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INERTTAL NAVIGATION SYSTEMS WITH THREE SINGLE AXIS GYROS AND A PHYSICAL
PENDULUM

by

Karl-Johan fstrom

The fundamental idea for the systems discussed in this report is the
synthesis of a vertical indicating system based on a physical pendulum,
proposed by Mr K-J Rstrém, member of the TTN Group, and Mr F Hector of
the Philips Teleindustri.

This report is written in order to demonstrate how the basic idea can
be adopted to the design of selfcontained position indication systems.
The scope of the report is to survey the main features of the gystems

and the required component accuracy without too many analytical details.

The basic idea for the synthesis of the vertical indicating system is
briefly described in section 1. In section 2 are shown two ways of
mechanizing the systems. The single-axis systems are analysed in sec-
tion 3. This analysis is the base for the discussion of the navigation
error caused by component inaccuracies in section 4. Section 5 deals
with some problems concerning the instrumentation of the three-axis

systems and the initial alignment of the systems.
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INTRODUCTION

We will start by analysing the motion of a physical pendulum in a
gravity field. The gravity field is supposed to be directed towards
a point O and the magnitude of the force depends only on the distance
to that point. The pivot point of the pendulum is denoted by P,

The vector OP is denoted by r, the vector from the pivot point to

the center of mass of the pendulum by h, and the vector from the

center of mass to the center of gravity by h’. See figure 1.1ll.

Figure 1.11

Newtons Laws of motion give

HCM =-hxF+h xG 1.11
{m(f +h) =F +¢ 1.12
where
ﬁCM the angular momentum of the pendulum with

respect to its center of mass

B the force acting on the pendulum at the

point of suspension
G the gravity force on the pendulum

m the mass of the pendulum

Equations (1.11) and (1.12) gives

ﬁP = (h+0h") xG-m hxr

where HP is the angular momentum of the pendulum with respect to

the pivot point
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Neglecting the difference between the center of mass and the center

of gravity, i.e. |h’|<< [h], and introducing

G = mg

we get

EP =mh x(g-7) 1.13
Suppose that the pivot point moves in a plane at '"constant height",
i.e. r=constant, and that the velocity of the pivot point is con-

siderably less than VrgZ 8000 m/sec.

Introduce a coordinate set 0 x Yy z fixed to inertial space and the

notations according to figure 1.12.

Figure 1.12

The z-component of equation (1.13) gives after linearization in ¢
Jb:nurhf -mghduy 1.14

where
J the moment of inertia of the pendulum with respect

to its pivot point.

We want the pendulum to indicate the vertical, i.e. © should equal 8

The difference © - 2* is called the vertical indication error.
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The vertical indicating error is denoted by . We have

Equation (1.14) gives
Jé u + mgh ¢ = (mrh = JP)ig 1.15

These equations can be illuastrated by the block-diagram of

figure 1.13.

Pigure 1.13

Blogk-diagram of 2 single-axis physical pendulum moving at

_doﬁétantiheight in a gpherical gravity field
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Suppose that the pendulum is initially indicating the vertical i.e.
w(0) = ¢(0) =0

Equation (1.15) then gives
G(t) =0 for all t if

J = mrh 1.16
P

This means that if the pendulum is initially indicating the
vertical it will do so henceforth if the equation 1.16 is satis-
fied. The condition (1.16) is called the Schuler-tuning condition.
See reference 1. Bquation (1.16) means that the natural oscilla-

tions of the pendulum is

w =\/§T
s Vr
Introducing
r=R=6.4x 106 m (the radius of the earth)
2
g = 9.8 m/sec
we get
O W == e .
s ~ 800 °°¢

which corresponds to a period of 84 minutes.

If the pivot point no longer is restricted to move on a circle it
is still indicating the vertical with no error if the gravity field
is spheric symmetric, the pivot point moves at constant height and

the Schuler-tuning condition is satisfied. See reference 2.

If the pivot point does not move at constant height an upper limit of
the vertical indication error in case of perfect Schuler-tuning is

given by

|¢'<3%“‘: 1.17
' Z
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where
AT the variation in height
v the velocity of the wvehicle
g the acceleration of gravity

The relation (1.17) is derived in reference 3, section 3.

Some numerical examples are given in table 1.1 calculated for
r=R=56.4x 106 m (the radius of the earth)

g = 9.8 m/se02

Table 1.1

An estimate of the vertical indication error due to variations in

height for a perfect Schuler-tuned system.

A v
5 —r£ ye—
Vrg
AT v = 20 m/sec v = 400 m/sec
-8 -7
I0 m 1.2 x 10 rad ~ 0.002" 2.4 x 10 rad = 0,05"
2 -7 , -6 ,
10" m 1.2 x 10 rad 2~ 0.02 2.4 x 10 rad =~ 0.5
3 —6 e~ " -5 ~ "
107 m 1.2 x 10 rad % 0.2 2.4 x 10 rad ® 5
104 m 1.2 x lO—5 rad e 2" 2.4 x 10—4 rad & 50"
10° m 1.2 x 1074 rag = o20" 2.4 x 1077 rad % 500"

As was already pointed out by Schuler, the problem of vertical indi-
cation is solved if a pendulum with the property given by eq. (1.16)

is mechanized.

We will now further analyse the properties of such a pendulum.



Introducing
r=R =06.4x 106 m

into the Schuler-tuning condition (1.16) we get the following nume-
rical values of the displacement h and the radius of gyration of

the pendulum K.

Table 1.2

Radius of gyration Displacement
K h
-2 .
10 m 0.16 A
—1 .
10 " m 16 A
1 m 0.16 u
10 m 16 n
2
10° m 1.6 mm
3
107 m 0.16 m
lO4 m 16 m

From this table it is obvious that, for a pendulum of reasonable

size, the massdisplacement h is a +too small to be mechanized.

In an actual application we also have +o consider various disturbing

torques, e.g. suspension friction.

Introducing the disturbing torque M(t) acting on the pendulum the

equation of motion of the pendulum, equation (1.15) becomes

JPCL' + mgh¢ = (mrh-J ) 7o+ u(t) (1.15a)

If the disturbing torque has a constant magnitude MO we obtain a

stationary vertical indicating error
Mo

This equation can be used to estimate the order of magnitude of the
vertical indicating error obtained for disturbing torques acting on

the pendulum.
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Bearings today available have friction torques down to the order of

1 dyncm. Assuming a reasonable mass of the pendulum (0.5 kg) the
displacement h must be of the order of 1 cm if the vertiecal indicating
error should be less than one second of an arc (255 b4 10_6 rad).,

In order to satisfy the Schuler-tuning condition the radius of gyra-

tion of the pendulum then should be of the order of 250 m.

