
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Enabling Traceability Reuse for Impact Analyses: A Feasibility Study in a Safety
Context

Borg, Markus; Gotel, Orlena; Wnuk, Krzysztof

Published in:
Proceedings of the 7th International Workshop on Traceability in Emerging Forms of Software Engineering

2013

Link to publication

Citation for published version (APA):
Borg, M., Gotel, O., & Wnuk, K. (2013). Enabling Traceability Reuse for Impact Analyses: A Feasibility Study in a
Safety Context. In Proceedings of the 7th International Workshop on Traceability in Emerging Forms of Software
Engineering (pp. 72-78). IEEE - Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ad3e8f51-c226-44f6-b14e-98a02b3c824c


Enabling Traceability Reuse for Impact Analyses:
A Feasibility Study in a Safety Context

Markus Borg
Dept. of Computer Science

Lund University
Lund, Sweden

markus.borg@cs.lth.se

Orlena C. Z. Gotel
Independent Researcher
New York, United States

olly@gotel.net

Krzysztof Wnuk
Dept. of Computer Science

Lund University
Lund, Sweden

krzysztof.wnuk@cs.lth.se

Abstract—Engineers working on safety critical software devel-
opment must explicitly specify trace links as part of Impact Anal-
yses (IA), both to code and non-code development artifacts. In
large-scale projects, constituting information spaces of thousands
of artifacts, conducting IA is tedious work relying on extensive
system understanding. We propose to support this activity by
enabling engineers to reuse knowledge from previously completed
IAs. We do this by mining the trace links in documented IA
reports, creating a semantic network of the resulting traceability,
and rendering the resulting network amenable to visual analyses.
We studied an Issue Management System (IMS), from within
a company in the power and automation domain, containing
4,845 IA reports from 9 years of development relating to a single
safety critical system. The domain has strict process requirements
guiding the documented IAs. We used link mining to extract
trace links, from these IA reports to development artifacts, and
to determine their link semantics. We constructed a semantic
network of the interrelated development artifacts, containing
6,104 non-code artifacts and 9,395 trace links, and we used
two visualizations to examine the results. We provide initial
suggestions as to how the knowledge embedded in such a network
can be (re-)used to advance support for IA.

Index Terms—impact analysis, issue management, traceability,
data mining, semantic networks, visualization

I. INTRODUCTION

To ensure system safety in areas such as medicine, nuclear
engineering and aviation, rigorous standards for industry-
specific software development are mandated [8], [9]. De-
veloping software adhering to strict process requirements is
costly [21], and this can inhibit making subsequent changes
to the software [12]. However, as the lifecycles of many safety
critical systems are often long, software evolution is inevitable,
and this demands that change be handled with equal discipline.

One tedious development activity in the evolution of a
safety critical software system is conducting Impact Analysis
(IA) [1], [17], as specified by IEC 61511 [8]. IEC 61511 states
that the impact of proposed software changes (e.g., for error
corrections) should be formally analyzed before implementa-
tion. The IA typically consists of answering questions such as:
“What code needs to be modified?” and “Which documents
need to be updated to reflect the changes?” Moreover, to enable
external agencies to assess process adherence and qualify for
safety certification, the IA must be documented. As the IA
requires the capture of trace links, to both code and non-
code development artifacts, it is labor-intensive, dependent on

system understanding and efficient navigation of the project
information space [5].

IA is conducted by analyzing the relationships between
development artifacts, and is classified as either dependency
analysis or traceability analysis [3]. Dependency analysis
can be automatically determined from source code, and this
approach to IA is typically restricted to dependencies on
the implementation level. Traceability analysis, on the other
hand, includes relations among all types of artifact, and this
broader approach to IA is unavoidable in the safety critical
domain [27]. Unfortunately, automating IA among arbitrary
types of artifact is a greater challenge; while semantic in-
formation about the relations is required, less formalism is
generally available to determine this [18], so determination is
often context dependent. The ensuing traceability analysis can
be further helped or hindered by the representation used to
describe the relations.

Several ways to represent trace links in software engineering
have been proposed, such as traceability matrices, require-
ments dependency webs, and object models [18]. Another
approach is to maintain a semantic network to represent se-
mantic relations between concepts [25]. Semantic networks are
a form of knowledge representation, and a typical output from
ontological engineering. Their visual representation brings the
potential for a quick analysis of the overall structure and
relationships.

