
cJIeJOBaHUS MOT'YT JaTh OTBET Ha MHOIME BaKHEHIWE BOIIPOCHI TEOPUU
HEPABHOBECHBIX CHCTEM M BHECTU OIPOMHBII BKJIaJl B €€ IIOHUMAaHUeE.

JlocTaToIHO YaCTO MOJTHASA KAPTUHA B3ANMOIEHCTBUsT OOJIBIIION0 9nC/Ia
3JIEKTPOHOB MOKET OBITH MPUOJMKEHHO OMHMCAHA C MTOMOIILIO OoJiee Tpo-
CTOI MOJIeJIN, TPUUMYIIECTBOM KOTOPOl SIBJISIETCS BO3MOXKHOCTH ITPUHE-
Opedb HecylecTBeHHbIMU ¢ dekTamu. B ¢BOIO odepelib aKIEHT B JIAHHOM
MOJIEJIN JIeJIAeTC Ha ONUCAHUU KJIFOUYEBBIX (DU3WYECKHX MpoIeccoB. Mo-
Jesib Xabbapaa — 0JHA U3 MHUPOKO UCIOJIB3YEMbIX MOJIEEN B COBPEMEHHOI
du3nKe KOHJIEHCUPOBAHHOIO COCTOSIHUSI, KOTOPAsl UCHOJb3YeTC s JIJIsT OIH-
CaHUsl CUJIbHO KOPPEJTUPOBAHHBIX CHCTEM. DTO OJIHA U3 IPOCTEHIITUX MOJIe-
JIell paccMaTpUBAIONINX B3auMOJIEHCTBYOMME (EPMHUOHBI Ha JUCKPETHOM
peleTke, TaMUJIBTOHUAH KOTOPOI COJIEPXKUT TOJIBKO J[BA, UJIEHA: KIHETHIe-
cKyto sHepruio u Ky/oHOBCKOe B3aMMOIEHCTBAE MEXKIY JEKTPOHAMU HA
y37ae. C moMombio JaHHON MOJIEN BO3MOYXKHO OOBSICHUTD IEPEXO MEXKTY
MTPOBOJIATIIIM U JUIJIEKTPUIECKAM COCTOSTHUSIMHU.

OpHOl U3 nejeil JaHHON JUCCEPTAMOHHON pabOThI SIBJISIETCS Teope-
THYECKOE M3YUYEHHUE IPOIECCOB, MPOUCXOISINNX B 9K30THIECKUX MHOIOYa-
CTUYHBIX CACTEMAaX, TaK HA3BIBAEMBIX YJIbTPAXOJIOIHBIX aToMaxX. B pamkax
MeTofa (PYHKIIMOHAJA TLIOTHOCTU OBLI M3ydeH mporiecc myiasienuss Mot-
TOBCKOT'O M30JISTOPA B TPEXMEPHON ONTUIECKOI PeIeTKe, B TOM YUCJIe JIJIs
cIyvyae IPUCYTCTBUA PA3YIOPsAI0YeHNs. DhIIN IPOBEIEHBI TapaJlieIbHbIe
KOMITHIOTEPHBIE BBIYUCIEHUS /s TOCTATOUIHO OOJIBINON cucTeMbl, Xabbap-
JIOBCKOT'O KJIACTEPA, COJEPIKAIero nopsaka 472 yaos. Pazmeps! aToil cu-
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CTeMBbI IIPAKTUYECKNU CPABHUMBI C TEMU, KOTOPBIX BO3MOXKHO JIOCTUYDb B CO-
BPEMEHHBIX 9KCIIePUMEHTaX.

Ere omamM BaXKHBIM aCIIeKTOM, 3aTPOHHYTBHIM B JIAHHOI paboTe, sABJIs-
eTcsl pa3ylnopsi/IoueHne, CBA3aHHBIM C KBAHTOBBIM TPAHCIOPTOM B CHJIBHO
KOPPEJINPOBAHHBIX PAa3yIOPsI0UEHHBIX XabbapoBckux Kiacrepax. [losy-
YeHHbIe Pe3y/IbTAThI O3BOJAIOT JIyUllle TIOHATh B3aUMOCBA3b MEXK/1y B3au-
MoJIeiCTBHEM U pa3ylopsJoYeHneM U UX BJIUSHUEM Ha CBONCTBa peaJlbHbIX
MaTepuaJsioB. B mocieiHeit 9acTu JaHHONW pabOThI OBLIO TTPOBEIEHO UCCTIe-
JOBaHUE POJIM CUJI QTOMHBIX $JIep B KBAHTOBOM TPAHCIIOPTE, YTO HUMeEEeT
OT'POMHBIi TTOTEHITUAJT /i1 PA3BUTUS HAHO TEXHOJIOTU.
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V. Vettchinkina, A. Kartsev, D. Karlsson and C. Verdozzi

Physical Review B 87, 115117 (2013)

(©2013 by the American Physical Society

In this paper, we analyzed how the interplay of interactions and disor-
der affects the conduction properties of short Hubbard chains contacted
to semi-infinite leads. The investigation was done within the framework
of (TD)DFT in its lattice formulation. To perform real-time dynamics, we
used a lead-embedding technique from the literature; however, the efficiency
of this scheme was considerably augmented by introducing a modification
based on the recursive Lanczos method. As a side issue, we also tested
merits and shortcomings of a popular treatment of disordered systems,
the coherent potential approximation. The degree of localization induced
by disorder was estimated in terms of a novel expression for the inverse
participation ratio. We also benchmarked the TDDFT description in the
adiabatic local density approximation (ALDA) against exact results in fi-
nite systems, finding that the TDDFT-ALDA provides a good qualitative
account of the dynamics. The central result of this work is is that, com-
pared to the disordered but noninteracting case, localization from disorder
is diminished by the presence of interactions. This outcome was primarily
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obtained looking at arithmetic averages but, due to the large sample-to-
sample fluctuations, we also performed an analysis based of full statistical
distributions, typical values and geometrical averages, reaching the same
conclusion.

In this project, in order to deal with a 1D LDA functional, I wrote an
extra module for a previously developed (TD)DFT code. To obtain the
LDA exchange-correlation energy and thus construct the XC potential, 1
also developed a separate code for solving the self-consistent Bethe-Ansatz
equations, and performed all the necessary testing and benchmarking. I
was actively involved in all the scientific discussions, and in the writing of
the paper.

Paper 11

Three-dimensional dynamics of a fermionic Mott wedding-cake in clean and
disordered optical lattices

A. Kartsev, D. Karlsson, A. Privitera and C. Verdozzi

Submitted to Scientific Reports (Nature Publishing Group)

This paper provides a detailed theoretical description of the non-equilibrium
behavior of the inhomogeneous Hubbard model in three dimensions, in
terms of a method which combines lattice TDDFT and dynamical mean-
field theory. We were able to address different interaction regimes for a a re-
alistic three-dimensional setup, namely time-of-flight experiments on ultra-
cold Fermi gases in optical lattices. We considered interactions strength
above and below the Mott threshold and also the presence of disorder. Our
results underline the striking consequences of Mott physics on the system
dynamics at strong-coupling and the qualitative differences with the metal-
lic regime. We observed many interesting effects including the stabilization
of the Mott plateau at the expenses of the metallic domain in the ear-
lier times of the expansion (that is, we observe multiple timescales in the
dynamic melting of the Mott wedding-cake, as the Mott plateau persist
orders of magnitude longer than the band insulating core), and a dynamic
crossover in the cloud localization degree in presence of disorder and strong
interactions.