With such a pendulum the difference between the center of mass and
center of gravity (h' in figure l.ll) will not be negligible compared

with the displacement h. See reference 3.

__-....._...._.-.-...——._—..._—...__....__-——___-.—...—......._-.___-...._..___._.._.—......——-.—....._...—-......_...._._

The analysis of section 1.1 shows that a physical pendulum can indicate
the vertical if the Schuler-tuning condition is satisfied. The analysis
also shows the impossibility of mechanizing the pendulum with present
day technology. The main.difficulty is that, with a displacement of
reasonable size, the moment of inertia JP is far too large. Yet the
simple pendulum has the attractive property of indicating the vertical
when the pivot point is at rest. In order to see what should be done

to the simple pendulum we can argue as follows.

The only way JP enters the equation of motion of the pendulum is as

a coefficient of 6. See equation 1.14. With a reasonable size of the
system this coefficient is far to small to satisfy the Schuler-tuning
condition. In order to obtain Schuler-tuning the coefficient of 6 in
the equation of motion thus must be increased. This can be achieved by

applying a torque to the Pendulum proportional to 9.

Equation (1.14) is then replaced by

J O = mrh? - mgh ¢ + M 1.21
P

where M’ is the torque acting on the pendulum i.e.

M = - 40 1.22
hence
(JP + A) 0 = nrh 7 - mgh 1.23

This equation is identical to equation (1.14) if ;P+A is replaced by
JP'

by JP+A, e.g. equation (1.15) corresponds to

Similarly all equation of section 1.1 are valid if JP is replaced
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(35 + 4)b + meh ¢ = (mrh - J_ - A)F 1.24

P
The Schuler-tuning condition for this system is thus
J, + A = mrh

hence

A = mrh - JP 1.25

This means that the torque M’ applied to the pendulum should egual

-[mrn - JPJQ 1.26

Equations (1.21) and (1,22) can be illustrated by the block~diagram
of figure 1.21.

As the only result of the added control torque M’ was that JP was re-
placed by JP+A. The moment of inertia of the pendulum JP is thus
apparently increased by the action of the control torque M'. The

quantity (JP+A) is referred to as apparent moment of inertia,

The vertical indicating system thus consists of an ordinary physical

pendulum provided with a device for applying a control torque propor-
tional to the angular acceleration of the vehicle. The possibilities
of designing such systems were first discussed in reference 5 and has

also been proved by experimental investigations.

In order to apply a torque to the pendulum proportional to its angular

acceleration with resvect to inertial space a space reference is needed.

But the vertical and a space-reference are sufficient to determine

position. Hence there is no need for extra equipment for the position

indication.



FPigure 1.21

Block-diagram of a single axis physical rendulum, with internal

feedback, moving at constant height in a spherical gravity field.
Compare figure 1.13.

11.
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SOME POSSIBLE WAYS OF MECHANTZING THE NAVIGATION SYSTEM

Introduction

According to section 1.2 the vertical indicating system consists of

a physical pendulum provided with some equipment which make it possible
to apply a torque to the pendulum proportional to its angular accelera-
tion with respect to inertial space. We will now describe some Possible
ways of mechanizing such a pendulum. We will also discuss what equip-
ment is needed in order to complete the vertical indicating system to

a navigation gystem.

As 1t is necessary to apply a torque to the pendulum the suspension
must be provided with torque-motors. In order to apply the torque
it is necessary to have a signal proportional to the angular accelera-

tion of the pendulum.
This signal can e.g. be obtained in the following way

l. By measuring the angle, between a space-reference and the

rendulum and differentiating the twice.

2. By providing the pendulum with rate-gyres and differentiating
the output signals from the gyros. (We might as well use an

integrating gyro and differentiate twice. Compare reference 5,

section 4.1)

The corresponding systems are referred to as systems of type 1 and

type 2 resp.

A system of type 1 is shown in figure 2.21.

The space-reference is a three-gyro platform system stabilized with
respect to inertial space. Position indication is obtained by measuring
the angles between the pendulum and the space-reference. With an arrange-
ment according to figure 2.21 the angles directly correspond to longitude
and latitude. The control signal is obtained by differentiating these’
angles twice. The differentiated signals are amplified and distributed

to torque-motors which give a control torque proportional to the angular

acceleration of the pendulum.

A system of this type can be obtained from the Draper-system shown in

figure 5 of reference 1 by
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Indicated
polar axis
Indicated
vertical
Local
Pendul eapgt axis
e wm
< \\ - 2
Greenwich
east axisg
) —— Sideral

time drive

™S ,.

Gyro pakage
(Inertial stabilized

‘Figure 2.21 (System of type 1)

Navigation-aystem with an inertial stabilized three-gyrp platfqrm Byatem
and a vertical indicating system with a physical pendulum with 'a high
apparent moment of inertia. (Compare fig. 5, ref. 1)
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1. Removing the accelerometers
2. Providing the accelerometer-gimbal with an unbalance

3. Changing the internal feedback. {The essential change is
that the double integration in the Draper system should
be replaced by a double differentiation)

- GRSt e s

A system of type 2 is shown in figure 2.31.

Gyros used for

. Azimut gyro
Schuler-tunin,

7

//¢
\‘)// Unbalance ’/

Base

Figure 2.31 (System of type 2)

Navigation system based on a Schuler-tuned three-gyro platform system
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It consists of a pendulum provided with two rate—gyros.x The control
signal is obtained by differentiating the output signals of the gyros.
These signals are amplified and fed to torque-motors on the gimbalsg,
which provide the control torque proportional to the angular accelera-
tion of the pendulum. A third gyro is required to stabilize the pen-
dulum with respect to rotations around the vertical. Position indi-
cation is obtained by integrating the output signals of the gyros.

4 system of this type is analysed in reference 7.

A system of type 2 can be obtained from the Draper-system shown in

figure 4 of reference 2 by
1. Removing the accelerometers
2. Providing the controlled member with an unbalance

5. Changing the internal feedback. (The essential change is
that the double integration in the Draper-system should

be replaced by a double differentiation).

3EIt ig also possible to use one rate-coupled two-degree gyro.
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3. 21

16.

A STUPLIFIED ANALYSIS OF THE SINGLE AXIS SYSTEMS

Introduction

In order to obtain a further understanding of the systems to be able
to give the component accuracy required for a given system accuracy
it 1s necessary to analyse the systems. In order to get the order
of magnitude of the accuracy an analysis of the single-axis systems
is sufficient. For a more detailed discussion of the systems the

reader is referred to the bibliography.

