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Abstract  

Protein kinase C (PKC), a multi-gene family of enzymes, plays key roles in the pathways of 

signal transduction, growth control and tumorigenesis. Variations in the intracellular 

localization of the individual isoforms are thought to be an important mechanism for the 

isoform-specific regulation of enzyme activity and substrate specificity. To provide a dynamic 

method of analyzing the localization of the specific isoforms of PKC in living cells, we 

generated fluorescent fusion proteins of the various PKC isoforms by using the green fluo-

rescent protein (GFP) as a fluorescent marker at the carboxyl termini of these enzymes. The 

intracellular localization of the specific PKC isoforms was then examined by fluorescence 

microscopy after transient transfection of the respective PKC–GFP expression vector into 

NIH3T3 cells and subsequent TPA stimulation. We found that the specific isoforms of PKC 

display distinct localization patterns in untreated NIH3T3 cells. For example, PKCα is 

localized mainly in the cytoplasm while PKCε is localized mainly in the Golgi apparatus. We 

also observed that PKCα, β1, β2, γ, δ, ε, and η translocate to the plasma membrane within 10 

min of the start of TPA treatment, while the cellular localizations of PKCζ and ι were not 

affected by TPA. Using a protein kinase inhibitor, we also showed that the kinase activity was 

not important for the translocation of PKC. These results suggest that specific PKC isoforms 

exert spatially distinct biological effects by virtue of their directed translocation to different 

intracellular sites. 
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Introduction 

Protein kinase C (PKC) is a multi-gene family that encodes 10 distinct isoforms of lipid-

regulated serine/threonine kinases [1]. PKC isoforms play pivotal roles in several signal 

transduction pathways that regulate cellular growth, transformation, differentiation and 

apoptosis. PKC can be activated by calcium or by various phospholipids, diacylglycerol 

(DAG), generated by phospholipase C or phospholipase D, and by fatty acids, generated by 

phospholipase A2, depending on the PKC isoforms [2,3]. 

  

PKC isoforms can be classified into three groups, based on their structure and cofactor 

requirement: classical PKC isoforms (α, β1, β2, γ) which are regulated by DAG and Ca2+, novel 

PKC isoforms(δ, ε, η, θ)which are regulated by DAG, but not by Ca2+, and atypical PKC 

isoforms (ζ, ι)which are not responsive to either DAG or Ca2+. Each of these isoforms consists 

of an amino-terminal regulatory domain and a carboxy-terminal catalytic domain. Classical 

and novel PKC isoforms contain a tandem repeat of cysteine-rich motif referred to as the C1a 

and C1b domain. The C1a and C1b domains are the binding sites for DAG and the C1b domain 

is responsible for the majority of high affinity DAG binding, whereas atypical PKC isoforms, 

which lack the C1b domain, cannot bind DAG. Classical PKC isoforms are also characterized 

by a C2 domain that binds anionic phospholipids in a calcium-dependent way. The C2 domain 

is also present in novel PKC isoforms, but because of its lack of calcium binding residues, the 

novel C2 domain cannot bind either calcium or phospholipids [1]. The C2 domain of the novel 



PKC isoform, PKCδ, has been shown to be a phosphotyrosine binding domain [4] and the 

question as to whether other C2 domains are also phosphotyrosine binding domains, is still 

being investigated. 

 
PKC isoforms show different patterns of subcellular localization that can differ for the different 

isoforms according to the tissue and cell type. Moreover, PKC isoforms change their 

subcellular localization upon activation and their biological activities depend on their 

subcellular localization. However, it is not clear how the isoform-specific subcellular 

localization and stimulus-induced translocation can be achieved. Probably, PKC binding 

proteins play important roles in this process and the binding of DAG to C1 domains is also 

important for the localization of PKC isoforms [2]. Several phorbol esters are analogous to 

DAG and can bind and activate all PKC isoforms, except the atypical PKC isoforms. 

