
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Supporting Regression Test Scoping with Visual Analytics

Engström, Emelie; Mäntylä, Mika; Runeson, Per; Borg, Markus

Published in:
[Host publication title missing]

DOI:
10.1109/ICST.2014.41

2014

Link to publication

Citation for published version (APA):
Engström, E., Mäntylä, M., Runeson, P., & Borg, M. (2014). Supporting Regression Test Scoping with Visual
Analytics. In L. O'Conner (Ed.), [Host publication title missing] (pp. 283-292). IEEE - Institute of Electrical and
Electronics Engineers Inc.. https://doi.org/10.1109/ICST.2014.41

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICST.2014.41
https://portal.research.lu.se/en/publications/d4605252-acd3-425f-91ba-3a77e8eeee7d
https://doi.org/10.1109/ICST.2014.41


Supporting Regression Test Scoping with Visual
Analytics

Emelie Engström∗, Mika Mantylä†, Per Runeson∗ and Markus Borg∗
∗ Dept. of Computer Science, Lund University, Sweden
(emelie.engstrom, per.runeson, markus.borg)@cs.lth.se

† Dep. of Computer Science and Engineering, Aalto University, Finland
mika.mantyla@aalto.fi

Abstract—Background: Test managers have to repeatedly
select test cases for test activities during evolution of large
software systems. Researchers have widely studied automated
test scoping, but have not fully investigated decision support with
human interaction. We previously proposed the introduction of
visual analytics for this purpose. Aim: In this empirical study
we investigate how to design such decision support. Method: We
explored the use of visual analytics using heat maps of historical
test data for test scoping support by letting test managers
evaluate prototype visualizations in three focus groups with in
total nine industrial test experts. Results: All test managers in
the study found the visual analytics useful for supporting test
planning. However, our results show that different tasks and
contexts require different types of visualizations. Conclusion:
Important properties for test planning support are: ability to
overview testing from different perspectives, ability to filter and
zoom to compare subsets of the testing with respect to various
attributes and the ability to manipulate the subset under analysis
by selecting and deselecting test cases. Our results may be used
to support the introduction of visual test analytics in practice.

I. INTRODUCTION

In the evolution of large software systems, test management
has to repeatedly select test cases for test activities to detect
as many faults as possible within a given time and resource
budget. In this paper we refer to these decisions as test scoping
and in case they relate to software that has been previously
tested we use the term regression test scoping. A common
industrial practice is to base test scoping on practitioners’
expertise and experience. As software systems grow in size
and complexity the combinatorial explosion of test possibilities
makes it infeasible to assess the plausibility of these decisions
without tool support.

Research on regression testing has introduced several tech-
niques for test selection. We found 28 empirically evaluated
techniques [1] in a systematic literature review. However, most
of the techniques do not involve human interaction in the
selection procedure and thus they offer limited support in a
complex and variability intensive industrial environment. This
challenge is further confirmed in our mapping of test scoping
techniques for software product line testing [2] and calls for
new approaches to test scoping, which handle large numbers of
test cases, are flexible to context variations and allow dynamic
interaction with test managers to utilize their experience.

Visual analytics [3] may support tasks requiring interplay
between humans and computers in order to reason from
complex data. It is defined as “the science of analytical

reasoning facilitated by interactive visual interfaces” [4]. One
example of how visual analytics of test data is currently used
in practice is project managers using visualization of failure
rates of testing to assess product quality and answer questions
like: What areas need more defect fixing effort? or: When can
we release the product? The focus of this study is to use visual
analytics for the purpose of improving test quality or planning
of testing, for example, answering questions like: Are there
gaps or redundancy in our testing? or: What do we need to
test due to this change?

According to Munzner, introducing visual analytics into
a context involves four design stages (DS) of development
and validation [5]. DS1) The first stage is to characterize the
problem and the available data. The following three stages
are more creative and involve three different design problems:
DS2) to map the problem characterization to an information
visualization problem, e.g. data types and operations, DS3)
to design the visual encoding and interaction, and DS4) to
implement this design with an effective algorithm. We have
previously studied the test scoping problem through a survey
on regression testing practices [6], an action based case study
on regression test improvement [7], and an in depth case study
on test overlay [8]. DS1 of this paper builds on our experiences
from those studies, while we here focus on DS2 and DS3
based on a case study on data from three different commercial
organizations, and three focus groups with professionals from
five software companies. We used an existing visualization
front end [9] to provide hands on prototypes which we used
for evaluation. The tool was selected to demonstrate some
important visualization features but is not a complete solution
to our visual analytics problem. Thus validation of the front
end implementation is not within the scope of the paper.