In order to further simplify the problem we make the following assump-

tions.

1. The distance between the center of mass and the center of
gravity h of the pendulum is considerably less than the

displacement h.

2. The vehicle carrying the navigation system has a translational
motion in a plane at constant height i.e.
r = const
with a velocity v whose magnitude 1s considerably less than

Nrg »2 8000 m/sek.

3. The gravity field has a spherical symmetry.

Analysis of a single-axis system of type 1

A gingle-axis system of the first type is shown in figure 3.21.

The space reference is a single-axis inertial stabilized platform system.
It consists of a gimbal to which a single axis gyro is mounted.

Angular displacements of the gimbal are sensed by the gyro whose

output signal is filtered and fed to the gimbal torquer TMl in such

a phase that the angular displacements are counteracted. The gimbal
will then essentially maintain its orientation with respect to inertial

space.

The vertical indicating system is built up according to the prin-
ciples described in section 1.2. It consists of a pendulum with a
torque-motor TM2. The angle between the pendulum and the space-
reference is measured differentiated twice, amplified, and fed to

the torque-motor TM2 of the pendulum.



Angular meaauring device

Single axis gyro

EE

SG,

TG

Gimbal

Figure 3.21

A single axis navigation asystem of type 1.

\
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™

Pendulum

Reference direction main-
tained by the single axis
inertial stabilized platform
system

N

Indicated vertical iven
by the direction of the
pendulum



Introduce the notations according to figure 3.22. Also compare

section 1.

Fizure

o

vertical

Reference direction main-
tained by the single axis
platform system

Indicated vertical

122

the center of the gravity field
the pivot point of the pendulum

the vertical indicating error

the error of the single axias inertial stabilized platform

system

the angle between the pendulum and a direction fixed to
inertial space

18.
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The angle between the pendulum and the reference system is

o(t) - X(t)
The torque applied to the pendulum is thus

W (p) = - & p° [0(p) -K(p)]

where Ap2 is the transfer function from the angle between the pendulum

and the reference system to the torque applied to the pendulum.

For a Schuler-tuned system the torque M~ should equal

-[mrh - JPj p29 (See equation 1.26)

where

mh the unbalance of the pendulum

JP the moment of inertia of the pendulum with respect

to the pivot point

Using the assumptions (1), (2) and (3) of section 3.1 the equation of

motion of the pendulum is

Jp6 = mrh¥ - mgh ¢ + M () + M(%)

where M(t) is the disturbing torque acting on the pendulum. Compare

equation (1.23).

Laplace-transforming and solving for the vertical indication error (t)

we get

mrh—A—Jp ) a[ 2

W(p) =
[JP+A pZJ+ mgh T
+ é. * M(p) 3. 23
[J +A p J+ mgh
P
2
+ AD - X(p)

[JP+A p2]+ mgh
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The equations of the single-axis inertial stabilized pPlatform system

are derived in reference 6. BEquation (4. 13) of reference 6 gives

1 1 Y(p)
X(p) = — m(p) + 55 I7Y_(5) m(p) 3.2

bIp (1+Y _(p))

where
w W
Y (2) = =% - t(z)+ 0 3.25
plp+ G(p)]
and
W, the angular velocity of the gyroscopic element
J the moment of inertia of the gyroscopic element with

respect to the spin axis

w J=H the angular momentum of the gyroscopic element

0
ad the moment of inertia of the float of the gyro
bJ the moment of inertia of the gimbal

@(t) the output signal of the gyro

% (t) the angle between the gimbal and a direction fixed
to inertial space

Ml(t) the disturbing torque acting on the gimbal
ml(t) the disturbing torque acting on the float of the gy ro

J 7(p) the transfer function from the output signal of the
gyro to the torque applied by the torque-motor TM1

J §(p) the transfer function from the output signal of the
gyro to the torque applied by the torque-generator TG
of the gyro. The transfer function 'ﬁ(p) in-
cludes the viscous damping of the fluid and the ex-
ternal feedback).

A block-diagram of the complete single-axis navigation system is shown

in figure 3,23,
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SPACE REFERENCE (SINGLE AXIS INERTIAL STABILIZED PLATFORM
SYSTEM)

| Network and
| torquemotor 'I‘M1

(1)

Figure 3.23

———————— . j — e — — —— —
{—Double differentiator, I Angular measu-

anplifier and torque- ring device gives
I motor TM2 |1 position informa-
| | | tion

2 I

: Ap : I e
| | L m=0m-xw
L s dasmameimd o e

L_Pendulun1

T i I DY AP G S AL DS WEASY GLEN CUNES TEER GMNEE GENE GPED s GEED GBS

Block-diagram of a single-axis navigation system of type l.

Compare fig.

1.13

o

I
2
e
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3.24 As the vehicle moves on a circle the position is given by the angle Qﬁ(t).
The angle between the space-reference, given by the single-axis platform

system, and the vertical indicated by the pendulum is
V(8 = 0(t) - X(8) = V(t) + () - X(t)

This angle is obtained from the angular measuring device and is used

to estimate the angle ¥ (%),

The error is thus
e(t) = Z%(t) - (t) = w(t) - X (t) 3.26

The angle e(t) is called the navigation error. To obtain the position

error 4 we have to multiply the angle e(%) by r. Compare figure 3.24.

(Notice that e = 1’ <<=>gq - 1852 m)

\
Position given by the navigation
systen
/O
\d
//)l\true position
P .

X

Figure 3.24
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According to the equation (3.26) the navigation error e(t) is the sum
of the vertical indication error ((t) and the error of the Space-
reference X (t). The equations (3.22) and (3.24) give the following

expression for the navigation error

mrh-A—JP >
e(p) = . p® V(p) +
[JP+A P J+ mgh

. L * M(p) - 3. 27

BP+A p2J+ mgh

= Bl + (o)

[1,+4 p*)+ men

where
X(p) = =5« =1, (p) + = - Lol w(p)
prz 11+Y0(p)1 1 Hp 1+Yoip5
and
. ( ) (JJO (A)op + T(p)
p) = -2 .
© ab p[p% + 7(p)]

The first two terms are due to errors in the vertical indicating system
and the last term is due to errors in the reference system. Before
discussing this equation we will derive the corresponding equation

for a system of type 2.




3.3 Analysis of a single-axis system of type 2

3.31 A single-axis system of the second type ie shown in figure 3.31.

Single axis gyre ™ Gimbal

5G

Gimbal unbalance

Flgure . 3.31

A single-axis system of type 2.