  

Several studies have demonstrated that phorbol esters such as TPA (12-O-tetradecanoyl-

phorbol-13-acetate) can translocate specific PKC isoforms to a specific cellular compartment. 

PKCγ, a classical PKC isoform, was reported to be translocated from the cytosol to the plasma 

membrane in COS-7 cells by TPA [5], whereas PKCα was redistributed in rat liver WB cells 

from the cytosol to the plasma membrane and nucleus by the same stimuli [6], although 

classical PKC isoforms are not known to contain any of the known nuclear localization signals. 

The macro-cyclic lactone, bryostatin 1, activate PKC by binding with the C1 domain, was also 

reported to translocate PKCα from the cytosol to the plasma membrane [7].  

 

PKCδ, a novel PKC isoform, was shown to be localized to the cytoplasm and nucleus in 

unstimulated CHO-K1 cells and redistributed to the plasma membrane and nuclear membrane 

after TPA stimulation [8], whereas, in HCT116 cells, PKCδ was redistributed from the cytosol 

to the plasma membrane [9]. PKCε exhibits a unique association with Golgi membranes via its 

C1 domain and modulates Golgi functions [10]. Another novel PKC isoform, PKCγ, was 

reported to localize at the Golgi apparatus, the endoplasmic reticulum and the nuclear envelope 

in COS-7 and MCF-7 cells, and TPA induced its translocation to the plasma membrane and the 

nuclear envelope [11]. These studies suggest that the subcellular localization of PKC isoforms 

is not only isoform or cell line specific, but also stimuli specific.  

 

Several techniques have been developed to study the subcellular localization of signaling 

proteins. Green fluorescent protein (GFP) fusion proteins facilitate the process of monitoring 

the protein’s translocation or subcellular localization. The translocation behaviors of GFP-

fusion proteins are similar to those of the native proteins. Herein, we report the direct 

visualization of the localization of individual PKC isoforms in living NIH3T3 cells. We study 

the translocation of individual PKC isoforms by TPA stimulation. Since their stimulation with 

TPA for a long time causes the down-regulation of the PKC isoforms through proteolytic 

degradation, we used a short time activation method. We also demonstrated the role of the PKC 

inhibitor in TPA induced PKC localization.  

 

Materials and methods  

 

Plasmids: pGFP3 was used to generate PKC mutants with an N-terminal GFP fusion protein. 

pGFP3 is a mammalian expression vector that contains a CMV promoter, Kozak translation 

initiation sequence, start codon, EcoR1 and BamH1 cloning sites, C-terminal GEP cDNA 

sequence and stop codon. It was generated by ligating the annealed synthetic oligonucleotides 

(upper strand, 5'-AGCTTGCCACCATGGAATTCG GATCC-3'; lower strand, 5'-

GATCGGATCCGAATTCCATGGT GGCA-3') into pEGFP-N1 (BD Biosciences) after 



digestion with HindIII and BamHI. pGFP3-PKCα-WT, pGFP3-PKCγ-WT, pGFP3-PKCδ-WT, 

pGFP3-PKCε-WT, pGFP3-PKCη-WT, pGFP3-PKCζ-WT, and pGFP3PKCι-WT were 

constructed by sub-cloning EcoRI fragments of the full length open reading frames of the 

respective PKC isoforms into pGFP3 expression vector. pGFP3-PKCβ1-WT and pGFP3-

PKCβ2-WT were constructed by sub-cloning the BamHI fragments of the full length open 

reading frames of the PKCβ1 and PKCβ2 isoforms into pGFP3 expression vector.  

 

Cell Transfection: NIH3T3 cells were grown in DMEM containing 10% calf serum. 

Triplicates of 1x105 
cells in 35 mm plates were transfected by lipofectin (Invitrogen) with 5μg 

of the expression plasmid. pGFP3 was used as an empty control vector. COS-7 cells were 

grown in DMEM containing 10% fetal bovine serum. About x105 
cells in 60 mm plates were 

transfected by lipofectin with 5 μg of the expression vectors or control vector.  