In this paper we present a generic evaluation of our solution
concept and a design proposal based on three industrial cases.
Main contributions are: 1) a representation of test coverage
items, TCIs [8], and identification of 15 corresponding at-
tributes to focus the analysis on, 2) identification of 11 generic
operations on the data needed to accomplish the scoping tasks,
3) evaluation of the visual encoding from TCIs to heat maps
and 4) a discussion about which data transformations should
be interactive and not. Sections II and III introduce the
background and related work. Section IV describes our case
study procedure and methods. In Section VI we discuss the
results of the case study. Finally the paper is concluded in
Section VII



II. BACKGROUND

The solution concept evaluated in this paper aims at
meeting challenges identified in industry [6], [7], [8] regarding
regression test scoping in complex software development con-
texts. These challenges originate from the size and complexity
of the software systems under development, market demands
on frequent and customized releases of software and the
development strategies that software organizations apply to
meet those challenges.

In our industrial survey on regression testing practices [6]
several problems related to test case selection were revealed
such as:

• the difficulty in assessing the impact of changes,

• prioritizing with respect to product risks and fault
detection ability, and

• determining a sufficient amount of tests and assessing
different aspects of test coverage.

To enable concept evaluation we prototyped a visualization
design which we present in this paper. This design proposal
builds on two previous studies:

1) A case study where we studied history based regression
testing [7], comparing tool based test scoping with manual
scoping in a project. We identified a set of prioritization
criteria which the practitioners considered important for test
case selection: historical effectiveness, execution history, static
priority, coverage of functional areas and current and previous
status of a test case. Although our quantitative comparison
showed that the tool based selection was more effective in
terms of early fault detection than the manual selection, our
qualitative evaluation, i.e. expert reviews, of the tool based se-
lection suggests that it could be improved further. In this study
we target this by adding visualization and human interaction
to the test scoping procedure.

2) An in depth industrial case study on test overlay [8].
Based on observed improvement needs we elaborate on which
type of visualization would be supportive. We conclude that
decision support could be provided with visualization of:

• Test design coverage from different perspectives –
Testing in a software project is carried out in ac-
cordance with various testing goals which may be
both explicitly stated and implicit in the design of
the test cases. A test case may cover one or more
aspects of one or more testing goals. By enabling
test coverage visualization from different perspectives
and at different abstraction levels, test managers get
support in evaluating their test strategies.

• The aggregated test execution progress – Tests are ex-
ecuted throughout and across projects in the software
development organization. Tests of similar software
are repeated due to evolution of the software itself
but also due to differences between contexts where
the software executes. By visualizing aggregated test
execution information from different parts of the orga-
nization, test managers get support in identifying test
overlay and inefficient testing, as well as inadequately
fulfilled testing goals.

• Priorities of coverage items based on different criteria
– Testers need to continuously prioritize which tests
to execute, constrained by time and resources. The
conditions for these priorities vary over time and
across the organization. By enabling visual analysis
of different prioritization criteria testers get support in
making those decisions.

III. RELATED WORK

The regression testing literature offers a range of empiri-
cally evaluated techniques to support decisions on what to test
in a given situation. These techniques and related evidence
are overviewed in two recent literature reviews [1], [10]. The
techniques are all on a rather high level of automation, i.e.
providing decisions with little user interaction. Most of the
techniques are also very context dependent and many test
situations tend to be too complex to benefit from a single
regression testing technique.

Visualization helps reducing cognitive complexity [11].
Software visualization is applied in various areas: e.g. static
and dynamic code visualization [12], fault diagnostics and
requirements analysis [13]. A survey of software maintenance,
reengineering and reverse engineering [14] shows that 82%
of researchers consider software visualization important or
necessary for their work. Another survey with industry practi-
tioners [15] identifies benefits of software visualization tools:
reducing costs, increasing comprehension of software, increas-
ing productivity and quality, management of complexity, and
finding errors [16].