We suggest that a semantic network of development artifacts
would provide a suitable knowledge base for a semi-automated
approach to IA. Semantic networks have previously been
shown feasible for software engineering search tools [19] and
issue management [2], applications related to IA. Furthermore,
semantic networks are navigable and flexible data structures,
whose content can evolve over time [14], a crucial aspect in
the dynamic context where IA is needed. However, creating
and maintaining a high-quality semantic network that reflects
the traceability among all the artifacts in a system demands
significant manual effort at present, and one may question the
return on investment.

Our proposal is to automatically build a semantic net-
work, targeted to the IA task, based upon any IA that has
already been undertaken for a system, effectively extracting
and reusing the traceability associated with the most volatile

978-1-4799-0495-2/13 c© 2013 IEEE TEFSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

72



components. To explore the feasibility of our proposal, we
study a large-scale and on-going safety critical development
case, where the effort spent on IA is considerable, and where
the engineers have requested IA support because the manual
work involved is daunting [5]. The research questions of our
feasibility study were:

RQ1 How can the traceability associated with past impact
analyses be automatically extracted?

RQ2 What representational structure would facilitate the reuse
of this traceability in future impact analyses?

RQ3 What additional analytical value would be gained by
visualizing this traceability?

Section II describes the case company, and this sets out
the motivation for the research highlighted in this paper.
Section III then positions our research within the context of the
wider traceability research challenges. Section IV outlines our
approach and Section V presents the results of our preliminary
investigations. Section VI summarizes the limitations and
future work, while Section VII concludes.

II. CASE DESCRIPTION

A large multinational company, active in the power and au-
tomation sector, applies the IA process that is the impetus for
this research. The case company develops safety critical indus-
trial control systems, governed by IEC 61511 [8]. The system
under study within this company is certified to a Safety In-
tegrity Level (SIL) of 2, as defined by IEC 61508 [9], and has
evolved since the 1980s. Development was undertaken accord-
ing to the first edition of IEC 61508, where only forward trace-
ability is mandated (i.e., requirements→design→code→test).
Also, while safety is a system characteristic, not all compo-
nents in the system under study are safety classified. In the
case company, the forward traceability is only maintained for
development artifacts in the safety classified components, via
references in documents.

As specified in IEC 61511 [8], the impact of proposed
software changes should be analyzed before implementation.
In the case company, this process is integrated in the Issue
Management System (IMS). As part of the analysis, engineers
are required to investigate impact, and report their results
according to a project specific IA template (see Table I),
validated by an external certifying agency. Several questions
explicitly ask for trace links (6 out of 13 questions). The
engineer is required to specify source code that will be mod-
ified, and also which related development artifacts need to be
updated to reflect the changes (e.g., requirement specifications,
design documentation, test case descriptions, test scripts and
user manuals). Furthermore, the IA should specify which high-
level system requirements are involved in the change, and
which test cases should be executed to verify that the changes
are correct once implemented in the system.

When creating an IA report for a new issue in the IMS,
an engineer answers the questions of Table I. Trace links are
specified using the full path to source code files, or by stating
the formal artifact IDs of non-code development artifacts. The

TABLE I
IMPACT ANALYSIS TEMPLATE. QUESTIONS IN BOLD FONT REQUIRE

EXPLICIT TRACE LINKS. ADAPTED FROM KLEVIN [20].
Impact Analysis Questions

1) Is the reported problem safety critical?
2) In which versions/revisions does this problem exist?
3) How are general system functions and properties affected by

the change?
4) List modified code files/modules and their SIL classifica-

tions, and/or affected safety related hardware modules.
5) Which library items are affected by the change? (e.g., li-

brary types, firmware functions, HW types, HW libraries)
6) Which documents need to be modified? (e.g., product

requirements specifications, architecture, functional re-
quirements specifications, design descriptions, schematics,
functional test descriptions, design test descriptions)

7) Which test cases need to be executed? (e.g., de-
sign tests, functional tests, sequence tests, environ-
mental/electromagnetic compatibility tests, FPGA (Field-
Programmable Gate Array) simulations)

8) Which user documents, including online help, need to be
modified?

9) How long will it take to correct the problem, and verify the
correction?