Apart from taking part in the results interpretation and writing of the
paper, I developed part of the theoretical formulation, most of the computer
codes needed to produce the results and the post-processing, and performed
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all the numerical simulations.
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A. Kartsev, C. Verdozzi and G. Stefanucci
Submitted to Physical Review B, arXiv:1305.1811v1

Quantum transport in the presence of electron-phonon interactions is cur-
rently a very active area of research in condensed matter. Most of the
available studies consider the case of steady state dynamics, and indeed
much less attention has been so far devoted to time-dependent phenom-
ena. However, the interest of describing/understanding the real-time dy-
namics of these systems has been recently increased due to interesting evi-
dence of negative friction in nuclear forces, responsible for van der Pol-type
oscillations of the nuclear coordinates. I have studied the robustness of
the van der Pol oscillations against high-frequency bias and gate voltage.
This has made necessary to improve over the adiabatic approximation and
perform full time-dependent simulations based on the Ehrenfest dynamics
scheme. Our results show that the fast electron dynamics can have re-
markable effects on the van der Pol-like dynamics of the nuclei. Namely,
the phase-space trajectories of the nuclei are distorted, and the period of
the oscillations can also been altered. Another interesting finding of our
study is that, even while staying in the adiabatic regime, the period of the
oscillation as emerging from the full Ehrenfest dynamics is different from
the one obtained within an adiabatic framework. Finally, by switching the
high-frequency fields off at different times, cycles of different amplitudes
can be obtained, which attain the limit cycle only after considerably long
times, i.e. for practical purposes they can be considered as quasi-stable
limit cycles. Thus, the outcome of our work can be summarized by saying
that ultrafast fields acting on the electrons can constitute an important
knob to manipulate such nuclear cycles, something of great potential inter-
est for nanomechanical engines.

For the project presented in this paper, I performed all the necessary
computer simulations for the nonadiabatic dynamics, actively participated
in theoretical development, the interpretation of the results, and the writing
of the paper.
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Paper IV

Title: Lattice Density Functional Theory for Cold Atoms and Quantum
Transport

A. Kartsev

Internal Report at the Division of Mathematical Physics, Lund-MPh-13/03

This paper is an internal report on work in progress, which describes sev-
eral projects that I have been involved in during my PhD studies, and
that are not finalized yet. The material presented concerns original, un-
published research. The only exception is represented by the first part of
the report, where the concepts and practicalities behind the construction
of an exchange-correlation potential for 1D systems are exposed in some
detail. In fact, the construction of such potential has been performed for
the first time by others. However, such XC potentials are very central to
much of the original research in our thesis work, hence the considerable
space devoted to the subject. Coming to the original research projects de-
scribed in the manuscript, some of them are at a rather early stage, and
thus they need to be pursued considerably further. Others, instead, are in
a very advanced state: for example, we anticipate the submission of a paper
in the near future, dealing with collisions between two ultracold fermionic
clouds. The focus of this work will be a comparative study of collisions in
1D and 3D systems, which will rely on the results preliminarily presented
in the report. Looking further ahead, we also anticipate the completion
of a project inherent the time-dependent spin-dynamics in transport using
the spin-dependent methodology, which is briefly illustrated in the report
in terms of very preliminary results. In summary, this report is a com-
pendium of original results from work in progress on transport and cold
atom phenomena, performed within the TDDFT framework.

For the all the projects presented in this report, I performed all the
necessary computer simulations, and substantially contributed to the nec-
essary theoretical (both analytical and computational) developments, and
to all the inherent scientific discussions. The report was entirely written
by me.
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Background and Methods






Chapter 1

Introduction

This thesis is about the properties of Fermions out of equilibrium. In
its entirety, this is a very broad subject, which certainly cannot fit into
the scope of a PhD thesis (it can be easily argued that the topic would
not even fit into a book of reasonable size); thus, as already done in the
thesis title, a specification is in order: we study the dynamical properties of
Fermions within two fairly well defined areas, namely the time-dependent
flow of electrons in devices at the quantum (molecular) scale, and the time
dependent behavior of ultracold fermionic atoms in optical lattices.

On the surface (and not only), these two topics look quite different. So,
what do they have in common? Our answer is on three distinct levels:

i) In both these fields, many interesting open issues are related to the
correlated motion of the basic constituents, where standard independent-
particle approaches fail.

ii) When inter-particle correlations are important, a considerable frac-
tion of the theoretical treatments for quantum transport or ultracold atom
systems makes use of model Hamiltonians: a notable example is the Hub-
bard Hamiltonian, one of the paradigmatic model systems in condensed
matter research, which is the “bare minimum” description for the compe-
tition between itinerant and localized behavior of electrons. In this thesis,
the Hubbard model is used for the description of both quantum transport
and cold-atom phenomena.

iii) A third common denominator, specific to our work here, is the
methodology adopted, namely density-functional theory. It is perhaps
worth to offer few preliminary considerations about this method. In con-
densed matter systems, to achieve a quantitative description, one is re-



CHAPTER 1. INTRODUCTION

quired to apply first principles techniques. We have to deal with systems
which contain 6x102 particles per mole of the substance or more. This
is a large number. It forces us to find alternative theories which per-
mit to investigate the electronic structure of many-body systems. One
of these theories was offered by Hohenberg, Kohn and Sham [1,2] and it
is called Density-Functional Theory. Nowadays it is one of the most re-
liable and computationally tractable tools in condensed matter physics.
Particularly in combination with the so-called local density approximation,
it has now impacted every area of material science. Three decades ago, a
time-dependent version of this approach, namely Time-Dependent Density-
Functional Theory, was also proposed. This method is rapidly gaining favor
to describe the dynamical properties of realistic systems. Here we use its
adaptation for lattice model systems out of equilibrium.

So far, we have not specified if we are considering only fermionic species.
This is no accident, since part of the thesis is devoted to the study of how
manipulating the flow of electrons in a molecular device affects the nuclear
dynamics in the device. In this case, the emphasis is on the response of
the nuclei in the harmonic regime, but the nonequilibrium behavior of the
electrons plays a key role. Thus, this somewhat distinct topic is actually
not defying the main scope (and the implications of the title) of this thesis.

Finally, a few words about Part A (“Background and Methods”) of this
thesis. Its aim is not to provide a coherent (and consequently very limited
for reasons of space) review of the the field of Fermions out of equilibrium.
Rather, we cover in a somewhat scattered way a few topics that, in our
view, constitute useful pre-knowledge to the papers of Part B. The hope
is that between Part A and Part B the reader is offered all the material
necessary to become acquainted with the contents of the papers, and with
the scope of this thesis more in general.



2 DFT and TDDFT Basics

The main goal of condensed matter physics and materials science is to
understand the properties of systems which normally contain a macro-
scopic number of particles (electrons and nuclei). This leads to a quantum-
mechanical many-body problem of enormous size involving ~ N interacting
particles where N is typically of the order Avogadro’s number ~ 10%3! Im-
portant early attempts to cope which this difficult problem include mean-
field approximations in which each particle is considered moving in the
static average field from all other particles such as the Hartree and Hartree-
Fock approximations. The system is described by a many-body wave func-
tion ¥ depending on 3N coordinates, one for each particle. In the mean-
field methods the N-body problem is replaced by N one-body problems,
which is in itself an enormous simplification. Density-functional theory
(DFT) involves an even more dramatic simplification, and all physical prop-
erties are described in terms of the particle density n(r). In this way, the
key role is played by a function of three space variables rather than a
many-body wave function depending on 3N variables.