In the software testing area there are few studies on the use
of visualization. Jones et al. [17] show how visualization of
test information may support fault localization. Araya presents
a visualization tool HaPAO to visually assess the quality of
code coverage of unit tests [18]. A range of metrics for each
class are visualized to illustrate how the methods in it have
been covered during a set of tests. Similar to our results Feldt
et al. [19] found heat maps of historical test data effective in
analyzing patterns and thus useful at decision meetings.

Kienle and Müller identify requirements for software vi-
sualization tools with a focus on tools targeting the domain
of software maintenance, reengineering, and reverse engineer-
ing [20]. Our results regard requirements on visualization for
test scoping purposes and are in line with their findings.

Our main visualization approach is a heat map, a.k.a.
mosaic visualization. Heat maps have been utilized by sci-
entists and engineers for decades and been characterized as
an ingenious display [21]. Wilkinson and Friendly [21] cite
an article from 1873 which summarizes social statistics in
different regions of Paris1. Perhaps the most notable use of heat
in software engineering is the Seesoft tool [22] that displays
the age, type or rate of code changes with different colors.
To prototype our approach we used a tool called MosaiCode
[9] which is designed by Maletic et al. to visualize metrics of
source code files based on the Seesoft principles. In this paper
the heat map is used to visualize test history data related to
test coverage items, TCIs, e.g. test-case executions, failures,
time since previous executions. To the authors’ best knowledge

1http://www.math.yorku.ca/SCS/Gallery/images/loua1873-scalogram.jpg



there are no prior works presenting the use of the heat map
of test-history data and the evaluation of such concept in test
scoping activities as we do in this paper.

IV. METHOD

This study comprises two out of four design stages (DS)
in Munzner’s nested model for visualization design [5]. The
four stages may be summarized as follows:

DS1 Problem characterization – The first design stage (which
is based on previous studies) is the characterization of the
domain problem and the available data.

DS2 Mapping to solution concept – The second stage is the
mapping of the problem characterization to an informa-
tion visualization problem, e.g. data types and operations.

DS3 Solution design – The third stage is the design of the
visual encoding and interaction. Although this stage is
covered in this study (we collected feedback regarding
DS3 in the focus groups), we have not made an extensive
comparison of alternative solutions. Instead we selected
one representative instantiation to demonstrate the gen-
eral solution concept.

DS4 Design implementation – The fourth stage (which is
not covered in this report) is the implementation of the
solution design with an effective algorithm.

The empirical study in this paper has characteristics of a
case study, in that it “studies a contemporary phenomenon
within its real-life context” [23, p12]. We study how visual
analytics can be used to support regression test scoping in a
variability intensive software development context. However,
we isolate a portion of the context, in terms of test data from
the three cases, and add the prototype visualizations as an
intervention in the study. Further, we use focus groups for
data collection [23, p54-55], to make the data collection more
efficient, and for the added value of interaction between the
study participants. We organized three focus group meetings,
one for each of the organizations in the study. The focus group
participants conducted a set of test evaluation and scoping
tasks, reported and discussed their findings during the tasks,
and the researchers observed their actions and reflections.
Figure 1 provides an overview of the study design. The primary
steps of the research procedure were:

1. Design the study – Describe the characteristics of the
domain problem and data (DS1), set up the study goals
(DS2, DS3), collect and explore the test data from the three
cases

2. Refine the solution concept– Map the domain specific char-
acteristics to generic operations and data type abstractions
(DS2) and further to visualizations and interactions (DS3)

3. Prepare for concept evaluation – Generate prototype visu-
alizations, pre-process the test data (DS2) for use in Mo-
saiCode [9], define focus group procedures and questions,
schedule meetings.

4. Collect evaluation data – Run the focus group meetings and
have participants do the tasks, catalyze discussions, observe
actions, take notes (DS2, DS3).

5. Analyze evaluation data – Collect notes from participants
and observers, code and structure qualitative information
(DS2, DS3).