 

Fluorescence microscopy: Twenty-four hours after transfection in serum-free medium, 

Hoechst 33258 was added to the medium at a concentration of 1 μg/ml and allowed to stand 

for 30 min to stain the nuclei. The plates were then placed under a fluorescent microscope 

(Inovision Digital Deconvolution System) for real time observation. TPA was added to the 

medium at a concentration of 100 ng/ml to stimulate PKC translocation. Immediately following 

the TPA treatment, fluorescent images from both the green (GFP) and blue (nuclei) were 

recorded by the automated Inovision System. PKC–GFP was imaged by excitement with 488 

nm light and the emitted light was measured at 509 nm. 

 
Western blotting: Six hours after transfection, COS7 cells were fed with DMEM containing 

10% calf serum and left to stand overnight. The cells were then transferred to 10 cm plates and 

grown for 24h before protein extraction. The cellular proteins were extracted by cell lysis in 

RIPA buffer (50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl 

sulfate, 0.5% deoxycholate, 2mM EDTA, 2mM EGTA, 1mM dithiothreitol) containing 

protease inhibitors (10 μg/ml aprotinin, 10 μg/ml leupeptin, 0.1 mM PMSF) and phosphatase 

inhibitors (1 mM NaF, 0.1 mM Na3VO4,10 mM β-glycerophosphate). The GFP-fusion 

proteins were immunoprecipitated from 300 μg of the cell extracts using 3μg of anti-GFP 

antibody and 30 μl of protein G-Sepharose, after 3h of incubation at 4DC and analyzed by 

SDS–PAGE and an Enhanced Chemiluminescence Western Blotting System (Amersham).  

 

 

Results  

Generation of C-terminal GFP fusion PKC informs: 

Green fluorescent proteins are extensively used to monitor translocation or subcellular 

localization of proteins in living cells. To observe the subcellular localization of PKC, we 

constructed the C-terminal GFP fusion PKC isoforms. The expression plasmids, pGFP3-

PKCα-WT, pGFP3PKCβ1-WT, pGFP3-PKCβ2-WT, pGFP3-PKCγ-WT, pGFP3-PKCδ-WT, 

pGFP3-PKCε-WT, pGFP3-PKCη-WT, pGFP3-PKCζ-WT, and pGFP3-PKCι-WT, were gen-

erated by sub-cloning PKCα, β1, β2, γ, δ, ε, η, ζ and ι cDNAs, respectively, into the vector 

pGFP3 (for details see Material and methods). The pGFP3-PKC-WT plasmids encode the C-

terminal green fluorescent protein fused to full length open reading frames of the PKC isoforms 

(Supplementary figure 1A). COS-7 cells were transfected with the control vector, pGFP3, or 

expression plasmids. The expression levels of the overexpressed PKC–GFP proteins were 

examined by western blotting using anti-GFP antibody. The plasmids expressed the 

corresponding GFP fusion proteins with the expected sizes (Supplementary figure 1B). Then, 

GFP was expressed alone in NIH3T3 cells using the control vector, pGFP3, and its localization 

was observed with fluorescence microscopy. GFP was expressed in the cytoplasm and nucleus 



and after TPA stimulation no translocation was observed (Supplementary figure 1C). The 

translocation patterns described below for PKC–GFP therefore appear to reflect the intact 

fusion protein. 

 

Real time analysis of PKCβ translocation in NIH3T3 cells: 

Previous studies have suggested that the stimulation of various PKC isoforms by PKC agonist 

phorbol esters results in the rapid translocation of the isoforms from the cytosolic sites to 

membrane-associated sites [11–13].To study the real time translocation of PKC isoform, we 

used the classical PKC isoform, PKCβ, which has two transcriptional variants (PKCβ1, 

PKCβ2) containing about 96% homology. NIH3T3 cells were transfected with pGFP3PKCβ1-

WT and pGFP3-PKCβ2-WT, which encoded PKCβ1-GFP and PKCβ2-GFP, respectively. 