DFT in its modern form was founded by Hohenberg and Kohn [1] as
a formally exact reformulation of quantum mechanics for ground states.
They proved that the ground-state properties of any electron system can
be obtained from a density functional F'[n(r)]. This functional is exactly
defined but only approximately known. It may be decomposed into kinetic
and potential energy parts which are both quite large. In 1965, Kohn and
Sham [2] invented a method whereby the major independent-electron part
To[n] of the kinetic energy in F' may be obtained exactly via self-consistent
one-electron equations. In the potential energy part, the classical Coulomb
energy

Egln] = 1/71(1')71(1")u(1' —1)d*rd®, (2.1)
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is explicitly known. Here, u is the two-body inter-particle interaction, nor-
mally the Coulomb interaction®
1 2.2
u(r) = (22)
Thus, only a much smaller part E,. from exchange and correlation needs
to be approximated, and already the simplest so-called local-density ap-
proximation (LDA) has proved very successful and goes far beyond earlier
density-functional methods such as the Thomas-Fermi approximation [3,4].
In 1984, Runge and Gross [5] extended density-functional theory to
time-dependent phenomena and thereby to excited states and to systems
out of equilibrium. The main ingredient is an action functional A[n(r,t)]
depending on the time-dependent density. Again, self-consistent one-particle-
like equations can be derived which treat the independent-electron kinetic
action functional exactly. The time-dependent density-functional theory
(TDDFT) is much less developed than its counterpart for ground states,
but already the simplest ”adiabatic local-density approximation” (ALDA)
local in both space and time has proved very useful.
In the following two subsections I will describe the main ideas behind
DFT and TDDFT. For more detailed information the reader is referred to
the reviews in Refs [6-8].

2.1 Ground-State DFT

2.1.1 The Hohenberg-Kohn Theorem

Let us consider different many-fermion systems with the same inter-particle
interaction. The different systems are however shaped by different exter-
nal potentials v. Different external potentials will correspond to differ-
ent ground-state energies (Ep) and different ground-state density profiles
(n). The ground-state energy and density profile are thus functionals of
v, Ey = Ey[v],n(r) = nlv;r]. Hohenberg and Kohn [1] proved that if the
densities of two systems are equal then the corresponding potentials are
equal up to a constant. If we normalize v in some way, for instance by
requiring that it tends to zero at far distances, the mapping from v to n
is invertible, and v may be considered as a functional of the corresponding
ground-state density,

v(r) = vin;r]. (2.3)

lwe use atomic units such that e2 = m = i = 1 in this section

10
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With a given interaction, the ground state and all ground-state properties
depend functionally on v, and from the Hohenberg-Kohn theorem, on n.
Thus, it seems probable that v and Ey[v] may be obtained from some
underlying functional depending only on n. We first note that Eylv[n]] is
not suitable. In fact, from first-order perturbation theory we have

5E0 = nl\r
(5?}(1‘) - ( )7

and by considering Ey as a functional of its derivative n we would lose
integration constants. Hohenberg and Kohn therefore used the Legendre
transform

F[n] = Ey — / (;ifﬁ)v(r)dBr =Fy— /n(r)v(r)dgr, (2.4)

as the basic density functional. We then have

_OF
on(r)

v[n;r] = . (2.5)

The ground-state energy may in principle be obtained via a Legendre trans-
form on F' back to Ey, but Hohenberg and Kohn use a different, self-
consistent method and introduce an auxiliary functional

Euln] = Fln] + / n(r)o(r)dr (2.6)
with two independent variables v and n. They show that Ey[v] may be
obtained by minimizing F,[n] with respect to n while keeping v fixed,

Epv] = mgn E,[n]. (2.7)

The minimizing density is the ground-state density corresponding to v.
In this way, both the ground-state density and energy may be obtained
without reference to the wave-function provided the basic density functional
F[n] is known.

2.1.2 The Kohn-Sham one-particle scheme

The density functional F[n] contains energy contributions from the kinetic
energy 1" and the inter-particle interaction U. By subtracting the explicitly

11
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known classical Hartree energy in Eq. (2.1) only a much smaller contribu-
tion from exchange and correlation remains. Unfortunately, the kinetic en-
ergy T is not known as an explicit functional of n, not even for independent
particles. However, in 1965 Kohn and Sham invented a one-particle scheme
that evaluates the major, independent-electron part Ty of the kinetic en-
ergy exactly. In this way, only the exchange-correlation contribution F,.
to the kinetic and potential energies needs to be approximated.
Kohn and Sham thus rewrite the density functional in terms of three
contributions,
Fln] = To[n] + Enfn] + Eueln]. (2.8)

Instead of minimizing E, under constraint N = [ nd®r we may introduce
a Lagrange parameter pu and do free minimization of E, — pN. This leads
to

(;;1(3) + Vi (r) + vge(r) + v(r) = p. (2.9)
Here,
Vi (r) = 55;&? = / &r n(r)u(r —1') (2.10)
is the classical ‘Hartree’ potential from the density n, and
O0FEc[n]
veel) = 22 (211)

If we would density-functionalize the problem of N non-interacting elec-
trons subject to a one-body potential V., the density functional would
be Fy = Ty, and the Euler equation for the minimum

0To

m + Veff(r) =K. (2.12)

When the one-body potential (in this case Ve.ss) is known, T may be
obtained via the one-particle orbitals  as

TolVerr) = 3 nlVirsl = - loulVers) (213)
k

If we now combine these two results and construct a self-consistency se-
quence in which we at each iteration ‘¢’ solve one-particle orbitals in the
potential

Vers(x) = o(x) + Vir[rin] + vpelrimy), (2.14)

12
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2

recompute the density from the one-particle expression

[—V " Veff<r>] ou(t) = exonlr). (2.15)

occ

R (2.16)
k

and continue until self-consistency has been achieved, i.e., until the differ-
ence between input (n;) and output (n;4+1) density is smaller than some
suitable tolerance, the full problem in Eq. (2.9) has been solved. At self-
consistency, Ve has become the potential that forces a fictitious system
of non-interacting particles to have the same density as the interacting sys-
tem subject to the potential v. One can say the the self-consistency cycles
construct the functional Ves¢[r;n], and once Vs has been obtained, T at
this particular density can be obtained from Eq. (2.13). The method is
illustrated in Fig. (2.1).

The energy eigenvalues (ej) which appear in Eq. (2.15) have no partic-
ular meaning except the highest occupied one (which gives the ionization
energy), they are just ingredient which are needed in order to form the
total energy.

In order to to treat real systems like solids, solid surfaces, adsorbates
etc the development of efficient one-electron methods has been extremely
important. In one class of methods, the tightly bound core electrons and
the valence electrons are treated on the same footing, and here the lin-
earized muffin-tin (LMTO) and augmented plane wave (LAPW) methods
developed by O.K. Andersen and collaborators [9] have played a central
role. In an other class of methods, the core electrons are transformed
away [10], leading to much weaker pseudopotentials. This transformation
makes it possible to use plane waves in basis-set-based calculations. In or-
der to speed the convergence of the self-consistency cycles, methods from
non-linear optimization by Broyden and by others [11-13] are often used.