DS1 Problem DS2 Mapping DS3 Design DS4 Implement

Refine solution

Design study

Prepare evaluation

Collect data

Analyze

Org A, B, Mz
literature C1-C7 G1-G7

T1-T4 O1-O11

prototype visualizations

conduct T1-T4

code actions and 
feedback

visual 
encoding

Fig. 1. Overview of the study design. Columns illustrate the evolution of the
solution design and rows show the chronology of the current empirical study.
C denotes challenges derived from the problem domain. G denotes goals for
our study derived from the challenges. T denotes tasks performed in the focus
group meetings. O denotes generic visual analytics operations needed to meet
the challenges

Fig. 2. MosaiCode tool visualization [9]. Screenshot of one of the prototype
visualizations (1), tiles grouped in rectangles (containers), (2) tree browser
window, and (3) summary window.

A. Prototype visualizations

As a front end for our prototype visualizations, we used the
MosaiCode prototype tool [9], which was originally designed
for visualizing structure and source code metrics of large
scale software, see Figure 2. We mapped the test cases or
test coverage items2, TCIs [8]3, to these tiles, i.e. each tile
represents one test coverage item from one perspective of the
testing. Each tile is associated with a set of attribute values
which may be visualized with different colors for different
ranges of values. A tree browser window (2) visualizes the
hierarchical structure of the tiles and enables selection of
tiles to study. Below the tree browser there is functionality
for searching tiles. Finally, a summary window (3) shows a
histogram of the data visualized in the mosaic window.

B. Case descriptions

We searched for a generic solution concept and exper-
imented on data from three different software development
contexts, two proprietary and one open source context, which

2Entities describing the scope of a test or set of tests
3In the referenced paper the term used is only coverage items



TABLE I. THE THREE DATA SETS USED FOR EXPERIMENTATION AND PROTOTYPING

Case Organization A Organization B Mozilla foundation
Characteristics Emerging software product line Safety critical software Open source
Scope Testing of one single function

across organization
7 consecutive executions
for a specific release

Full functional test suite for releases
2.0-9.0 of the Firefox web-browser.

Test cases 192 1 059 1 524
Test case executions 517 1 456 272 832
Time period 22 weeks 19 months 6 years

are described in this section. We refer to them as organization
A, organization B and Mozilla Firefox. Table I shows an
overview of the contexts of the three data sets.

1) Organization A: develops mobile devices based on
the Android platform. The development context is variability
intensive, i.e. a software project comprises about 10 different
product variants, instances of specific combinations of hard-
ware and software, which in turn are customized for hundreds
of different pairs of customers and market segments. The
development organization is globally distributed over three
continents.

Testing tasks are organizationally distributed over three
main units: core software, application software and product
composition. Organization A applies incremental development
practices which imply a need for continuous regression testing
at all levels of test. The test data from organization A that
we used in this study represents a small snapshot of the
testing across the organization and was manually extracted and
analyzed in an in-depth case study [8].

The four participants in the organization A focus group
represent different levels of test and organizational units.
All participants analyze test results as part of their work
but with different purposes, e.g. test management in specific
development projects, general test process improvement, line
management, and product quality assessment.

2) Organization B: is a large multinational company oper-
ating in the robotics, power and automation sector. The stud-
ied development context comprises safety-critical embedded
development in the domain of industrial control systems.

The verification process covers software testing on several
different abstraction levels, partly conducted by independent
testers. Furthermore, the process includes a partly automated
suite of test cases that are executed daily, as well as a suite
of regression tests that are executed prior to releasing new
versions. As the regression suite is part of the safety case,
required for the safety certification, the selection of test cases
to include is crucial.

In the organization B focus group, a test manager and a
project manager participated. Both participants had experience
of planning test activities, including resource allocation and
prioritization.

3) Mozilla foundation: develops, among other systems, the
Firefox web-browser. Currently, Firefox has roughly 10 million
lines of code and the typical number of people committing
code at least once monthly is over 200.

Developers perform lower level testing, and developers and
feature managers test that new features have been implemented

correctly. Large crowds participate in the alpha and beta testing
of the upcoming product releases. The main regression testing
involves about 30 active testers frequently reporting test results
to the open test management database.

In the mixed focus group, three software testing consultants
from three different companies studied the visualizations of
test execution data from the Firefox projects. The participants
had worked in various roles, e.g. a test manager, test com-
petence manager, coach of software testing, software test and
process auditor, and project manager. They all had hands on
as well as management experience in software testing.