Several investigators demonstrated that GFP-fusion PKC isoforms show similar levels of 

activation and a similar extent of translocation to that of PKC alone [5,14,15]. The cells were 

placed under the fluorescent microscope and stimulated by 100 ng/ml TPA. Images were taken 

every 20 s for 20 min. Before their stimulation, PKCβ1-GFP (Fig.1 0min) and PKCβ2-GFP 

(Fig. 2 0min) were diffusely distributed in the cytosol suggesting that these isoforms are present 

in abundant amounts in the cytosol of the unstimulated cells, in fact designating inactive 

enzymes. The TPA-induced activation of the PKC isoforms resulted in their translocation to 

the cell membrane. The complete translocation of PKCβ1-GFP from the cytosol to the plasma 

membrane was observed after 12min (Fig. 1; Supplementary movie 1). In contrast, the TPA 

treatment of PKCβ2-GFP over-expressing cells results in the apparently faster translocation of 

PKCβ2-GFP to the membrane fraction (Fig. 2; Supplementary movie 2). These results suggest 

that the PKCβ isoforms differ with respect to their responsiveness to activation by TPA, even 

though their regulatory domains are the same. After TPA treatment, the shape of the cells 

overexpressing PKCβ dramatically changed, moreover the PKCβ2 overexpressing cells 

displayed unusual membrane blebbing after 12min of stimulation.  

 

TPA induced translocation of PKC isoforms in NIH3T3 cells: 

It is now widely accepted that the biological functions of PKC isoforms depend on their 

intracellular localization. PKC isoforms can be localized to multiple cellular compartments, 

including the plasma membrane, endosomes, Golgi, nucleus and nuclear membrane. To study 

the sub-cellular localization of other PKC isoforms, we transfected the pGFP3-PKCα-WT, 

pGFP3-PKCγ-WT, pGFP3PKCδ-WT, pGFP3-PKCε-WT, pGFP3-PKCη-WT, pGFP3-PKCζ-

WT, pGFP3-PKCι-WT plasmids into NIH3T3 cells. After transient expression, the subcellular 

localization of the GFP fusion proteins was observed with fluorescence microscopy. With a 

few exceptions, the unstimulated cells showed the diffuse distribution of each PKC isoform 

throughout the cytoplasm (Fig.3), but after TPA stimulation, each enzyme displayed a unique 

relocalization pattern. After 10 min of treatment with 100 ng/ml TPA, the activated PKCα 

mostly localized to the plasma membrane. A small portion of the activated PKCα was 

concentrated near the nucleus, a pattern like endoplasmic reticulum (Fig. 3B), suggesting that 

PKCα is associated with the endoplasmic reticulum (ER) membrane proteins. PKCα did not 

appear to localize to either the nuclear membrane or nucleus. The other classical PKC isoform, 

PKCγ, was distributed throughout the cytoplasm of the untreated cells, showing a distinct 

association with the Golgi like structures, without any nuclear accumulation (Fig. 3C), 

suggesting that inactive PKCγ expressed in the cytoplasm can accumulate in the Golgi-like 

structures. Upon TPA stimulation, PKCγ translocated to the plasma membrane with cis-Golgi 

redistribution (Fig.3D).  



PKCδ, a novel PKC isoform, was localized throughout the cytoplasm and also concentrated in 

perinuclear regions such as the Golgi in the unstimulated cells (Fig.3E). Upon TPA treatment, 

the cells noticeably and rapidly became rounded with considerable shrinking, and the 

cytoplasmic proteins translocated to the plasma and nuclear membrane with Golgi 

redistribution (Fig.3F). The other novel PKC isoform, PKCε, was expressed in the cytosol with 

a diffused distribution throughout the cytoplasm(Fig.3G) and, after TPA treatment, 

translocated to the plasma membrane with significant localization to the Golgi like structures 

(Fig. 3H). PKCη existed mainly in the Golgi apparatus with granular cytoplasmic distribution 

in the unstimulated cells (Fig.3I). PKCη expressed in COS7, was previously reported to be 

localized in the Golgi apparatus [11], further supporting our observation. TPA treatment 

induced the translocation of PKCη to the plasma membrane with cytoplasmic distribution (Fig. 