A large part of current works is based on the simplest local-density
approximation (LDA) in which F,. is approximated by

ELDA — /d?’r n(r)ege(n(r)). (2.17)
Despite its simplicity the LDA gives useful semiquantitative or even quan-

titative results for a large class of systems such as molecules, solids, ad-
sorbates etc. During the last three decades more accurate approximations

13
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Done

Figure 2.1: A self-consistent charge density-functional based scheme of
Kohn-Sham equation solution.

have been developed by Langreth, Perdew, Becke and by others; for a
comprehensive review see e.g. Ref. [14]

2.2 Spin-polarized systems

Density-functional theory may be generalized to account for spin-magnetic
effects. This was first done by von Barth and Hedin [15], and shortly
afterwards Rajagopal and Callaway described how spin-orbit effects from
the orbital motion may be handled [16]. In order to cover the case of
non-collinear magnetism, one has to use the full spin-dependent density

Nap(r) = (YL (r)Ys(r)) (2.18)

(4} and 1 are the usual Fermi field operators and a and 8 are spin in-
dices). The spin-dependent density introduces a non-locality in spin space,

14
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and as shown by von Barth and Hedin this makes the mapping from spin-
dependent densities to spin-dependent potentials non-unique. However, a
well-defined density functional F[nag] can still be defined, and a Kohn-
Sham one-particle scheme can be established with a spin-dependent ef-
fective potential. In the case of collinear magnetism, the up/down-spin
densities ny _ contain sufficient information, and the Kohn-Sham equa-
tions reduce to separate equations for the two spin channels, coupled only
via the self-consistency requirement.

2.3 Time-dependent density-functional theory

Density-functional theory is quite powerful but has the drawback that
only ground-state properties can rigorously be obtained. In 1984, Runge
and Gross [5] laid down the foundation of a time-dependent counterpart
to DFT, TDDFT, by proving a uniqueness theorem for time-dependent
phenomena analogous to the Hohenberg-Kohn theorem for ground states.
Via the time dependence, excitation properties which can be related to
time-dependent densities become accessible, such as optical absorption and
charge transport. Runge and Gross studied how interacting systems evolve
when exposed to different local but time-dependent potentials v(r,t). They
prove that if two systems start from the same initial state (usually but not
necessarily the ground state) at time ¢ = 0 and have the same density pro-
file n(r,t) for ¢t > 0, then the corresponding time-dependent potentials are
equal up to a time-dependent constant C'(¢). Ground-state DFT is based
on the HK theorem and the minimal properties of the expectation value of
the Hamiltonian. IN TDDFT, however, the basic action functional

tr
BlY] :/ ()T + 0 + V(1) —i%m(m (2.19)
to

is only stationary but not in general minimal for the actual trajectory
U sotution (t)- (T and U are the kinetic and interaction energy parts of
the Hamiltonian, and V(t) the interaction energy with the external time-
dependent field.) However, an action functional A[n] depending on only the
time-dependent density (and the chosen initial state) can still be defined,
and then actual time-dependent density n(r,t) corresponding to a given
potential potential v(r,t) is the stationary trajectory of the functional

Ayln] = A[n] + /t "t / Bro(r, )n(r, ). (2.20)

15



16 General aspects

The time-dependent density may thus be obtained from the action func-
tional A without any reference to the underlying time-dependent wave func-
tion.

As is ground-state DFT we may split A in an independent-electron part
Ay, a classical Hartree energy part Ay, and a remainder A;. describing ex-
change and correlation. In much the same way as in ground-state DFT this
leads to an equivalent one-particle scheme. In this time-dependent Kohn-
Sham scheme, one-electron orbitals are evolved in an effective potential

‘/eff(rat) = U(I‘,t) +VH(I', t) +Uacc(ra t)v (221)
i@(p(r,t) = —1V2 + Veps(r,t)| o(r,t)r. (2.22)
ot 2
Here,
0Aze
Ug;c(r,t) = W (223)

The time-dependent density is given by

occ

n(r,t) = Z i (r, )2 (2.24)

All effects of exchange and correlation have now been encapsulated in
the exchange-correlation function A,. and its variational derivative v .. As
in ground-state DFT, these functionals are exactly defined but only approx-
imately known. They are non-local in both space and time and are thus
history dependent. The most widely used approximation is the “adiabatic
local density approximation” ALDA, in which v,. is approximated by the
ground-state LDA potential for the instantaneous density,

vALDA(p 1) = oLPA(n(r,t)). (2.25)

xc xc

2.4 Lattice (TD)DFT

2.4.1 General aspects

Static density-functional theories for lattice models were introduced about
thirty years ago [17,18], but it is only in the last decade that they have
received considerable attention [19-22]. Conversely, lattice TDDFT for
Hubbard-like models out of equilibrium is a more recent topic [23]. While
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studies of lattice vo—representability (concerning the existence of a Kohn-
Sham image system) have been been available for a few years, [23-26], a
rigorous uniqueness proof when the density is the basic variable was given
only very recently [27]. The type of lattice systems one considers with these
approaches are described by a Hubbard-type Hamiltonian:

H= Zhana]U + ZZ |:’LU1 nz U:| TNics (2'26)

ij,0

where the time-dependent onsite energies w;(7) are split as w;(7) = ¢ +
vy(7), to distinguish a static and time-dependent part. In this way, ]}(T) =
> 1o V(7)1 describes a local (in space and time), time-dependent per-
turbation. In some cases the systems in question can be small clusters
connected to macroscopic contacts, as in the case of Paper I; or, in other
cases, the one-body diagonal terms may be distributed according to some
disorder distribution (as in Paper I and II). However, to find suitable XC
potentials, we will consider infinite homogeneous system (specifically for
the 1D and 3D case, Paper I and II, respectively).

2.4.2 Formulation

Here, for simplicity, we consider spin-independent (TD)DFT (for a full
discussion of the spin-dependent case, see Paper IV). The ground-state
energy [28,29] is

E[n, vext) = To[n] + Eg[n] + Exeln] + Zvemt i)n;, (2.27)

with veee (i) = €, To[n] and By = 27 U;n? the static external field, the
non-interacting kinetic energy and the Hartree energy, respectively. Also,

= Y . MNio. Using the Hubbard model as the homogeneous reference
system,

E,.=FE—-Ty— FEy . (2.28)
Defining e;. = E../V, vg. is obtained as
Oeze(n,U)
Y on ( )

Finally, a local-density approximation is introduced: v;.(7) = vze(n;). This
is then used to to solve self-consistently the static Kohn-Sham (KS) equa-
tions

(£+@KS)(10I€ = ExPr- (230)
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The effective potential matrix v g is diagonal in the site indexes, and we
write v (i) = Vi (1) + Vze (i) + Veqt (i), where vy (i) = %Uini is the Hartree
potential. Moving to lattice TDDFT, the KS equations similarly become

(P +iks(7)) x(7) = 10-04(7) | (2.31)

In general, v g (4, 7) = vy (i, T)+0e(i, T)+ ezt (7, 7) depends non-locally on
the density via v,.. The adiabatic local density approximation (ALDA) [30]
to the XC potential is then obtained with the prescription v2ALPA (i, 7) =
vEPA(n(7)). According to recent benchmarks in terms of Kadanoff-Baym
dynamics and exact diagonalization, [31], the ALDA often performs well,

but is inadequate for fast fields and/or very strong interactions.