C. Focus group meetings

The data from the three cases were used to prototype the
solution concept for the focus group evaluations. In the mixed
focus group meeting, testing consultants from three different
companies evaluated the solution concept based on the Mozilla
Firefox data. In the other two meetings, practitioners from
organization A and organization B evaluated the solution
concept based on their own data in addition to the Mozilla
Firefox data. Each focus group meeting endured about two
hours.

We provided between three and six different prototype
variants4 per context to focus the evaluation on different
aspects of the visual analytics. In addition to the variation in
data set, prototypes varied in terms of amount of available
information (i.e. we added more information as tasks became
more complicated), how different dimensions of the testing
were mapped to the visual structure and whether or not
similarities in execution patterns were visualized.

In the focus group meetings, we altered discussions with
practical exercises5. The practitioners used the prototypes to
perform test scoping tasks, T1–4 below, for specified develop-
ment scenarios:

T1 Get an overview of what is included in the test
database. Is the amount of designed test cases rea-
sonable?

T2 Assess test execution progress. Which areas are well-
tested? Which areas need more testing? Is the test
coverage sufficient? Explain! Which areas lack test
cases?

T3 Plan a test session for a new platform (no changes in
functionality). How many/which test cases need to be
run?

4Note that prototypes here refer to the different visualizations provided by
the tool rather than the tool itself.

5Preprocessed test data and focus group guide are available at https://serg.
cs.lth.se/research/experiment packages/rtsvis



Fig. 3. Example workflow.

T4 Select and prioritize test cases after a change. How
many/which test cases need to be run?

An example workflow from the focus group meetings is
illustrated in Figure 3.

At least two researchers were present in each session to
moderate the discussions and take notes. We collected written
and oral feedback on the views and interactions from the
participants. Their feedback regarded why, how and in which
order views and interactions were used, as well as which
views and interactions were not useful and which views and
interactions were missing.

D. Analysis of evaluation data

After the focus group meetings, key findings were iden-
tified using qualitative analysis methods [23, p65-70]. Three
authors independently carried out exploratory coding of the
notes from the focus group meetings. We used these sets of
findings to form the conclusions. The fourth author coded the
notes based on the merged coding scheme from the first three
co-authors. The outcome was then used for validation.

Four main groups of codes were identified: 1) observations
regarding the tasks to be supported, 2) observations regarding
information need and information access, 3) observations re-
garding the visual appearance and 4) observations regarding
tool interaction. These groups of observation correspond well
with the different facets of information visualization as de-
scribed by Card et. al. [11].

E. Limitations

The threats to validity in the conceptual mapping stage
(DS2), is the potential mismatch between needs of the tar-
get audience and the chosen abstractions, i.e. the generic
operations and data types [5]. We addressed this threat by
letting representatives from the target audience use prototype
visualizations to perform typical but simplistic test manage-
ment tasks and discuss their perceptions in the focus group
format. The participants in the focus groups represented dif-
ferent testing contexts and test management roles and their
different perspectives provided valuable insight to the problem.

However, since we have focused on finding a generic solution
concept rather than tailored our solution for one specific
context, the solution need to be refined and evaluated further
in the actual application context.

Threats to validity at the solution design stage (DS3)
relate to how effective the visual mapping and interaction
communicates the desired abstractions [5]. In our focus group
sessions participants performed typical test management tasks
supported by the visualizations. We did not quantitatively
evaluate how well those tasks were performed. Instead we
focused on the participants perceptions of usability of the
solution concept and their opinions about how to design the
user interface. We also drew conclusions from our observations
of how the participants solved the tasks, i.e. whether they
within the limited time frame of our focus group sessions (2
hours) managed to understand the tool, the structure of the
data and the measurements and find a satisfying strategy to
complete the tasks supported by the visualizations.

V. RESULTS AND ANALYSIS

All study participants confirmed potential usefulness of
the visual analytics for test scoping as well as for commu-
nicating decisions with managers and subordinate testers. In
this section we report a synthesis of the feedback from the
focus groups and our experiences from experimentation and
prototype generation. Contributions of this paper relate to
the second and third stages of the nested design model by
Munzner [5], which are described in Section IV, i.e. operation
and data type abstraction (DS2), and visual encoding and
interaction design (DS3). As recommended by Munzner we
distinguish between the two design levels in the presentation
and treat them separately. The presentation is further structured
according to the different facets of information visualization
as described by Card et al. [11]: the task to support with the
visualization, the available data, the transformations (from raw
data to data tables, to visual structures, to views) and the user
interaction in the transformations. A summary is provided in
Table II. The second left column contains the topics analyzed
while the two rightmost columns contain observations and
suggestions to guide the implementation of visual analytics
in support of test management.