10) What is the root cause of this problem?
11) How could this problem have been avoided?
12) Which requirements and functions need to be retested by

product test/system test organization?

minimal level of granularity required in the IA report is file-
level for source code, requirements are specified individually,
and other artifacts are specified on a document-level. When
the IA template is filled in, the resulting IA report is attached
to the specific issue report in the IMS. The IA reports are
essential artifacts used in the safety certification process. Due
to their significance, they are reviewed internally before audits.
Consequently, the trace links specified in the IA reports have
the highest trustworthiness the company can provide.

Nevertheless, and due to the increasing system size, con-
ducting an IA is a daunting task. While some tool support is
available to identify the impact on source code (e.g., automated
regression test suites, and breakpoints and crash dump files in
a debugger), there is little support to identify the non-code im-
pact. The available forward traceability only provides support
if the engineer manages to identify impact on development
artifacts in the safety classified components; in this case, the
forward trace links can be investigated. As such, and despite
the safety context, the engineers cannot routinely refer to any
documented traceability to: (1) establish traces from new issue
reports, (2) trace among non-safety development artifacts, or
(3) trace backwards. In general, identification of impacted
non-code artifacts is an information seeking activity [5]; if
engineers do not know which artifacts will be impacted, they
can either search for old IA reports related to the new issue,
use key-word search in the document management system,
browse documents in search for references to other artifacts,
or ask more experienced colleagues.

III. TRACEABILITY RESEARCH IN CONTEXT

The research that is described in this paper is tightly scoped
with respect to the Grand Challenge of Traceability [16]. The
premise is that the traceability that has been established to date

73



Fig. 1. Overview of a three-step recommendation process for IA. From left
to right, identification of similar issues using text retrieval, identification of
previous impact using neighborhood search, and artifact ranking.

for a particular software system is purposed and trusted (see
[16]). We argue that this is a reasonable assumption to make
for a company that develops safety critical software systems
within a context that demands external certification of its IA
process and reporting. We build upon this assumption to focus
on addressing the challenge of making traceability portable,
whereby: ”traceability is exchanged, merged and reused across
projects, organizations, domains, product lines and supporting
tools” [16]. More specifically, we focus on research topic 6,
to: “develop mechanisms to help extract, integrate and reuse
traceability work products” [16].

Our research therefore seeks to extract the traceability that
has been specified as a by-product of completing the IA reports
that are mandated during the development of a system, and
then to integrate the results as a semantic network of trace
artifacts and links. While the extracted traceability is a partial
view, this is the traceability associated with the most volatile
parts of the system to date, so we argue a pragmatic starting
point for future IA. Moreover, due to the restricted context
of our research, the reliability of the traceability specified
during IA is high. The objective is then to analyze and
reuse this resulting traceability to predict the likely impact
of future change requests for the same system as it evolves,
and thereby reduce the manual effort currently demanded of
the engineer. Accomplishing the reuse of traceability in the
context of a single system and a single task (e.g., IA) is
a necessary precursor to understanding and advancing the
capability for wider and more habitual traceability reuse, a
midterm destination on the roadmap for software and systems
traceability research [15].

IV. APPROACH

Figure 1 depicts the three-step process to supporting IA that
we envision. First, when a new IA is needed for an issue report,
similar issue reports in the semantic network are identified
using text retrieval techniques [10]. Second, neighborhood
searches originating from the similar issue reports are used
to identify a set of previously impacted artifacts. Third, the
potentially impacted artifacts are ranked according to textual
similarities and centrality measures in the network, and pre-
sented to the engineer. This would result in a recommendation
system for IA [24].

In this paper, we only focus on the mechanism required to
enable the last two steps of this process. Figure 2 provides
an overview of a link mining approach that builds the se-

Fig. 2. The steps of the link mining approach. The resulting semantic network
(the output from C) can be used as input to the process described in Figure 1.

mantic network, and is described in this section. It includes
preprocessing steps, and visualization techniques to facilitate
traceability analysis and reuse, as initially described by Marcus
et al. [22].

A. Data Preprocessing

The IMS contained 26,120 issue reports submitted between
2000 and 2012. The issue reports correspond to different
versions of a single software system (i.e., several different
development projects), and range from low priority issues
to project show-stoppers. All issue reports in the IMS were
submitted by company-internal engineers, or as a consequence
of defect reports collected by a customer support line. The
issue reports in the IMS have unique identifiers, titles, and
a natural language description. Moreover, there are 78 other
fields that can be edited for each issue report, such as dates,
identity of engineers, and relations to other issue reports. Our
previous work discusses the issue reports of the IMS [6].