A single-axis gyro is mounted to the pendulum. The gyro could e.g.

be rate-coupled!. Thie is assumed for the present. The output signal
of the gyro @(t) is thus proportional to the angular velocity of the ,
pendulum., The signal @(t) is differentiated, amplifisd and fed to a
the torque-motor. TM. A torgue proportional to the angular acceleration
of the pendulum is thue applied to the pendulum. -

The torque applied to the pendulum is

W (p) =-ip * ¢(p) ~ J t(p) 9(p) 331

® Other schemes of coupling the gyro are discussed later in section 3.33
and in section 4 of reference 5
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where
B the angular momentum of the gyroscopic element

J T(p) the transfer function from the output signal of the
g8yro to the torque applied by the torque motor M

motor TM.

The output signal of the gyro @(t) is related to the angular velocity
of the pendulunm é(t) by the equation

w p

?(2) = —F—— 0(p) = =2 5y 3.32
aJ[p + §(p)] alp+ S-(p)J
where
J the moment of inertia of the gyroscopic element
ad the moment of inertis of the float of the gyro
wo the angular velocity of the gyroscopic element
H=Jw the angular momentum of the gyroscopic element

JT?(p) the transfer function from the output signal of
the gyro to torque acting on the float of the gyro
(the viscous damping as well as external feedback
is included in G (p). 4n integrating gyro has
G(p) = ap. A rate gyro has ¢ (p) = ap+df )

Equation (5.32) tells how the changes in the angle 9(t) are sensed by

the gyro and is referred to as the signal equation.

Eliminating ¢(p) between the equations (3.31) and (3.32) we get the
torque applied %0 the rendulum

M (p) = - & p° a(p) 3033
where

A = () on[wop + T(pﬂ 5.3
e ap[p2+ﬁ"(p)] '
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3.22 For a Schuler-tuned pendulum the torque M’ should equal

—[mrh - Jp pZQ

The Schuler-tuning condition for this system is thus

onl:wop + r(p)] = ap[mrh -~ JPJ- [pg + E’(p)] 3.3%4

3.33 Both of the transfer functions ¢ (p) and t(p) are to the designers
disposal. The Schuler-tuning condition, equation (5.34), can thus

be satisfied in many ways. Some examples are given below

J w 2
(1) ©(p) = 0, G(p) = —2—c _ 2
a|mrh - JPJ
ap/ mrh - J“"p2 + ap]
(1)  w(p) = — 2 Loz
J wo
d(p) = ap
_ =p .
apjmrh - J P+ ap +Jp
(1i1) 1(p) = —b = ij " L. WP
0
g(p) = ap + op

Compare reference 5, section 4.1.

The first scheme means that no gimbal torquers are used. The desired
control-torque is obitained from the reaction torque of the gyro. The tuning
condition means that {7(p) should equal a constant for low frequencies

at least. This is obtained simply by spring-restraining the float

of the gyro. The spring-coefficient should be

2 2
H o
k = - 3.35

. iy h'd J b
aJ|mrh - JP! &« mra

This scheme of mechanizing the Schuler-tuning condition is used in
the Anschlitz Gyro Compass, but is not suited for high precision

equipment. The main reason is that the gyro is used both as sensing
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and actuating device, which means difficulties. This is further

discussed in reference 9.

Scheme (ii) means that the gyro is integrating and that T(p) essen-
tially includes two differentiations. This method is not very attractive
since the output signal of the gyro is proportional to the distance
travelled, which means difficulties in keeping tne output signal of

the gyrc within reasonable limits. The output signal of the gyro

should thus be reset to zero. One way of doing this is by spring-
restraining the float of the gyro to zero. The gyro then works as a

rate gyro. Scheme (iii) is a system of this type.

A system of type (4ii) is discussed in reference 5. The reader is
refered to this report for a discussion of the choice of the coeffi-

cient d@, ref. 5, section 4.1.

3.34 Introduce the notations according to figure 3.32.

/' / _ Indicated vertical

Figure 3.32

0 the center of the gravity field
the pivot point of the pendulum

¢ the vertical indicating error
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Using the assumptions (1), (2) and (3) of section 3.1 the equation of

motion of the pendulum is

Jp © = mrh 2 - mgh ¢ + M’ (t) 3.36

where
M'(t) is the torque applied to the pendulum by the torque-

motor and the gyro.
Laplace—transforming and solving for the vertical indication error
we get,

nrh-A(p)-J
Uo) + P a(e)

2
PP+A(p)jp + mgh

where

a(p) 1is the acceleration of the vehicle i.e.
2.
a(p) = r p° #(p)

Introducing the disturbing torque m(t) acting en the float of the gyro

the signal equation (3.32) becomes

¢(p) = ———0 = 0(p) - == 2(p) : 5.32 |
Ja{p + ﬁ(ph aJJP + @(P)J |
Also introducing the disturbing torque acting on the pendulum M(t)
we get
mrh-A(p)-JP N
¢(p) = T —%Pl
[JP+A(p)]p + mgh
+ = - 5 U(p)
JP+A(p)}p + mgh
2
+ = A(p) 12) . Hi : m(p) 3,37
JP+A(p)Jp + mgh p
where
J w [w p + 1t(p)]j
A(p) _ o] (o] J

ap[p” + §(p)]

A block~diagram of the system is shown in figure 3.33.
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Block-diagram of a single

-axis navigation system of type 2,

Compare figure 1,13,
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3.35 As the vehicle moves on s circle position indication consists of

determining the angle 2}(t). See figure 3.34,

ik

R\“\\ Position obtained from the
}Jnavigation system

PN

/ O true position

4-// .
et

Figure 3.34 yd

The angle 9(t) is an estimate of ¥ (t). The output signal of the gyro
¢(t) is related to (%) by the equation 3.32, An estimate ¥ (t) of
2#(t) can thus be obtained by feeding the output signal through a

linear network i.e.

#(p) = £(p) + ¢(p)

where f(p) is the transfer function of the network. Equation (3.32)

gives

£(p) = a[p2w+ ;T(D)j
0

Compare the way position information is obtained in systems of type 1.

Introduce the navigation error defined by
*
e(t) = 27(%) - (t)

we get from equations (5.32)

2(p) = w(p) + g5 + u(p)
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Introduce the vertical indication error ¢(t) from the equation (5.37)

we get

mrh - A(p) - JP a(p)

e(p)

]

i 2 r
iJP + A(pﬂ P + mgh
1
+ - * M(p) 3. 38
[JP + A(p)fp + mgh
S -+
JP p2 + mgh
+ " (e

[ N 4 2
LJP + A(p% P~ + mgh

where A(p) is given by the equation (3.337),

In an actual navigation problem, navigation take place over a rota-
ting earth whose gravity field is elliptic rather than spheric.
Besides the vehicle can not be supposed to move at constant height.
This is a situation rather different from the idealized problem dealt
with in the previous sections. A questions now arises. To what
extend is the simplified analysis valid. To answer this completely

it is necessary to solve the complete problem. As this calls for a
complex analytical work quite outside the scope of this report we just

mention a few results obtained, concerning the simplifications.