VI. RESULTS AND ANALYSIS

All study participants confirmed potential usefulness of
the visual analytics for test scoping as well as for commu-
nicating decisions with managers and subordinate testers. In
this section we report a synthesis of the feedback from the
focus groups and our experiences from experimentation and
prototype generation. Contributions of this paper relate to
the second and third stages of the nested design model by
Munzner [5], which are described in Section IV, i.e. operation
and data type abstraction (DS2) and visual encoding and
interaction design (DS3). As recommended by Munzner we
distinguish between the two design levels in the presentation
and treat them separately. The presentation is further structured
according to the different facets of information visualization
as described by Card et al. [11]: the task to support with the
visualization, the available data, the transformations (from raw
data to data tables, to visual structures, to views) and the user
interaction in the transformations. A summary is provided in



TABLE II. OVERVIEW OF THE FACETS OF VISUAL TEST ANALYTICS (TASKS, RAW DATA, DATA TRANSFORMATION, VISUAL STRUCTURES AND HUMAN
INTERACTION) EVALUATED IN OUR STUDY. THE COLUMNS SHOW HOW AND IF IT WAS IMPLEMENTED IN A PROTOTYPE AND THE MAIN OBSERVATIONS AND

SUGGESTIONS FROM THE FOCUS GROUP DISCUSSIONS.

Facets Implemented in prototypes Observations Suggestions

Ta
sk

s

Overview test cases

Performed in focus groups

Visual analytics was useful
Assess test design coverage Visual analytics was useful to

identify well tested areas
Add more information to identify gaps

Assess test execution progress

Visual analytics was useful
Plan testing after change
Plan testing for new platform

R
aw

D
at

a Test execution history Test reports from test manage-
ment databases and MS word
documents

Visual analytics was good to
overview large amounts of data

Aggregate all data in organization and
enable filtering

Change impact analyses Not in prototype Would improve test planning sup-
port

Link to delta information from source
code repository and defect database

System information Would support assessment of test
design coverage

Link to requirements and source code
statistics

D
at

a
Tr

an
sf

or
m

at
io

n TCIs Test cases Easily extracted from existing
documentation

Implicit testing goals Requires more effort, reveals test
overlay in complex organizations

Dimension
variables of TCIs

Project Good for assessing progress Visualize organizational dimension to
evaluate teams or individuals. Visualize
time dimension to assess progress. Visu-
alize multiple dimensions of the TCIs

Functionality Good to get overview of scope
Execution pattern Good for planning, less intuitive
Platform variants Good for planning
Process

Attribute variables of TCIs
Similarity in execution patterns
over different platforms

Useful for planning testing on
new platform

#Executions, #Failures, #Builds,
#Languages, #Platforms, #Days
since first execution, #Days
since last execution

Useful for planning and assessing
execution progress

failure rate Useful for all tasks

V
is

ua
l

St
ru

ct
ur

es Marks TCIs mapped to Mosaic tiles Provides a good overview of both
test design coverage and TCI ex-
ecution progress, especially when
data set is large

Use of space Arranged in containers Add text labels on containers
Positioned in unstructured coor-
dinate system

Maintain spatial position, Map TCI di-
mensions to nominal axes

Graphical properties of marks Attribute values mapped to col-
ors

Only few colors are needed

Additional
views

Dimension values mapped to
tree structure

Useful for navigating when fa-
miliar with scope

Summary in histogram Useful for planning

H
um

an
In

te
ra

ct
io

n Interactive data transformation
Not in prototype Human interaction is important

Enable manual filtering of data

Interactive visual mapping Enable manual mapping of TCI dimen-
sion to spatial position
Enable manual mapping of attribute val-
ues to colors

Interactive view transforma-
tion

Control of tile size Prefer automatic setting

Enable selection and counting of test
cases to support test planning

Control number of colors
Search Useful for planning testing after

change
Browsing
Zooming Very useful

Table II. The second left column contains the topics analyzed
while the two rightmost columns contain observations and
suggestions to guide the implementation of visual analytics
in support of test management.