2.4.3 One-dimensional case: v,. from a Bethe Ansatz
solution of the 1D Hubbard model

The LDA based on the Bethe-Ansatz was introduced in Ref. [29], an an-
alytical interpolating expression for the XC functional was given [19], and
used practically to investigate different inhomogeneous Hubbard-type mod-
els. Constructing a LDA in 1D requires [19,29,32,33] solving the coupled
Bethe-Ansatz equations for the charge and spin distribution functions [34]
(see also Paper IV). An ALDA is then obtained [23] when v,. becomes
a function of the instantaneous local density. The entire procedure is de-
scribed in detail in Paper IV.

2.4.4 Three-dimensional case: v,. from a Dynamical
Mean-Field Theory of the 3D Hubbard model

In Ref. [35], a connection was initially established between (TD)DFT and
DMFT. The dynamical mean-field theory (DMFT) is a non-perturbative
approach which has been developed during the nineties in the context of
strongly correlated electron systems and nowadays is quite successfully em-
ployed to describe many physical features of strongly correlated systems,
mainly in connection with the Mott transition and high-T, superconduc-
tivity. The original idea stemmed from a paper from Metzner and Voll-
hardt [36], showing that in the limit of infinite dimensions d — oo (i.e.
very large connectivity z — 00), the physics of a quantum system is much
richer than the one of a classical system. In fact, by suitably rescaling
the hopping parameter ¢ ( so that both entropy and internal energy per
site remains finite in the d = oo limit), the spatial fluctuation from site to

18
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'
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Electron bat

Figure 2.2: A cartoon of the impurity scheme of DMFT. A homogeneous
Hubbard model (left) is described in terms of an impurity level in the
presence of a bath, which accounts for particle-fluctuations at the impurity,
and which is determined self-consistently (right).

site are frozen while local quantum fluctuation in time are not. Therefore
the same limit is intrinsically much richer for a quantum system compared
to a classical system. In this limit the self-energy X(k,w) becomes local,
Y(k,w) = X(w), but fully retains a non-trivial dependence on the frequency.
Outside the d = oo limit, DMFT can be thought as an approximation with
local self-energy for quantum systems in three-dimensional space, exactly
like the static mean-field theory provides an (approximate) description of
a classical system in d = 3.

We briefly illustrate the DMFT approach focussing on Mott physics,
i.e. we confine the discussion to paramagnetic solutions where there is
no explicit dependence on the spin index. In the limit that the number
of nearest neighbors goes to infinity, DMFT exactly remaps the infinite
lattice into a local problem, represented through an Anderson impurity
model [37], where the rest of the lattice is treated as a reservoir of non-
interacting electrons (Fig. 2.2):

Harm = Z eochco + UCTCT%CL + Z ebathpbath (2.32)
o="1,] vo

+Z [V ¢ a bath + VT TbathCOJ] .
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The impurity system contains the effective parameters ¢2**" (the energy

of the bath), and V,, (the probability amplitude for adding/removing an
electron to/from the bath), to be determined self-consistently.

In d = oo, the many-body self-energy ¥ has no dispersion in k. A
local, k-independent ¥ is also employed in finite (e.g. d = 3) dimensions,
only this time as an (often excellent) approximation (so-called single-site
DMFT). In this case, for a paramagnetic, homogeneous system, the local
Green function is

Gr(w) = / " — o) (2.33)

w—w — Xy

On the other hand, for the effective impurity system of Eq.(2.33), one has

1

Gimp(w) = w—€y— Aw) — Eimp(w)

(2.34)

where A is the frequency-dependent (hence the attribute “dynamical” in
the acronym DMFT) hybridisation function

V. 2
Aw)=) — g (2.35)

where all details of the lattice are encapsulated. DMFT crucially relies on
the fact that X;,,, and ¥y have the same functional dependence on the
propagator. Thus the parameters e’;ath, V,, can be determined within the
DMFT self-consistency condition:

AW) = w — €0 — Bimp(w) — G5 (w) (2.36)

corresponding to
Gimp(w) = Gu(w) (2.37)
Simp (@) = Tir (). (2.38)

The mapping scheme is amenable to a self-consistent iterative procedure:
a) An initial X is considered; b) Gy is then calculated; ¢) the hybridiza-
tion term A(w) is then determined via Eqgs (2.36,2.37); d) the parame-
ters €29t 'V, of the AIM bath are obtained; e) the AIM is solved non-
perturbatively, and a new self-energy is obtained; f) the loop b-e) is re-
peated until self-consistency is attained.
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Figure 2.3: Spectral functions (left) and corresponding XC potentials
(right), as a function of the Hubbard onsite interaction U.

DMFT and (TD) DFT. Once the total energy of the systems is deter-
mined, one can extract, with a procedure similar to the one described for
the 1D case, the XC potential for the 3D homogenous case (for a detailed
discussion, the refer the reader to Ref. [35]. The behavior of v, for the 3D
Hubbard model is illustrated in Fig. 2.3. Compared to the 1D, the crucial
novel feature is that the discontinuity A in v,. occurs only above a criti-
cal value Ui, which reflects the Mott-Hubbard metal-insulator transition.
The latter manifests clearly in the many-body spectral function (Fig. 2.3,
left). This behavior should be contrasted with the 1D case, where A > 0 for
any U > 0 (however, the size of A decreases exponentially when U — 0).
The XC potential for U = 8 and U = 24 shown in Fig. 2.3 are those used
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in Paper II and the Paper IV.
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Chapter 3

Hubbard model, disorder,
phonons

3.1 The Hubbard Model

We have already considered the Hubbard model [38] in connection with
lattice density-functional theory in the previous Chapter. Here, we wish
to offer a short historical and conceptual background to the model, which
arguably provides the simplest way to describe the competition between
itinerant and localized behavior in condensed matter and ultracold-atom
systems. In standard notation, the Hubbard model is described by the
following Hamiltonian:

Hyguwp = —t Z a:fgajg + UZnian, (31)

(i3),0 C

and pertains to electrons moving in a lattice which can accommodate two
electrons/site with opposite spin. The interaction term U ), njn;y is local,
since it only concerns electrons with opposite spin, and only when they
are at the same site. The original motivation to introduce the Hubbard
model was the study of the magnetic properties of materials with narrow-
band materials, such as d-bands. Starting from the general Hamiltonian
describing electrons and nuclei in a solid, a number of steps is to be taken
in order to arrive to the Hubbard model. First, the nuclear positions are
kept fixed. Then, one expresses the electronic Hamiltonian in the basis of
the Wannier functions. The latter, being quite localized in character and
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centered at the lattice sites, offer a natural way to select/neglect different
contributions based on interatomic distance. Then the original argument
by J. Hubbard is that the most important (i.e. the largest) contributions to
the Hamiltonian come from the site-diagonal terms for the interactions, and
kinetic terms which connect orbitals centered at nearest-neighbor lattice
sites. As just said, this is because the overlap of Wannier functions decays
fast with distance. Finally, in spite of band-degeneracy one assumes that
different degenerate bands can be treated separately, and thus the model
of Eq. (3.1) is recovered.