3J), suggesting that activated PKCη might be localized to cytoplamsic membrane like 

structures. The atypical PKC isoform, PKCζ, was found to be diffusely distributed in the 

cytosol (Fig.3K). In contrast, PKCι was strongly expressed in the nucleus with cytoplasmic 

diffusion (Fig. 3M). Upon TPA treatment, the atypical PKC isoforms did not translocate 

significantly (Fig. 3L and N). 

 

Effect of staurosporine on TPA induced translocation: 

In order to explore the role of the kinase activity of PKC isoforms in TPA-mediated 

translocation, we used staurosporine, a potent inhibitor of PKC isoforms. Staurosporine binds 

with the kinase domain of PKC that interferes in the binding of ATP, resulting in the inhibition 

of kinase activity [16,17]. NIH3T3 cells were transfected with the pGFP3PKCα-WT, pGFP3-

PKCβ1-WT, pGFP3-PKCβ2-WT, pGFP3-PKCγ-WT, pGFP3-PKCδ-WT, pGFP3-PKCε-WT 

plasmids. After transient expression, the cells were treated with staurosporine followed by 

TPA. The classical PKC isoforms were mostly localized to the plasma membrane, 

demonstrating that kinase activity is not essential for the translocation of the classical PKC 

isoforms (Fig. 4A–D). PKCδ and PKCε were also more abundant in the plasma membrane with 

a small amount of diffusion into the cytosolic membranes (Fig.4E and F). These results suggest 

that the translocation of PKC isoforms is regulated by the regulatory domain and that 

staurosporine increases the plasma membrane translocation.  

 

Discussion  

Several factors, such as the specific isoform, cell type and activating ligand, which account for 

the diversity of biological effects, form the central focus in the PKC field. The differences in 

the substrate preferences of PKC isoforms may contribute to this diversity. Another mechanism 

of localization may be the involvement of the interacting proteins. Using GFP-fusion PKC 

isoforms, several studies have shown the existence of a unique pattern of translocation of PKC 

isoforms in living cellsin response to different physiological activators. Sakai et al [5] described 

the translocation patterns of PKCγ in response to several stimuli using GFP-fusion PKCγ. 

Distinctive patterns of translocation of GFP-fusion PKCδ have also been reported in CHO-K1 

cells [8]. In this study, we studied the differential localization of PKC isoforms in the form of 

green fluorescent protein fusion proteins in NIH3T3 cells by over-expressing each isoform. 

Our results (summarized in Supplementary table 1) suggest that, upon their activation by TPA, 

the classical and novel PKC isoforms translocate to the plasma membrane with a distinct 

cytosolic membranous co-localization. All of the isoforms are present in abundant amounts in 

the cytosol in the untreated cells, presumably indicating they are inactive PKC proteins.  

 

Cytosolic membranes such as the Golgi and ER appear tobea target for the localizationof 



severalPKC isoforms. The co-localization of PKCα to the ER with plasma membrane is in 

agreement with the results of previous studies in 3T3 cells [18,19]. Although some previous 

studies reported the TPA-induced translocation of PKCα to the nuclear boundary [20] or 

nucleus [12], we did not observe any nuclear localization of PKCα. One possible reason for 

these findings might be the difference in the cell line or culture condition. The localization of 

PKCγ and PKCδ differs from that of the other isoforms in that these two isoforms localize to 

the cytoplasmic subcellular organelles in unstimulated cells, indicating the activation of a 

portion of these isoforms. The rapid morphological changes of PKCβ and PKCδ 

overexpressing cells after TPA stimulation might be the reason for the severe retardation of 

cell proliferation that has also been reported previously [21]. These morphological changes 

were also observed in the staurosporine treated cells suggesting that the kinase activity of the 

PKC isoforms is indispensable for cell proliferation. 