We exported all 4,845 issue reports from the IMS that had
IA reports (out of 26,120) associated with them. Apparently,
the majority of the reported issues are closed without formal
IA reports. We found several reasons for this, such as non-
repeatable issues, duplicate reports, and deferred changes.
Also, issues not necessitating changes to any production code
did not require IA, including pure document updates and
changes to test code. We exported the issue reports to an
extended CSV format, a feature provided by the IMS (A in
Figure 2). The associated IA reports were contained within the
CSV file as free text, with the IA template answers structured
by question number (short descriptions in English or explicit
trace links to development artifacts specified by unique IDs).
We then converted the CSV file to an XML file (B in Figure 2),
to be able to parse the semi-structured information using an
off-the-shelf SAX parser.

B. Link Mining and Analysis

We base our approach on link mining [13] explicit refer-
ences from IA reports. We used regular expressions to mine
trace links from the IA reports (C in Figure 2). Due to the

74



fixed format of artifact IDs (described in Section II), this
method could extract all correctly formatted trace links. Also,
we used two heuristics to determine what type of trace links
were extracted. First, due to the structure of the IA template
(Table I), we knew to which question a specific trace link was
an answer. As such, we could deduce that the meaning of
the links was related to verification for Q7 and Q12. Second,
as references to requirements and hardware modules have
formats different to other development artifacts, we could also
distinguish both SpecifiedBy links and HWLinks.

In the resulting semantic network, represented in
GraphML [7], we used the graph editor yEd1 to calculate
centrality measures for each artifact, based on the number
of incoming edges. Centrality measures show the relative
importance of nodes in a network, and are used in social
network analysis for key player identification [13] and on
the Web for ranking search results [23]. For traceability, they
can be used to identify the most often impacted artifacts.
Potentially, the centrality measures could constitute input to
an artifact-ranking engine in a tool providing support for IA.
We also used Gephi (v. 0.8.1 Beta) [3] to compute structural
statistics of the semantic network, displaying characteristics
such as how many trace artifacts an IA report on average
is linked to. These are shown in Table II and discussed in
Section V.

C. Visualization

Visualization can improve the comprehension of multi-
dimensional data sets [26], and can therefore potentially help
to better understand the structure, behavior and evolution
of software systems [11]. By enabling interaction with a
visual representation of a traceability network (via zooming,
panning, filtering, etc.), practitioners could begin to explore the
traceability of a complex system at many levels. Due to the
pattern recognition ability of human vision, we propose that
this could support deviation detection in the network, such as
variations in trace link densities, and pronounced clusters of
trace artifacts, and so assist IA.

We visualized the semantic network using two different
layouts in yEd (D in Figure 2). The organic layout is based
on the force directed layout paradigm. The graph nodes are
treated like physical objects with mutually repulsive forces,
while the edges are considered to be metal springs attached
to nodes, producing attractive forces if they are long and
repulsive forces if they are short. By simulating these physical
forces, the organic layout finds a minimum of the sum of
the forces emitted by nodes and edges. Output from organic
layouts typically show inherent symmetric and clustered graph
structures, useful for finding highly connected backbone re-
gions in a graph. This layout therefore brings a potential to
discover artifact clusters and for a cluster to be distinguishable,
its trace links must predominantly target other artifacts within
the cluster. When conducting an IA for an artifact in a
visually distinguished cluster, an engineer faces a significantly

1yEd v. 3.9.2 http://www.yworks.com/en/products yed about.html

reduced search space. Moreover, a semantic network without
any prominent clusters could be an indication of potential
maintainability issues.

The circular layout displays a graph as an interconnected
ring topology. The layout produces partitions of nodes de-
pending on the connectivity structure of the graph. Thus,
the circular layout emphasizes group and tree structures. We
configured the layout to produce a single circle, with all trace
artifacts placed on the circle perimeter. While the positioning
of artifacts on the perimeter does not carry a direct meaning,
artifacts with many connections in common are laid out closer
together, as the layout attempts to minimize the total length
of the links. Thus, when conducting an IA, a connection
across the circle disk is an example of a trace link that
might be difficult to anticipate in the system. An engineer
conducting an IA could use this layout to identify several issue
reports targeting a single artifact on another part of the circle
perimeter. On the other hand, when conducting an IA for an
artifact positioned in an area with nothing but connections
along the circle perimeter, there is an indication that fewer
cross-cutting concerns are involved, so the risk of unexpected
side effects is lower. In both cases, the engineer gets visual
support in identifying potentially impacted artifacts that are
either positioned close to the investigated issue or across the
circle.