1. The distance h’ between the center of mass and the
center of gravity of the Pendulum is for a pendulum

whose inertia ellipsoid has circular symmetric

7 J-J’
h'mz 3 — cos
where

J, J° the moments of inertia of the pendulum with
respect to the pivot point

m the mass of the pendulum

r the distance from the pivot point to the
center of the earth

¢ the angle between the pendulum and the

vertical

See reference 3.
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2. As the vehicle is no longer restricted to move at
constant "height'" even a perfect Schuler-tuned system
moving in a spherical gravity field would have an
indication error. The order of magnitude of the error

can be estimated by equation (1.17)

L v

fvl < 3 i
qu‘\/ r \irg

See section 1.13.

Using external information of height this error can
largely be eliminated. Similarly it is possible to
compensate for deviations from the spherical gravity
field by introducing a loop which changes the tuning
according to the position of the wvehicle.

Compare section 5.

5. In the analyses of the previous sections no damping
is introduced in the systems. This means that errors
obtained will never fade out. As damping also means
misstuning of the system the introduction of damping is
a compromize between solution time and forced error.
This problem is the same for all Schuler-tuned system.

It is extensive dealt with in reference 2.

4. The single-axis approach means that the interactions

of the different loops are neglected.

To summarize the single-axis simplified single-axis approach is not
satisfactory for a detailed analysis of the system but is sufficient
to show the main features of the system and to give an estimate of
the order of magnitude of the required accuracy of some of the com-

ponents.
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4.1

4.21

33.

A PRELIMINARY ESTIMATE OF THE NAVIGATION ERROR CAUSED BY CERTAIN
COMPONENT INACCURACIES

Introduction

e T —

We will now use the single axis models developed in section 3 in
order to obtain estimates of the navigation error caused by certain
component inaccuracies. As we have no special application in mind
we cannot expect detailed information about the nature of the various

disturbances. Hence there is no need for a complex model.

This section is by no means complete. It is merely some examples
of the error obtained for some special deterministic disturbances

and preliminary estimates to get the order of nagnitude of the

required component accuracy.

As the simplified equations are linear we can calculate the error
from different sources and add to get the total navigation error.
The navigation errors for systems of type 1 and type 2 are given by

the equations (3.27) and (3.38).

We will first discuss errors which are the same for systems of both

types.

Nonperfect tuning means that an error is obtained in the vertical
indicating system when the vehicle accelerates. The deviations from
perfect tuning may be intentionally introduced in order to obtain
damping in the system or may be due to component inaccuracy. The
analytical relationships are the same for all Schuler-tuned systems.
For a single-axis system where the carrying vehicle moves at constant
height, i.e. r=const, with a velocity considerable less than

?Eé 24 8000 m/sec we have

mrh - A - J
P_ ., a(p)

€1 (p) = me—
1 f 2
{JP+AJP + mgh =

where
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sl(t) the navigation error

a(t) the acceleration of the vehicle

mh the unbalance of the pendulum

JP the moment of inertia of the vendulum with

respect to the pivot point
g the acceleration of gravity

r the distance between the pivot point of the pen-

dulum and the center of the gravity field

A transfer function from the angular acceleration

of the pendulum to torque applied to the pendulum

If the system is perfectly tuned, i.e.

A =mnrh - J (Compare section 1.2, equation 1.25)

P

the error el(t) is zero independent of the acceleration of the vehicle.
As was previously mentioned the transfer function A is mechanized with
physical components which means that the Schuler-tuning condition cannot
be accurately satisfied. Errors of the same type are obtained if damping
is introduced in the system. See reference 2 and 4. We will give

some examples of the error obtained.

Example 1
Suppose that

A = (mrh - JP)(l - 6)

where & is an overall figure of the component accuracy. Equation 4.21

gives
é(mrh - JP) o
e, (p) = > a’ (p)
[ﬁrh- é(mrh—Jp)]p + mgh

Supposing

dX 1

JP( mrh
we get

_ . a(p)
er(p) = 2 r




Assume that the vehicle accelerates to the velocity Vs in a time

considerably shorter than 5;-&5800 sec we get

S
e, (p) = S5 ) e
1 w T 2 2
S P +w
S
hence
AV 0w
el(t) = sin wst
A maximum error of
5 Ve @y 2V
Elo = _-"é_ - \}"R"é . 4-s 22

will thus be obtained for

T
t = zusﬂw 1250 sec

Some numerical values of the maximum navigation error are given in

table 4.21. This table is calculated for

r=6.4x 106 m (the radius of the earth)

g = 10 m/sec2

£10
S
A = 20 m/sec e = 400 m/sec
1072 2.5 x 1072 rad ~ 5" 5 x 1074 rad ~ 100"
1077 2.5 x 10'6 rad & 0.5" 5 x 1072 rad = 10"
1074 2.5 x 1077 rad = 0.05" 5 x 10'6 rad ¥ 1"
1077 2.5 x 1078 rad » 0.005" 5 x 1077 rad = 0.1
Table 4.21

Maximum navigation error ¢ due to misstuning, for a system with

10
the average component accuracy <, when the carrying vehicle acce-

lerates to the velocity v, in a time considerably shorter than

L~ 800 sec.
]

S



36.

The synthesis of the vertical indicating system essentially was to
apply a torque to the pendulum proportional to the angular accelera-
tion of the pendulum. The synthesis involved two differentiations.
Because of the noise generated when differentiating high frequency
signals it is highly desirable to cut the high frequency part of

the signal. By doing so the Schuler-tuning condition is only satis-
fied at low frequencies. The following example shows the order of

magnitude of the error and how this depends on the cut off frequency.

Example 2
Suppose that
i mrh - JP
1 + pT

This means that the Schuler-tuning condition is exactly satisfied at
zero-frequency. Equation 4.21 gives

(HlI‘h . JP)Tp . a(p)

el(p) = 3 ) r
JPTp + mrh p~ + mgh Tp + mgh

Introducing

and assuming

Yy 1
Y wszT2<< 1

we get
T a
ey (p) = N 2y (rp)
(1+yTp) (p W Tp+wS )

Assuming that the vehicle accelerates to the velocity L in a time

considerably shorter than sL 22 800 sec we get the error
S

v

_ o . pT
81(p> 4L T

2 2 2
(1+yTp) (p 0 " Tp+w )
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Further assuming

w T <1
8
we get
2 1
o t |
VOT - t = ;ﬁ
el(t)ﬁﬁ — " |e ~ cos w b o-e } t 2T

i

Notice that damping is introduced in the system in this way.
For a further discussion of this question we refer to reference 2

and 4.