In some cases, the drastic simplifications made to obtain the Hubbard
model must be released. For example, in studies of complex magnetic
ordering, the usually neglected off-site interaction terms (~ n;n;, with
i # j) are often reinstated (by their inclusion one speaks of Extended
Hubbard Model). Similarly, one may need to take into account band-
degeneracy, for example in comparisons between theory and experimental
spectroscopic data. This requires a substantial modification of Eq. (1) (in
particular, the term U becomes a matrix in spin-orbital indexes).

At arbitrary band filling and dimensionality D > 1 , no general exact
solution for the Hubbard model is known, even for the single band case.
For this reason, the formal treatment of the Hubbard model has been ap-
proached in several ways, such as Quantum Monte Carlo techniques, the
density-matrix renormalization group, dynamical mean-field theory, the
Gutzwiller approximation, to mention a few (and, as done in this thesis,
density-functional theory). The situation becomes even more complicated
when the model is further generalized in two other different directions:
disorder or electron-phonon interactions. When disorder is added, the gen-
eralized Hamiltonian is called the Anderson-Hubbard Hamiltonian:

Hpypg =—t Z aiaaja + Z €ilio + Z Uinitniy (3.2)
( i

if).0 i

In many studies in the literature, U; is kept site-independent, and disorder
only enters through the onsite energies {¢;}. On the other hand, if phonons
are included, we arrive at the Hubbard-Holstein Hamiltonian:

Huypg=—t Y alajo+UY npni+w > B Bi+9d (B +Bi)atai,
(ij),o i i io

(3.3)

where 51‘753 are phonon operators, and w and g denote the phonon fre-

quency and the electron phonon-coupling, respectively (see Sect.3 below).

24



The role of disorder

It goes without saying that solving any of these generalized models consti-
tutes a considerably more difficult problem than solving the original Hub-
bard Hamiltonian.

3.2 The role of disorder

Disorder appears everywhere in Nature. Not surprisingly, understanding
the role of disorder in condensed matter systems has been one of the high-
priority topics for the past five decades of theoretical research. Possibly,
the single most important concept in the physics of disordered condensed
matter systems is Anderson localization [39], which corresponds to the
lack of wave-propagation in inhomogeneous systems. Nowadays, Anderson
localization has became a central conceptual paradigm in several areas
of physics. Of relevance to this thesis, Anderson localization, and even
more the interplay of disorder and strong correlations (the so-called Mott-
Anderson scenario), are topics of extreme interest within the ultracold-atom
community [40-42]. This interest has received even further momentum
since the first experimental observation of Anderson localization of matter
in ultracold gases experiments analogous to the 3D setup we describe in
Papers II and IV (the dimensionality is crucial in this case, since only in 3D
one can observe a metal-insulator transition induced by disorder according
to Anderson’s paradigm [42]).

There are several ways to theoretically address the role of disorder,
and reviewing them is beyond the scopes of this Section. Here we take a
more practical perspective and provide few simple remarks about the way
disorder is taken into account in Paper I and II.

Our approach is essentially numerical in character and based on two
strategies (we also use at some point the Coherent Potential Approximation
[43], as discussed in Paper I and not considered any further here).

The first strategy corresponds to perform statistical averages over sev-
eral, randomly selected, disorder configurations. However, for small sam-
ples, as in Paper I, fluctuations of “measurable” quantities (e.g. the current
in Paper I), can be large. If the fluctuations are of the same order of magni-
tude as the current itself, what is then the physical meaning of the average
of an observable? While this question is addressed in detail in Paper I,
the argument can be summarized as follows: in lack of self-averaging, one
can analyze the data directly in terms of probability distributions, and/or
consider the ”typical” value of the statistical quantity (e.g. the current)
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corresponding to the maximum of the (current) distribution.

A second route is followed in Paper II where, due to the large size of the
system investigated, considering a large number of disorder configurations is
numerically very challenging, if not prohibitive. In this case we choose only
one disorder configuration via the special quasi-random structure approach.
This procedure effectively describes the random arrangements of sites at
short range [44], thus providing a single disorder realization with several
“typical” features [45].

3.3 The Holstein Model for phonons

hopping

Tn—1 T Tn+1 Tn42

Figure 3.1: The Holstein model for one electron moving in a 1D tight-
binding chain. The molecular units are schematically represented by the
shaded shapes.

Another situation we discuss briefly here is when the Hamiltonian de-
scribes an interacting fermion-boson system. In Paper III, we analyze the
effect of ultrafast electron dynamics on the nuclear motion in a current-
carrying molecular junction. We do this in the harmonic approximation for
the nuclear coordinates. In particular, we study the robustness of the cycles
attained by the nuclear coordinates in phase space, when time-dependent
AC biases and square-pulse gate voltages are applied. This is done using
a two-site model junction where the electron-nuclei interaction is modeled
via the following term in the Hamiltonian:

Ve ph = A1y — 1) X . (3.4)

The interaction in Eq.(3.4) is of the so-called Holstein-phonon type, which
introduces a coupling between the electron density (in this case, at sites 1
and 2 in the junction) and the phonon coordinate. Originally conceived for
the motion of a slow electron in a polar crystal, the Holstein model [46] has
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become a popular choice for theoretical investigations of electron-phonon
interactions. A simple way to look at the model is to consider an electron
hopping along a diatomic molecular chain, with intra-molecular harmonic
vibrations. The key ingredient in a tight-binding picture is that the electron
onsite energy is taken linear in the atomic displacement, as shown in Fig.3.1.

Considering that for a nuclear oscillator, & = 4/ 275‘% (B4 B7T), the Holstein

Hamiltonian, in obvious notation, takes the following expression:

Higotstein = =V Y _afaj+wo Y B Bi+ 90> (BF +Bi)afai,  (3.5)

(ig) ¢

where wy and gg denote the intramolecular frequency and the electron
phonon-coupling, respectively. In general, approximations are introduced
to solve this model (achieving an accurate solution is already a challenging
task in the equilibrium case, and even for one electron). The strategy that
we use in Paper III was to adopt a mixed quantum-classical dynamical
scheme, the so-called Ehrenfest Dynamics, which is discussed in the rest of
this Chapter.

3.4 Propagators for real-time dynamics

In our work we have dealt with purely electronic systems, but also with
systems with both electrons and nuclei. In all cases, we had to numerically
solve the time-dependent Schrodinger equation, and we wish to provide
here details of the time-propagators we used. For the more complex case
of electrons and nuclei (Paper IIT), we used a method originally introduced
in [47]. This algorithm, suitable for mixed quantum-classical dynamics in
quantum transport, is based of the Ehrenfest’s dynamics [48] for the mixed
electron-nuclear dynamics, and combines an exact electronic algorithm in
the presence of embedding [49] and a classical Verlet-type algorithm for
the classical nuclear motion [50]. All these aspects are considered in turn
below, where further information for the case of purely electronic systems
can also be found. For further details, we defer the reader to Paper I and
I11.