 
PKCη, a novel PKC, localized to the Golgi and other cytoplasmic membranous organelles and 

its TPA-induced translocation to the plasma membrane has also been supported by other 

investigators [11]. The Golgi localization of the inactive PKC isoforms was shown to be 

mediated by the C1b domain [10,11]. However it is not clear how the C1b domain mediates 

this localization. Another possible explanation for the Golgi localization of the PKC isoforms 

might be the association of the close PKC homolog, PKD, which was shown to interact with 

the novel PKC isoforms through its PH-domain [22,23] and existing in the Golgi, regulating 

Golgi-related functions [24].  

 

The results of our studies using the kinase inhibitor, staurosporine, suggesting that the 

regulatory domain of the PKC isoforms, but not the full-length enzyme, is obligatory for PKC 

localization, are also supported by the findings of Maissel et al., who found that the kinase-

dead mutant of PKCη showed similar localization to that of the wild-type [11]. The results 

presented herein demonstrate that the localization of PKC isoforms varies from isoform to 

isoform and, thus, the PKC family may not to be a functionally redundant protein kinase, but 

rather each isoform may have a distinct physiological role that can be visualized by the GFP 

fusion protein. 
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Figure legends: 

 

Figure 1: Real time analysis of PKCβ1 translocation. NIH3T3 cells were transfected with 

pGFP3-PKCβ1-WT plasmid. After 24h of transfectionin serum free medium, the nucleus was 

stained with Hoechst 33258 for 30 min and treated with 100 ng/ml TPA. Fluorescent images 

of NIH3T3 cells expressing PKCβ1-GFP with TPA stimulation were taken. 

 
Figure 2: Real time analysis of PKCβ2 translocation. NIH3T3 cells were transfected with 

pGFP3-PKCβ2-WT plasmid. After24h of transfectionin serum free medium, the nucleus was 

stained with Hoechst 33258 for 30 min and treated with 100 ng/ml TPA. Fluorescent images 

of NIH3T3 cells expressing PKCβ2-GFP with TPA stimulation were taken. 

 
Figure 3: TPA induced translocation of PKC isoforms. NIH3T3 cells were transfected with 

pGFP3-PKC-WT plasmid. After 24h of transfection in serum free medium, the nucleus was 

stained with Hoechst 33258 for 30 min. Fluorescent images of NIH3T3 cells expressing 

PKC–GFP before stimulation and after 10 min of TPA stimulation were taken. 
 

Figure 4: Effect of staurosporine on TPA induced translocation. NIH3T3 cells were transfected 

with pGFP3-PKC-WT plasmid or empty control vector. After 24h of transfection in serum free 

medium, the nucleus was stained with Hoechst 33258 for 30 min, then treated with 

staurosporine followed by 10 min of TPA stimulation. Fluorescent images of NIH3T3 cells 

expressing PKC–GFP were taken.  
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Supplementary figure legends: 

 

Supplementary Figure 1.  

Generation of C-terminal GFP fusion PKC isoforms. Structure of the C-terminal GFP fusion 

PKC isoforms. Other than the PKCβ1 and PKCβ2, PKC isoforms were ligated as EcoRI 

fragments and PKCβ1 and PKCβ2 were ligated as BamHI fragments. (B) COS-7 cells were 

transfected with pGFP3-PKC-WT plasmid or empty control vector and cellular proteins were 

extracted by cell lysis. Western blotting was performed using anti-GFP-antibody. (C) 

Fluorescent images of NIH3T3 cells expressing GFP before stimulation and after 10 min of 

TPA stimulation. NIH3T3 cells were transfected with pGFP3 empty control vector. After 24 h 

of transfection in serum free medium nucleus was stained with Hoechst 33258 for 30 min. 
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