V. DEMONSTRATION

This section discusses the application of the approach to the
case data, and addresses our research questions.

A. Traceability Extraction (RQ1)

Using link mining, we discovered a semantic network of
6,104 development artifacts connected by 9,395 trace links,
grouped in 1,885 weakly connected components (i.e., sets of
nodes in which there exists a path from any node to any other).
Table III shows that 1,259 non-code development artifacts
have been pointed out as impacted from 9 years of formal
IA, indicating that the system contains a set of repeatedly
impacted artifacts. Table III shows the different types of trace
links extracted, as well as their frequencies. About half of the
trace links (3,996, 42.5%) target requirements (fine-granular
links), while the rest target artifacts with a document-level
granularity.

Computing the structural statistics for the semantic network
(Table II) shows that the majority of the development artifacts
are part of one large interconnected component, containing
65% of the artifacts (3,974). This dominating component also
contains 97.0% (9,111) of the trace links in the network. How-
ever, as most of the trace artifacts are not directly linked, both
the entire network and the largest component are by definition
sparse. The semantic network has a diameter of 17 (i.e., the
longest possible path between two artifacts), and the average
path length in the largest component is 6.0. Both figures
indicate that the connectedness of the largest component is
high despite its sparsity. As such, from a given issue report, it
is typically possible to identify a set of previously impacted

75



TABLE II
STRUCTURAL STATISTICS OF THE SEMANTIC NETWORK.

Measure Total Largest A \ (B ∪ C)
network (A) component (B)

#Nodes 6,104 3,974 320
#Edges 9,395 9,111 284
#Components 1,885 1 74
#Isolated nodes (C) 1,814 0 0
Diameter 17 17 7
Average path length 1.0 6.0 2.0
Average node degree 1.5 2.2 0.8

artifacts by following trace links, often several degrees away.
If IA for a new issue is required, and a similar issue report is
found in the largest component, a neighborhood search in the
network can return potentially impacted artifacts.

There are also several components in the semantic network
with fewer connected development artifacts. As many as 1,814
issue reports (37.4%), all having documented IA reports, have
no specified trace links at all. Thus, they end up as isolated
nodes in the network (see Table II), with no relations to
other non-code artifacts. One explanation, expressed by an
engineer at the company, is that IA reports often state that “the
change deals with implementation details, no documentation
covers this level of detail”. This statement could be verified
by adding trace links to source code to the semantic network,
to investigate whether the occurrence of isolated nodes is re-
duced. Finally, 316 development artifacts (5.2% of the nodes)
are part of interconnected components containing between 2
and 52 nodes. Generally, the potential to reuse trace links is
proportional to the component size, as the potential builds on
the number of links that can be followed.

Due to the formal use of artifact IDs for specifying impact
relations at the company, link mining allowed us to extract
the traceability associated with past IA for the case software
system automatically.

B. Traceability Representation (RQ2)

We stored the extracted traceability information in a se-
mantic network represented by GraphML. As such, we could
represent the semantics of both trace artifacts and links. As
presented in Table III, most nodes in the semantic network
are issue reports (4,845, 79.4%), and the number of impacted
non-code development artifacts is limited to 1,259.

To further explore the network structure, we ranked the
artifacts in the semantic network based on their centrality
measures. Our results showed that among the highest ranked
artifacts, several types of artifact were represented, including
system requirements, hardware descriptions, functional design
descriptions and test specifications. We presented the top ten
artifacts to three engineers at the company for an initial
validation, who confirmed they were central to the system,
i.e., known to often be impacted by changes. This suggests
that the structure of the semantic network carries meaning,
and that further inquiry into whether it could be used for the
ranking of potentially impacted artifacts is motivated.

