Selective broadcast for VANET safety applications

Bür, Kaan; Kihl, Maria

Published in:
[Publication information missing]

2011

Link to publication

Citation for published version (APA):

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Selective Broadcast for VANET Safety Applications

Kaan Bür, Maria Kihl

Emergency situation warning is one of the most popular potential applications for vehicular ad hoc networks (VANET). Due to their life-critical nature, however, they must meet very high quality standards, such as reliable and timely delivery of the safety warning in a situation like car collision avoidance. In order to put the candidate solutions to the test, we implement four different selective broadcast algorithms used for information dissemination in VANET, and analyse their delivery performance under identical and realistic simulation conditions. The results we obtain help us to understand better the design requirements of a high-performance selective broadcast algorithm.

EVALUATION SCENARIO

In order to evaluate the effectiveness of selective broadcast in vehicular safety applications, we implemented 4 different algorithms based on the ideas in [1], [4], [3]. These algorithms, upon encountering an emergency situation, initiate a periodic broadcast sequence and start sending warning messages. Upon receiving a warning message, other vehicles start their own periodic broadcast sequence provided that the warning comes from a vehicle in front of them. The difference between the algorithms lies in their stopping conditions and random waiting times before transmission. As our tool for discrete event simulation, we have chosen ns-3 [2]. We ran the simulations 100 times with different random number seeds for each algorithm described above and each different value of the chosen variable.

Table I

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vehicles (variable)</td>
<td>20, 30, 100</td>
</tr>
<tr>
<td>Wireless transmission range</td>
<td>300 m</td>
</tr>
<tr>
<td>Emergency warning message size</td>
<td>100 B</td>
</tr>
<tr>
<td>Emergency warning message interval</td>
<td>100 ms</td>
</tr>
<tr>
<td>Wait-before-send time (minimum .. maximum)</td>
<td>0 ms .. 10 ms</td>
</tr>
<tr>
<td>Vehicle speed (minimum .. maximum)</td>
<td>60 km/h .. 120 km/h</td>
</tr>
<tr>
<td>Deceleration rate</td>
<td>4 m/s²</td>
</tr>
<tr>
<td>Driver reaction time</td>
<td>1.6 s</td>
</tr>
</tbody>
</table>

RESULTS AND CONCLUSION

The effectiveness metric is defined as the percentage of the vehicles having received the collision warning while their distance to the accident is still sufficient to stop in time. According to the simulation results, all 4 algorithms suffer from network disconnectivity when the density of nodes is not high enough to propagate and keep alive the warning. The successful delivery rate can be as low as 0.5 in sparse networks. As the network density increases, the success rate exceeds 0.9. The results show that much work remains to be done to realise safety applications with 100% reliability, so they can be widely and safely used in vehicles. It is necessary, for instance, to study adaptive broadcast techniques to overcome the problem of sparse networks. More accurate mobility models can be incorporated into the simulations, containing elements for changing lanes, keeping the safety distance, platooning, and driver behaviour. Our research plan for the near future is to address these issues.

REFERENCES