3.4.1 Ehrenfest’s dynamics

We start by briefly reviewing the Ehrenfest’s dynamics, closely following
the discussion in Ref. [51]. In the presence of electrons and nuclei, the
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Schrodinger equation (expressed in the space-coordinates picture) reads

OU(r, R; t)

ih
‘ ot

= HU(r,R; 1), (3.6)

where r (R) collectively denote the electron (nuclear) coordinates. The
Hamiltonian in Eq. (3.6) has the following form:

h2
_ _ Y2 R v 2 / ’ _
H= Z 2Mv Z 5 Vit Vee (1)) + Vi (R, RY) + Von (1, R)
- Zﬁv2+H(rR) (3.7)
2M '

where the part H.(r,R) can be interpreted as the Hamiltonian for the
electrons when the nuclear coordinates are fixed (the subscripts ee, en,nn
in the potential term W = V,, + V,,,, + Ve, refer to the electron-electron,
electron-nuclei, and nuclei-nuclei interaction terms, respectively). A simple
product-ansatz is now introduced, to separate electrons and nuclei:

(r,R;t) = Uopprox(r, R 1) = ¥(r, t)x (R, t)eie(t), (3.8)

/to v / dr / dR " (v, t)x* (R, ) He (1, R) (r, £ )x (R, 1), (3.9)

where the explicit phase factor is introduced give the equations below a
more compact form. After i) Eq.(3.8) is inserted in Eqgs. (3.6,3.7), ii) we
multiply from the left by ¥* (x*) and integrate over r (R) and iii) requiring
the energy to be conserved (i.e. d(#H)/dt = 0), we obtain separate equations
for each part in Eq.(3.8):

9 %
ma—‘f = [— Z %vf + Wiy | ¥, (3.10)
9 n?
iha—if = [— > i VR o | x (3.11)
Wi (r,t) = / AR * (R, £)[Vo (r, 1)
+Von (R, RY) 4+ Ve (r, R)] X (R, 1), (3.12)
Hyw(R ) — / dr " (x, ) Ho (v, R) W (x, 1). (3.13)
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These equations represent the electron-nuclear dynamics in terms of two
coupled, time-dependent, equations, where electrons and nuclei mutually
provide effective fields to each other. It is at this point convenient to use
an “amplitude-phase” representation for y:

Y(R,t) = A(R, t)er SR, (3.14)

which permits to express Eq.(3.11) as two coupled equations:

2
% Z VRS /dw*ﬂew:h?ZivRA (3.15)
R

ot oM A
94 (VRANTRS) |~ 1 oo g
o T > i + %: i AVRS) =0. (3.16)

One can see [51] that Eq.(3.16) represents the continuity equation for A2 =
|x|? (one simply rewrites the equation as 9A%/9t+M 1 Y Vr[A*VRS] =
0 and makes the identification Pgr = Vgr.S). At the same time, when i — 0,
Eq. (3.15) becomes formally identical to the Hamilton-Jacobi equation of
classical mechanics, with Hamilton function Hy(R,P) = Y V;;\;IS)

[ dry*Heyp. By applying V, to Eq.(3.15), we then get

VRS _ OP

ot ot

Thus, the connecting transformation Pr = VRS permits to arrive to the
final expression

= —leHcl(R,P). (317)

MR(t) = —Vgr / dry*Hep = —VrRVER(L)). (3.18)

The classical limit of the nuclear dynamics must also be taken into ac-
count into the electron dynamics, Egs. (3.10,3.12). This is achieved by
performing the replacement |y(R,t)|> — §(R — R(t)) in these equations,
where R(t) are the instantaneous classical nuclear positions as given by Eq.
(3.18). One thus finally arrives to the coupled equations for the Ehrenfest
dynamics,

MR() = -VaVER(@), (3.19)
Y = —§;v3w+wxx[<r,ft<t>w, (3.20)
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where 9 depends parametrically on R(t) through W, [(r,R(¢)]. Ehren-
fest’s dynamics is a two-component mean field approach, but includes
inter-electronic transitions. At the same time, it is an “asymmetric” for-
mulation, because of the different nature (classical vs quantum) of the two
constituents which can e.g. prevent an accurate description of the heat-
exchange between electrons and nuclei [52]. Also, the lack of correlation
between classical and quantum motions can affect microscopic reversibility,
and can give an inadequate account of reaction channels [51], as they e.g.
occur in chemical reactions, especially those with low weight.

3.4.2 Time evolution for the electrons

In Papers I, IT and IV, the time evolution of the electronic wavefunction
for isolated systems is performed according to the Lanczos algorithm. For
systems contacted to leads (i.e. for quantum transport, Papers III and IV),
the time-evolution algorithm we use was originally introduced in Ref. [49].
A concise and detailed exposition of such algorithms for non-magnetic sys-
tems can be found in Paper I of this thesis, where an adaptation to include
a short-iterative Lanczos solver for quantum transport is also discussed. A
generalization to magnetic systems, as used in Paper IV, is not discussed
here, and requires a formulation based on spinors [53].

3.4.3 Classical time evolution: the Verlet’s algorithm
Consider the expansion for the classical coordinate
r(t £0) = r(t) £ v(t)s + %a(t)éQ 4. (3.21)
Adding r(t + 9) and r(t — §) results in
r(t+0) = 2r(t) —r(t +6) +a(t)s* + O(5%) (3.22)

This integration algorithm is known as the coordinate-Verlet algorithm [50];
however, in paper III, its is used in a slightly modified form, known as the
symmetric velocity-Verlet algorithm [54]:

p(t+46/2) = p(t)+F()§/2
r(t+96) = r()+pt+46/2)5/m
p(t+08) = p(t+5/2)+F(t+6)5/2. (3.23)
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For details of how it is combined with the time-evolution of the electronic
wavefunctions in Paper IT1, we defer to the original work [47]. Here we wish
to add that the algorithm of Eq. (3.23) is time-reversible, symplectic (i.e.
area conserving in phase space) and energy conserving. These features can
be traced back to the fact that a Verlet-type algorithm is exact for a pseudo-
system (so-called ghost-system) described by a Hamiltonian Hpseydo, with
exhibits oscillating small deviations around the true one, but without any
systematic drift.
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Chapter 4

Ultracold Fermions in Optical
Lattices

Undisputedly, ultracold gases currently are one of most active research
areas in physics. In this sizzling research field, the experimental side is
clearly leading the way, and the need for new theoretical approaches to
side with the experimental data is extreme and even explicitly declared by
the experimentalists themselves!. Furthermore, looking for trends in the
field, it soon becomes very clear that the top entries are non-equilibrium
dynamics [56], strong-correlations [57], and disorder effects [58]. Here, we
briefly describe the physics of ultracold atoms, with no pretense of detail or
exhaustiveness. Excellent reviews exist on this topic (see e.g. Refs [59,60]),
which cover the field from different perspectives. Rather, the aim of this
very superficial and concise exposition to introduce some the notions and
nomenclature used in Papers II and IV, and to motivate and locate our
research work in this area.

4.1 General aspects of ultracold-atom physics
Ultra-cold atoms in optical lattices exhibit a rich and interesting physics.