Regarding the semantics of the extracted trace links, the
largest proportion were of type SpecifiedBy (3,996, 42.5%)

TABLE III
TYPES OF NODES AND LINKS EXTRACTED FROM THE IA REPORTS. NOTE

THAT ALL LINKS HAVE ISSUE REPORTS AS SOURCES.
Node type Description #Nodes
Issue report A single submitted issue report 4,803
Safety critical is-
sue report

Issue report flagged as safety criti-
cal

42

Misc.
development
artifacts

Unique requirements, test case de-
scriptions, user manuals, hardware
descriptions, etc.

1,259

Trace link type Description #Links
SpecifiedBy Link to a specific requirement de-

scribing the impacted behavior.
3,996

VerifiedBy Link to a test specification that
needs to be executed.

2,297

HWLink Link to a hardware description that
is impacted by the issue.

2,327

OtherLink Trace link whose meaning could
not be extracted.

775

(see Table III), partly due to their finer granularity. The
number of HWlinks to hardware descriptions (2,327, 24.8%)
and VerifiedBy links (2,297, 24.4%) were about equal. For 775
trace links (8.2%), we could not deduce the link semantics.

The semantic network is a dynamic data structure, which
supported our work in this study. We were able to program-
matically add new types of trace artifacts and links to the
GraphML representation in an iterative manner, as new IA
reports were added to the ongoing development Furthermore,
using a graph editor, we could easily interact with the se-
mantic network and follow specific traces. The possibilities to
freely zoom, filter information, and search information (further
discussed in Section V-C) were considered positive by the
engineers in the company, and also deemed as necessary due to
the complexity of the data. Thus we argue, compared to textual
representations and traceability matrices, a semantic network
better supports interaction and modification, especially with
appropriate tool support. Moreover, while textual represen-
tations and matrices do not scale, the potential power of
networked structures increases as more data is added, boosting
its value and predictive power.

Our initial experiences suggest that a semantic network
could be used as a suitable knowledge representation for trace-
ability reuse. Such a structure meets Jönsson and Lindvall’s
requirements on consistency and semantics regarding input to
automated IA tools [18]. On the other hand, while Jönsson
and Lindvall also claim that completeness is an important
aspect, we argue that a semantic network can deliver support
also with partial traceability information. For example, even
if our semantic network does not reflect the total traceability
of a system, the fact that it does reflect the traceability of the
most volatile components means it could still be used as a
starting point and queried about potentially impacted artifacts
for new IA. While the knowledge base would be smaller, the
reliability of the information and thus the ability to signal some
previous impact would remain, and constitute an alternative to
completely manual work starting from scratch. Furthermore, as
the semantic network can be seamlessly recreated and allows
incremental additions, new trace links and artifacts can be

76



added after-the-fact, either as made available or in batch.

C. Traceability Visualization (RQ3)

Figures 3 and 4 show two overviews of the largest extracted
component in the semantic network, containing 3,974 devel-
opment artifacts (65%) and 9,111 trace links (95%). High-
resolution color figures are also available online [4].

Figure 3 uses an organic layout. A highly connected region
of issue reports and other development artifacts is clearly
visible in the center of the figure, where the individual
nodes are completely covered by edges. The figure does not
display any clear clusters not dwarfed by the backbone region,
suggesting that the long software evolution has resulted in a
deeply intertwined system.

Figure 3 also displays three magnified views of the semantic
network, all in the outer parts of the figure. Magnification A
shows a network substructure where 15 issue reports (gray
nodes) link to a single hardware description (black node).
An engineer conducting IA for a similar issue could spot
that this issue under investigation would most probably also
impact this hardware description. Magnification B highlights
an issue report with two outgoing trace links (encircled gray
node), one SpecifiedBy link to an individual requirement (black
ellipse) and one VerifiedBy link to a test case description
(black triangle). An engineer performing IA for a related issue
could use this view to quickly spot which requirement could
be impacted by this change and which test case verifies this
issue. Magnification C displays two issue reports flagged as
safety critical (gray nodes) that both have outgoing VerifiedBy
links to the same test case description (parallel dashed edges).
An engineer performing IA for a similar issue could use this
information both for test case selection, and as a warning that
also the new issue under investigation might be safety critical.
All three magnifications exemplify traceability captured in
the semantic network, information that could be used in tool
support to deduce and then explore potential impact.