The maximum value of the navigation error is

PI- W - LO 2 4,23

Compare equation (4.22).A timeconstant T thus gives the same error
as an overall component accuracy of &= wsT. Introduce the cut-off

frequency w_ = i.
o} T

Some numerical values are given below

1 P
Wy, =T & =wlT
0.125 rad/sec & 0.02 p/sec 10—2
1.25 rad/sec ™ 0.2 p/sec 10-3
12.5 rad/sec =y 2 p/sec 1074
/ . -5
125 rad/sec s 20 p/sec 10

The corresponding values of the navigatien error can then be obtained

from table 4.21.

Notice the order of magnitude of the cut-off frequency required for
a given navigation error. It is thus no need for a nigh frequency

differentiation, which decreases the noise problem.

This example just shows the effect of having a frequency-depending
tuning. In practice the transfer-function A can depend on frequency
in a much more complicated way than was the case in this example.

Compare reference 4 and example 2 of reference 5, section 3.
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4.22 We will now analyse the navigation error due to disturbing torgque

acting on the pendulum. The analytical relationship is

1l
e (p) = > * M(p) 4.24
(JP+A)p + mgh
where
sz(t) the navigation error due to disturbing torque

acting on the pendulum

M(t) the disturbing torque acting on the pendulum

JP the moment of inertia of the pendulum with
respect to the pivot point

mh the unbalance of the pendulum

g the acceleration of gravity

If a torque with constant magnitude Mo is applied to the pendulum
according to equation 4.22 the steady state error is
Mb
£20 = mzh 4.25
Hence the greater the unbalance mh the less is the amplitude of the
error. The unbalance mh is limited by the torque-capacity of the

torque-motor acting on the pendulum.

Introduce
T the torque-capacity of the torque-motor
amax the maximum acceleration of the vehicle
then
T = mh"a 4026

max

Some numerical examples of the equations (4.25) and (4.26) are given

in table 4.22
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Table 4.22
o f 1
. Mo Ldynch
@ﬁ amax=5 m/52 amav=5o m/s2 e2o=l” 820=lOO“
1074 0.0005 0.005 0.05 5
1077 0.005 0.05 0.5 50
1072 0.05 0.5 5 500
107t 0.5 5 50 5000
10° 5 50 500 50000

From this table we can estimate the order of magnitude of the un-

balance and the quality of the suspension.

Torgque-motors of reasonable size today available, have a torque

capacity of the order of 1 Nm. A system for a vehicle with the

maximum acceleration 5 m/se02 e.g. should have an unbalance of
0.2 kgm. If "second of an arc accuracy" is wanted the suspension

shall have a constant friction torque less than 50 dyncm.

4.% Errors specific to systems of type 1

4.31 There are two more terms in equation (3.27) for the navigation error
of the system of type 1. The first of these terms is the error due

to unbalance-torque acting on the float of the gyro.

1 ¥ (p)

s =da s . meh
*3(2) = &5 " Ty (p)

m(p)

{Jp + A p2 + mgh
L )

where H is the angular momentum of the gyrorotor. The properties

of the transfer function Yo(p) depends on the inertial stabiliged
platform system. The properties of Yo(p) are extensively discussed

in the appendix of reference 6. One possible Yo(p) is

2,0 pp+p’
P

where B has the order of magnitude 100 rad/sec and ¢ * 0.7.

t (p) = &
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For disturbing torques m(t) with very low frequencies, we get

1
5

This means that a constant disturbing torque m, gives a navigation

error increasing linearly with time

If it is assumed that the disturbing torque is a stationary random
process with zero average, we get the following asymptotic expression

for the R.M.S5. of the navigation error

i — %
\]E §_€5(t)2} = Q + \t

where Q is the quality figure of the gyro

e

02 - & |
q = q2 j Rmm(r)dr

1o

and Rmm(r) is the autocorrelation function of the disturbing torque

m(t). Compare reference 6, section 9.

The time required for the RMS of the navigation error to reach the
asymptotic values depends on the properties of the correlation func-

tion Rmm(t) and the transfer function

() ek

1+Yo(p> [Jp+Alp2 + mgh

After a time of the order of magnitude of the step-function response
timeEE for the above transfer function we have

t

j Rmm(r)dt
-t

mf Lo

The character of the expected value of the error in case of a constant
unbalance and a stationary disturbing torque acting on the float of

the gyro is shown in figure 4.31.

s E?X} denotes the ensemble average of x.

*% )s the characteristic frequency and the damping coefficient for
the transfer function is very low the step-function response time
is very high, of the order of several hours.



€ 3(t)

Figure 4.31

Expected navigation error in case of a constant unbalance and a

stationary disturbing torque acting on the float of the gyro

41.
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4.32 The last term in the equation (3,27) is the navigation error 84(t)

4.33

caused by disturbing torques acting on the gimbal of the single-axis
inertial stabilized platform system. Equation (3.27) gives
1 1

42 = o7p? (147, (0)] ()

where

€4<t) the navigation error caused by disturbing torque

acting on the gimbal of the reference system

Ml(t) the disturbing torque acting on the gimbal of

the reference system

bJ the moment of inertia of the gimbal of the
reference system including all moving parts

attached to 1t

The platform is usually designed in such a way that this error is

negligible. This problem is discussed in the appendix of reference 6,

In systems of type 1 position information is obtained simply by
measuring the angle between the pendulum and the space-reference
mechanized by the single-axis inertial stabilized gyroplatform.

In order to Schuler-tune the pendulum, the angle was differentiated
twice, amplified and fed to forquemotors on the pendulum. If the
angular measuring device measures the angle with an error the signal,
differentiated twice,can deviate considerably from its desired value.
We will give an example of the navigation error obtained for this

reason.

Example
Assume that the system is perfectly Schuler-tuned, and that the
disturbing torques are neglected but that the angular measuring

device has an error &(t). Equation (3.2%) then gives

e ey L
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Assuming
w(0) = $(0) = &(0) = &(0) =0
we get
2
W(t) = - 2 | §(z) sin o_(t-1)d1
S 5
hence
t.
(t) = -&(t) + W vf‘é(r) sin ws(t-r)dt
o
Assume
b -
then
|6 (0) | <&,
then
()< 8, [1+3 (0, 6)%] = 6,
£ >>L
Yg

ol gl - Fmg

This is the worst case andit requires that © (1) oscillates between

the values - &  and & in phase with sin ws(t-r).