The high-parameter tunability of these systems makes them ideal candi-
dates to investigate open issues in condensed matter, since simplified model

1 “Therefore, it is likely that progress on the theory of dynamics and thermalization
in strongly correlated systems will have a strong impact on guiding experiments to cool
into new regimes”, excerpt from Ref. [55]



Fano-Feshbach resonances

Hamiltonians, like e.g. the Hubbard model, can provide a very accurate de-
scription of ultra-cold atom physics. Looking for a possible date of birth of
this field, one can point to 1995, when Bose-Einstein condensation (BEC)
was experimentally observed [61,62]. However, a decisive contributing fac-
tor to this breakthrough was the availability of sophisticated laser cooling
techniques, which started to be developed in the sixties. Thus, the combi-
nation of two eminent areas of physics, atomic physics and quantum optics,
was essential in providing a fertile soil for the establishment of ultra-cold-
atom physics, as recognized by the the Nobel Foundation in 1997 with an
award for the development of methods to cool and trap atoms with laser
light. Although major focus in ultracold-atom research was initially in
bosonic condensates (thus, for atoms which obey Bose-Einstein statistics),
later on it became possible to apply improved cooling techniques also to
the case of atoms with Fermi statistics (the statistics being determined, in
neutral atoms, by the number of neutrons). This has induced a steadily
rising interest in Fermi systems, since they exhibit interesting features due
to the Pauli principle (for example, at low temperature, in a dilute Fermi
gas which is fully polarized, the dominant s-wave scattering is quenched by
the Pauli principle - i.e. the gas is non-interacting).

4.2 Fano-Feshbach resonances

We come now to a concept, the Fano-Feshbach resonance, which plays
a central role in cold-atom physics. The Fano-Feshbach resonance was
originally considered within the realm of nuclear and atomic phenomena
[63,64]. In cold-atom systems its occurrence is related to the existence of
two two-body states (closed and open channel, see Fig. 4.1) with distinct
magnetic moments. During an interatomic collision, transitions between
these two states can occur, an thus a coupling between the channels occurs,
with the coupling strength depending on the energy separation between the
channels (i.e. bound state vs. continuum). This energy separation, and
even the relative energetic ordering of the channels can be tailored by a
magnetic field and, where applicable, allows for an effective one-channel
description, where the scattering length as turns out to be dependent on
the external magnetic field B:

(4.1)



Fano-Feshbach resonances
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Figure 4.1: Schematic view of a Fano-Feshbach resonance.

Here, a! is the off-resonance scattering length for the open channel, while
B, is the field at which the channel crossing occurs, and « is the resonance
width, for which B is such that as(B) = 0. This behavior near resonance
permits to consider an ultracold-atom system on equal footing with an
ordinary condensed matter system, since the system can now be seen as a
fermion system with spins (the two hyperfine states) interacting through a
potential with a tunable scattering length (thus, experimentally observing
ultracold Fermi gases with interaction requires trapping and cooling two or
more hyperfine states).

Tuning the Feshbach resonances permits to access a broad range of pa-
rameters in Fermi systems. This should be contrasted to conventional con-
densed matter systems, where the phenomenon/feature under observation
must often be disentangled by many concomitant other effects. With these
possibilities, several potential applications are in principle within reach,
such as, e.g., quantum information systems, the so-called atomtronics, and
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an accurate description of paradigmatic condensed matter model systems
(i.e. one accurately prepares and manipulates an experimental ultracold-
atom system to study another type of system). One should also include
in this list Hamiltonian quenches, which by sudden changes of Hamilto-
nian parameters, permit to study important non-equilibrium aspects of
many-body physics, like phase- (spin-) separation, entanglement distilla-
tion, thermalization, collisions between atomic clouds, etc.

4.3 The experimental side

An important feature of ultracold cases is their intrinsic nonhomogeneous
nature, due to the trapping potential. This can complicate the direct inter-
pretation of experiments aiming to elucidate issues in extended condensed
matter systems. Another hurdle in experiments is the fragility of cold atoms
against temperature: maintaining the system cooled requires isolation. In
fact, one of the standard measurement techniques is to observe the gas
expansion after the removal of the trapping potential. This measurement
protocol is studied via numerical simulations in Paper II and IV.

4.4 Features of the inter-particle interaction

A key aspect of ultracold gases is their diluteness, i.e. the range of potential
among particles is usually much smaller the average distance between the
particles. A very attractive feature of this state of affairs is that diluteness
reflects in the system manifesting in several respect a universal behavior.
Indeed for dilute gases, it is the s-wave scattering length (see below) that
encompasses all the information about the interaction properties. As a sim-
ple illustrative argument, for the relative motion of two particles scattering
against each-other in a generic, spherical-symmetric short-ranged potential,
the wavefunction in the asymptotic region can be written as

) k. @) .
¢]—Ci- — 6zk~r + f( rv )ezkr’ (42)

where f(k,8) can be decomposed in partial-waves contribution, each rel-
ative to an angular momentum value [65]. At small momentum k, the
centrifugal barrier, proportional to I(I+ 1), hampers the penetration of the
high-I components, and only the s-wave component to scattering remains
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relevant. Thus, for small &,

1
(1/&5) + Zk' =+ subleading terms’

i.e. scattering becomes expressible in terms of the scattering length. The
main conclusion, and of general validity, is that for short ranged potentials
in the dilute, low-energy limit, the scattering process has generic (univer-
sal) features, which permit to consider/use theoretically the most conve-
nient potential description which gives the same scattering length as the
experimental one.

4.5 Optical lattices

With the advent of ultracold atom physics, and the high degree of param-
eter control attainable with them, it has become perfectly viable to realize
experimental versions of paradigmatic models of condensed matter physics.
The most notable example is given by the Hubbard model [66], either in
the fermion or boson flavor. Here, the degree of control of Fano-Feshbach
resonances in experiments is such that the strength and even the sign of
the Hubbard interaction U can be changed within the same experiment.
How to mimic the lattice potential of condensed matter systems? FExper-
imentally, this is done resorting to laser optics. As an example in 1D, an
oscillating laser beams far away from resonance, can interact with an atom;
this i) induces a dipole moment on the atom and ii) there is an interaction
between the (electric) field E and the induced atomic dipole:

VLaser (I‘) =—d- Eraser (I‘) (4'4)

By counterpropagating two laser beams of this kind, one can develop a
optical standing-wave which produces a periodic potential in which the
atom can be trapped. The laser intensity is responsible for the potential
height, and the laser wavelength for the lattice spacing. At the same time,
the hyperfine structure can be exploited to simulate Fermions with spin
moving in virtually any type of optical lattice structure. An additional asset
of this setup is that “side-effects” such as lattice vibrations and disorder
can be made absent, or re-introduced in a controlled way when desired.
Accordingly, theoretical treatments used for specific situations in condensed
matter systems can be tested without ambiguity. In short, optical lattices
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offer outstanding potential to establish deep connections between ultracold
atoms and condensed matter systems.

In spite of the exceptional advances, many open, crucial issues still lay
on the table. Experimentally, to reach some interesting regimes for con-
densed matter, far lower temperatures are needed. Furthermore, from the
theoretical point of view, the question of non-equilibrium properties has
been vividly addressed in low dimensions (especially d=1, where powerful
techniques such as the Density-Matrix Renormalization Group (DMRG)
are available. However, much less is known for Fermions out of equilib-
rium in higher dimensions. Here, the presence of a Mott metal-insulator
transition at a finite, critical value U,,;; of the Hubbard interaction plays a
crucial role already in the ground state of trapped Fermions (see Fig. 4.2),
and its importance becomes even greater in the out-of-equilibrium regime.
This is the topic of Paper II and part of Paper IV of this thesis.

n(z,y|z = 0)

Figure 4.2: DFT density profiles in the z=0 plane for metallic and insu-
lating regimes of trapped fermions. The inherent shape of the exchange-
correlation potential is also shown.
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