Figure 4 uses a circular layout. The many trace links
crossing the circle disk again shows that the development
artifacts are highly interconnected. Magnification A displays a
close-up of a highly connected part of the network, with trace
links of all types along the circle perimeter and across the disk.
Only two regions of the network, both on the right side of the
figure (see C in the figure), are more separated. Magnification
B presents another recurring pattern, where several nodes
target a single node on another part of the perimeter, signaling
a risk that there are important dependencies, something easily
identified with this layout. In this example, several issue
reports (just above C in the figure) are connected to the
same hardware description (in magnification B). An engineer
performing an IA on issues similar to those just above C in
Figure 4 gets a visual indication that the hardware description
(in magnification B) should be included in the investigation.
The most pronounced observation from the circular layout
is that most parts of the circle perimeter are connected by
crosscutting trace links (across the disk), confirming complex

Fig. 3. The largest component of the semantic traceability network, visualized
using an organic layout. The figure shows a highly connected backbone region.

Fig. 4. The largest component of the semantic traceability network, visualized
using a single circle layout. The figure shows the complex interconnectivity.

dependencies within the software system, and motivating the
need to support IA.

Jönsson and Lindvall claim that the complex relations
among artifacts in large software systems are often hard to
visualize [18]. Our results confirm this statement, as the high
link densities in Figures 3 and 4 obstruct most of the nodes
in the semantic network. Consequently, effort should be made
to find alternative ways to filter or slice the data to enable
further discoveries from visual analytics. However, as our
figures embed both link structure and semantics, it enables
filtering based on these characteristics, and the potential to
interactively explore the traceability is already promising.

VI. LIMITATIONS AND FUTURE WORK

The research presented in this paper remains exploratory
and focuses on the first two steps of the process described in
Figure 1. Future research is required to further evaluate using a
semantic network as a representation for mined trace links, and
to explore alternatives. Then, work needs to be directed toward
building the recommendation system and examining how it
could facilitate traceability reuse in an IA tool. However,
tool support for IA should itself be examined carefully, as
increasing the level of automation for a task always presents
new risks. An IA tool might lull engineers into a false sense
of security, thus decreasing their tendency to identify impact

77



that is not suggested. Thus, to mitigate this risk, we need
to qualitatively study how engineers in the case company
currently conduct manual IA, to better understand how tool
support for IA could be successfully deployed.

We focused on the relations among the non-code artifacts
in our feasibility study (e.g., requirements, test specifications,
and hardware descriptions), as they were considered more
challenging to trace in the case company. One could question
whether studying impacted development artifacts without con-
sideration of impacted source code is a reasonable approach
to take. While our results show that a considerable number
of trace links can be extracted, and support can potentially be
provided for a tool-neglected side of IA, future work should
aim at also integrating code artifacts.

However, to focus on integrating source code in our case
presented some challenges. First, the code is generally more
volatile than the internal documentation in the case company;
source code files are modified more frequently, added and
removed at a higher rate, and turn obsolete at a faster pace.
One option to explore this could be to include time information
in the semantic network. As timestamps are available for all IA
reports, the age of the created traces is possible to determine.
This could be used to identify obsolete artifacts, and provide
additional input to a ranking engine. Second, we suspected
that it would be harder to automatically extract trace links
to source code, as they are not consistently specified in the
IA reports. We noticed significant variations in how engineers
specify items in the code repository, indicating a need for more
advanced parsing. Decreasing the granularity of trace links to
source code, by primarily extracting links on a component
level, could possibly mitigate this.

Another limitation of this initial work is that it does not cap-
italize upon the traceability that has already been established
for the system. In the case company, the forward traceability
was restricted to safety-critical components of the system and
embedded in documentation. Our intention was to augment
the tools that the engineer had available to support IA to
assess feasibility. Future work should examine how to use the
extracted traceability as a way to either validate or update
the official traceability record, and then use the consolidated
traceability to support IA more comprehensively.

VII. CONCLUSIONS

This paper focuses on IA in a safety critical software
development context, where specifying explicit trace links
to impacted development artifacts is currently a challenging
and manual activity for engineers. We explored the feasibility
of extracting and reusing the traceability from previously
completed IA reports to support future IA, using link mining,
and semantic network analyses, aided by visual techniques.
This initial work is a first step toward more comprehensive
support for IA in practice. The research also begins to tackle
the challenge of achieving traceability that is portable, by:
”develop[ing] mechanisms to help extract, integrate and reuse
traceability work products” [16]. This is one of the many
interim destinations on the road to traceability ubiquity [15].