Disturbing torques acting on the float of the gyro give the error

J 2 + mgh

() - s — 2
’ N LJP+A(p)]p2+mgh

- m(p)

Hence the transfer function only differs from the transfer function
discussed in section 4.31 at high frequencies. As the low frequency
region is of highest importance we obtain the same character of the

error as was the case in section 4.31.
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SOME ASPECTS ON THE INSTRUMENTATION OF THREE-AXIS NAVIGATION SYSTEMS

Introduction

In the preceding sections we have analysed the single-axis systems

in order to obtain the order of magnitude of the required component
accuracy. We will now briefly discuss some aspects on the instrumen-
tation of the complete systems. We will assume that the vehicle is
moving over a rotating earth. In order to slightly simplify the al-
gebraic work we will assume that the earth is spherical. The position

of the vehicle is given in polar coordinates:
T the distance from the center of the earth to the vehicle
/  the longitude
L the latitude
Compare figure 5.11.
In order to further simplify the problem we will assume that the
pendulum is aligned with the vertical i.e. the pendulum is coincident
with the ZE—aXiS in figure 5.11. Assume further that another axis,
fixed to the pendulum,is pointing to the north. We will then analyse

the torques which should be applied to the pendulum in order to main-

tain this orientation of the pendulum.
The torques acting on the pendulum are
- mnh x &

where

—

the torque applied to the pendulum by the torque-motors

the acceleration of the center of mass of the pendulum

AV

with respect to inertial space

Calculating the components of the acceleration of the center of gravity

with respect to inertial space we get

a_ =rL+2rl+ r<wIE+”Z)2 sin L cos L

X

ay = rﬂﬁ * cos L + Z(wIE+,f)(f cos L - r L sin L) 5.11
. B i\ 2 2

8, = - T +rT L™+ r(wIE+,f) cos L
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where

Wrp is the angular velocity of the earth.

The angular velocity of the coordinate system, the geographical

coordinateg, is w

I
o = (wIE +,§) cos L
wp, = - L 5.12
W, = = (wIE +,é) sin L

We will now discuss some instrumentational problems of a system of

type 1. Applying Newtons second law of motion to the pendulum we get

. - - d =
M - mh x a = it Tp
where
ﬁp the angular momentum of the pendulum

The time derivative of the angular momentum of the pendulum contains

terms of the type

J 8 and J 82

Introduce
J % 107° kem
e amax
9max = R
. Vmax
Qmax - R
and assume
a = 64 m/sec2
max
v = 640 n/sec

max
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we get

36 1077 Nm = 1 dyncm

7 6%210710 yy

10_3 dyncm

At present we will neglect these terms. Doing this we get

M=mhzxa

Bvaluating the cross-product we get the following expression for the

compenents of the torque

M, = mhi},gcos L + 2<wIE+”£><f cos I - rL sin L)]
5.21
= e o e 5 2 )
My = —merL + 2 rL + r(wIE+,€) + sin L cos L]

The terms mh:u?bos L and mhrL give rise to the high apparent moment of
inertia of the pendulum. In the single axis case the corresponding

term was mrh®, compare section 1.2.

The other terms in the equation 5.21 are compensation torques for

the corioli and centrifugalaccelerations.

Hence if the pendulum should indicate the vertical the torques MX
and My should be applied +o the pendulum. Besides the pendulum should
be rotated around an axis parallel to the polaraxis of the earth with
the velocity

wIp = WIp +A? 5.22

A functional diagram of the system is shown in figure 5.21.

In order to apply the torgues Mx and My and the angular velocity wIp
the control signals to the torquemotors and to the polar-axis drive

must be computed.
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Figure 5.21

Functional diagram of a three-axis navigation system of type 1.
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In the system are available the following signals

Jgi the longitude these are obtained by measuring the angle
between the pendulum and the inertial

Lm the latitude stabilized platform system

r the height is obtained from the vertical accelero-

meter and/or barometric and radio devices
1) |
ol

@(2) the output signals of the gyros

(3) J

From the equations (5.21) and (5.22) it is obvious that the desired
control signals can be computed from the signals é;, Lm and ro-
Figure (5.21) shows the block-diagram of the system. One way of cal-

culating the control signale is shown in figure (5.22).

* The subscript m stands for "measured". In the discussed case the
pendulum is aligned to the geographic coordinates, and the inertial
reference has no errors hence

4:,{, L =1L

m
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The control computer for the gystem of figure 5.21. :
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In a system of type 2 the gyros are attached to the pendulum. We assume
that the gyros have the Xyy~and z-axes as their input axes. It is
further assumed that the gyros are rate-coupled. Neglecting the time-
derivative of the angular momentum of the pendulum including the gyros,
and assuming that the pendulum is aligned to the geographic coordinates

Newtons second law of motion gives

M=mhxa
where
M the torque which should be applied to the pendulum

if it should maintain the desired orientation
a the acceleration of the vehicle

h the vector from the pivot point to the center of

mass of the pendulum

The compenents of the torque H(t) is given by the equation (5.11).
If the pendulum should be aligned to the geographic coordinates the
torques MX and My should be applied to the pendulum. Besides the pen-

dulum should be rotated around the z-axis with the angular velocity

W -(mIE+2)sin L 5.31

Iz
This angular rotation can be obtained by arranging the z-axis loop as
an integrating drive and feeding the signal-generator of the Z=-gyT0

with a signal proportional to A block-diagram of the system is

Iz°

shown in figure 5.31.

In order to apply the torques MX and M& and the signal to the inte-

grating drive the control signals for these deviceg must be computed.

In the system are available, the output signals of the gyros and a signal
proportional to the height r of the vehicle. Assuming the gyros to
work as perfect rate-gyros with sensitivities 1, the output signals

of the gyros are equal to the angular velocity of the pendulum i.e.