REFERENCES

[1] H. Ali, M. Rozan, and A. Sharif. Identifying challenges of change impact
analysis for software projects. In Proc. of the Int. Conf. on Innovation
Management and Technology Research, pages 407–411, 2012.

[2] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty. Supporting
online problem-solving communities with the semantic web. In Proc.
of the 15th Int. Conf. on World Wide Web, pages 575–584. ACM, 2006.

[3] S. Bohner. Software Change Impact Analysis. IEEE Computer Soc.
Press, 1996.

[4] M. Borg. Accompanying website ”Traceability network”.
http://serg.cs.lth.se/index.php?id=70335.

[5] M. Borg. Findability through traceability: A realistic application of
candidate trace links? In Proc. of the 7th Int. Conf. on Evaluating
Novel Approaches to Software Engineering, pages 173–181, 2012.

[6] M. Borg, D. Pfahl, and P. Runeson. Analyzing networks of issue reports.
In Proc. of the 17th European Conf. on Software Maintenance and
Reengineering, pages 79–88, 2013.

[7] U. Brandes, M. Eiglsperger, J. Lerner, and C. Pich. Graph markup
language (GraphML). In R. Tamassia, editor, Handbook of Graph
Drawing and Visualization. CRC Press, To appear.

[8] International Electrotechnical Commission. IEC 61511-1 ed 1.0, safety
instrumented systems for the process industry sector, 2003.

[9] International Electrotechnical Commission. IEC 61508 ed 1.0, electri-
cal/electronic/programmable electronic safety-related systems, 2010.

[10] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk. Information
retrieval methods for automated traceability recovery. In J. Cleland-
Huang, O. Gotel, and A. Zisman, editors, Software and Systems Trace-
ability. Springer, 2012.

[11] S. Diehl. Software visualization. In Software Visualization, pages 1–13.
Springer Berlin Heidelberg, 2007.

[12] S.W. Fraser. Can safety-critical software be flexible? In Proc. of the
Int. Conf. on Information Reuse and Integration, pages 588–593, 2003.

[13] L. Getoor and C. Diehl. Link mining: a survey. SIGKDD Explorations
Newsletter, 7(2):3–12, 2005.

[14] W. Gorka, A. Piasecki, and L. Bownik. Application of semantic networks
in natural language issues. In S. Safeeullah, editor, Engineering the
Computer Science and IT. InTech, 2008.

[15] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grünbacher, and G. Antoniol. The quest for ubiquity: A roadmap
for software and systems traceability research. In Proc. of the 20th Int.
Requirements Engineering Conf., 2012.

[16] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, and J. Maletic. The grand
challenge of traceability (v1.0). In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability. Springer, 2012.

[17] N. Hrgarek. Certification and regulatory challenges in medical device
software development. In Proc. of the 4th Int. Workshop on Software
Engineering in Health Care, pages 40–43, 2012.

[18] P. Jönsson and M. Lindvall. Impact analysis. In A. Aurum and
C. Wohlin, editors, Engineering and Managing Software Requirements,
pages 117–142. Springer, 2005.

[19] G. Karabatis, Z. Chen, V. Janeja, T. Lobo, M. Advani, M. Lindvall,
and R. Feldmann. Using semantic networks and context in search for
relevant software engineering artifacts. In Journal on Data Semantics
XIV, pages 74–104. Springer, 2009.

[20] A. Klevin. People, process and tools: A Study of Impact Anal-
ysis in a Change Process. Master thesis, Lund University,
http://sam.cs.lth.se/ExjobGetFile?id=434, 2012.

[21] J.C. Knight. Safety critical systems: challenges and directions. In Proc.
of the 24th Int. Conf. on Software Engineering, pages 547–550, 2002.

[22] A. Marcus, X. Xie, and D. Poshyvanyk. When and how to visualize
traceability links? In Proc. of the 3rd Int. Workshop on Traceability in
Emerging Forms of Software Engineering, pages 56–61, 2005.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, 1998.

[24] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems
for software engineering. IEEE Software, 27(4):80–86, 2010.

[25] J. Sowa. Principles of Semantic Networks. Morgan Kaufmann, 1991.
[26] E. Tufte. Envisioning information. Graphics Press, Cheshire, 1990.
[27] R. Turver and M. Munro. An early impact analysis technique for

software maintenance. Journal of Software Maintenance: Research and
Practice, 6(1):35–52, 1994.

78