(x)

4 = wix

cp(ﬂ -

(z)

¢ = WIZ

Iy
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Figure 5.31

Functional aiagram of & three-axis system of type 2. The z-axis loop is coupled as an integrating drive.
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The angular velocity of the pendulum is denoted by ﬁ&. In the discussed
case the pendulum was assumed to be aligned to geographical coordinates,

which means

p il |

Eliminating Af and L between the equations 5.12 and 5.21 we get

- R 2

M= merwa + 2 Twp, = PO tg L]

_ : . 'E
My mh[rwIX + 2 rwr .+ rwawa tg Lj

4 5.32
Oz = 7 Y 8 L
t

L = f— Wy dt

The desired control signals can thus be computed from the output sig-

nals of the gyro. The computation is illustrated in figure 5.32.

e ————— " —— —  ——n —— = —— i
-

The analysis of the previous sections shows how the systems can be
instrumented. The calculations were based on the assumption that the
instrumented coordinates were aligned to the geographical coordinates
and that the earth was spherical. If we instead assume an elliptic

earth the torques MX and My are given by

- 2 L) L]
M = mh[r(l-Ze cos L)wa+2r(l-2e cos 2 L)wa+

2 .o .
trowp tg L + e sin 2 L + a’(e)]

=
li

. 2.\ . .2
mh[r(1+2e sin L)mIX+2r(l+2e sin L)mIX+

+r wIXwa tg L + {f‘(e)J

where e 1s the ellipticity of the earth. See reference 2.

I |
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Figure 5.32

The control computer for the aystem shown in figure 5.31. Dad/dt differential operator
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In this case the computation changes somewhat but there is no essen-
tial difference to the case with the spherical earth we have been

discussing.

When we derived the equations of motion in section 5.1 we assumed
that the coordinates indicated by the pendulum were aligned to the
geographical coordinates. We will now briefly discuss what happens
if this is not the case. Assume that the coordinates are missaligned
and let the successive Euler angles for the transformation from the
instrumented coordinates to the geographical coordinates be C cy

and c .
Z

If we assume that the angles C o cy and c, are small the transforma-
tions commutate. The transformation matrix from indicated to geo-

graphic coordinates is then

1 cz -oy
-C 1 c
Z x
\
\\cy -cX 1

The angular velocity of the indicated coordinate system with respect

to inertial space is thus

hence

Ix Ix z Ly y 1z x

T wiy = C 01y *F wa = Cx%1z T Cy 541

Iz y Ix x Ly Iz Z
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Neglecting the time-derivative of the angular momentum of the pen-
dulum, including the gyros, the x- and y-components of the equation

of motion of the pendulum becomes

-gcx+r(WIX—mIX)+2r(WIX-wIX)+r(NIXWIytgLC—wIXwatgL)=O
5,42
L. . . 2 2 L
| gcy+r(WIy-wa)+2r(WIy wa)+r(WIthLC—wIthL)—O
Assuming the integrating drive for the z-axis to be perfect the angu-

lar velocity of the pendulum about the z-axis is

Wy, == W, tg L, 5.43
Given the motion of the vehicle and the initial conditions the miss-

alignment of the coordinate system can be computed from the equa-

tions (5.41), (5.42) and (5.43).

T e o e - . Ss e

In the systems we have been discussing the coordinates indicated by

the pendulum should be aligned to the geographic coordinates north-
cast and down. Aligning the system to the vertical is easily obtained
as the pendulum has an unbalance. The aligning in azimuth is a

1ittle more difficult to obtain. One scheme for this used in some

MIT constructions is to convert the vertical indicating system to a
gyrocompass. A very elegant way of doing this is given in reference 2,
where it is shown that the north finding property can be obtained by
introducing a velocity coupling between the north - and azimuth channels
of the vertical indicating system. We will now show that the same
method can be used in the system discussed in this report. We will

show this for the system of the second type discussed in section 5.3%.

The coupling between the z-axis loop and the y-axis loop is obtained
by feeding a signal proportional to the angular velocity of the pen-
dulum about the y-axis to the integrating drive on the z-axis. We
thus take the output signal from the y-g8yro and feed it through a

sensitivity SZ to the torque-generator of the z-gyro.
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Figure 5.51

The control computer for the system shown in figure 5.31, with gyrocompassirig for dinmitial alignment. =
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Neglecting the errors in the integrating drive we get

= = °
WIZ NIthLC + Sz WIy 5.51
In order to do this we have to change the computer according to
figure 5.51. Besides we introduce damping in the system. This is
obtained e.g. by substituting the pure differentiation in the y-axis

loop by a filter DF(D). See figure 5.51.

Example
We will now show that the system really has a north-finding property.

In order to simplify the algebraic work we make the feollowing assump-

tions. Compare reference 2.

1. The vehicle is restricted to move in the meridian plane and at

constant height, i.e.

wIX = wIE cos L = wIEH

me = = 1

Wrz =~ Yrp SIn L = - Oppy
r = const

2. The pendulum does not tilt about the north-south line, i.e.

¢ =0
X

With these assumptions the angular velocity components is as follows

WIy = C, Wigy - L - Cy

5.52

- - ¢

W, ®i7 o Orpg IEV z

Using the assumptiens the y-component of the equation of motion of

the pendulum becomes

- % o, + [F(D) le + EJ =0 5.53

In a Schuler-tuned system we have

F(D) =1
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Due to the assumption 2 the angular velocity of the pendulum about

the z-axis is

Wy, = = Wy, te Lo+ 8, W 5.54

Introducing the angular velocity components according to the egua~

tion (5.52) we get

2 £ /
DF(D) + & - DF(D)w gy ;cy\\
| | =
=S50+ @rgy D+ 8,91y °z,/

FProm this equation it is obvious that %he system is north-seeking.

The stationary error is obviously zero.

This simple example shows the north-seeking property of the system.
In practice the situation is more complicated as we have to consider
arbitrary motions of the vehicle and the fact that Cy % 0. An analysis

of this case is far beyond the scope of this report.

For systems of type 1 the north-seeking properties are obtained
analogously by feeding a signal proportional to the y-component of

the angular velocity of the pendulum to the polar-axis drive.
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CONCLUSIONS

The characteristic feature of the systemsdiscussed in this report is
the method of synthesizing the vertical indicating system by using

an ordinary physical pendulum whose apparent moment of inertia is
made very high by electromechanical aids. The navigation systems
synthesized in this way require no accelerometers. This is perhaps

a little missleading to say as the pendulum of cause can be regarded
as an accelerometer. Anyway there seems to be a possibility of redu-
cing the number of expensive components by using the described method
of synthesizing the navigation system. Another feature of the system
is that there are differentiators in the feedback loop instead of the
integrators used in the MIT systems. The drawbacks of the proposed
system are the high demands for linearity in the giﬁbal torquemotors

and the requirements on the low-friction suspension of the pendulum.

There are many questions left out of this discussion, such as the
resolution of the gyros, non-linear methods for damping the system etc.
Another question of great interest is the possibility of using a com-

puter controlled system which offer many interesting possibilities.
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