A. Mapping to solution concept

From previous studies (DS1) the following list of chal-
lenges (C1–7) that need to be addressed by a visual analytics
solution was observed: C1) huge amounts of tests repeated in
time, space and system abstractions [24], [8]; C2) distribution
of test responsibilities between organizational units [8]; C3)
poor documentation and structure of test cases [8]; C4) parallel
work [8]; C5) insufficient delta analysis [8]; C6) huge amounts
of overlaid and potentially redundant testing [8]; C7) variation

in test situations [6]. Based on this list of challenges we
formulated a list of goals (G1–7), see Table III.

The remainder of this section describes our mapping of
the domain-specific problem and data into abstract and generic
descriptions (DS2). In terms of information visualization, the
aim is to describe the operations and data types needed as input
for the visual encoding (DS3) [5]. Our starting point is the
list of goals (G1–G7) described in Table III. Subsection VI-B
describe the mapping from concrete tasks to operations while
Subsections VI-C and VI-D focus on the available data and the
data transformations. Observations regarding tasks, available
data and data transformations are summarized in Table II. Our
findings regarding visual mapping and human interaction are



TABLE III. SUMMARY OF THE GOALS FOR THE VISUAL ANALYTICS

The visual analytics should support (mapped to Challenges in Section VI-A):

G1 delta analysis (C5)
G2 identification of redundancy (C6)
G3 division of responsibilities (C2, C4)
G4 users’ interpretation of old test infor-

mation
(C3)

by providing:

G5 an aggregated view of test execution
history from different perspectives

(C1)

G6 a transparent communication interface
between different groups

(C2, C3, C4)

G7 flexible and adaptive decision support (C7)

TABLE IV. SUMMARY OF THE REQUIRED GENERIC OPERATIONS

O1 overview and
O2 browse historical test information,
O3 vary perspective of the overview,
O4 zoom to test case level of details,
O5 visualize missing information,
O6 compare subsets of the testing,
O7 identify and select critical subsets,
O8 select attribute for comparison,
O9 filter on attributes,
O10 vary size of selection,
O11 continue analysis based on selection

and deselection of tests.

described in Subsections VI-E and VI-F respectively.

B. Operations

In the focus groups, we asked the participants to perform
concrete tasks, see T1–T4 in Section IV, supported by our
prototype visualizations. The tasks involved assessing the
sufficiency of the testing with respect to test design coverage
(T1) and test execution progress (T2) and make decisions
about what to test, plan test, in two different situations: after
a specified functional change (T3) and after porting to a new
platform without any changes in functionality (T4). T1 and T2
enable us to elaborate on the achievement of goals G2–G5;
while T3 and T4 enable us to elaborate on the achievement of
goals G1, G4, G6 and G7.

Based on the hands-on usage of the prototype visual-
izations, all participants perceived that the visual analytics
could be used for many purposes, for example, reducing test
resources and evaluating aspects of the testing, but also for
generating new test ideas. From the practitioners’ feedback on
the usefulness of the visual analytics in relation to different
tasks we extracted generic operations (O1–O11) needed to ful-
fill the goals. These operations resemble common visualization
requirements listed in previous surveys [25], [15], [20]. The
extracted operations are listed in Table IV.

Figure 3 shows an example workflow for tasks T1-T4 based
on practitioners’ feedback and our observations. All partici-
pants found the visual analytics useful to get an overview (O1)
and for browsing (O2) and investigating details (O4) about
the test data. Some participants also requested mosaic views
where other perspectives (O3) of the testing were exposed, for
example the time, project, or quality dimensions.

When assessing test design coverage (T1), the participants
saw that test case execution data could provide information
about which areas are well covered. To identify areas lacking
testing (O5), they wished to combine this information with
information from other sources such as customer feedback:
“It is the areas where failures end up in the hands of
users” or the defect tracking system. While some of this
additional information is well documented and maintained
in databases, some is not equally accessible but may exist
in distributed reports or informal email conversations. Thus,
combining information from several sources in an effective
way to make informed test scoping decisions is attributed to
the test managers’ experience and expertise. This illustrates
the need to incorporate humans in the loop rather than to
design a fully automated decision support system, although
a visual analytics system may evolve incrementally towards
higher levels of automation. When assessing test execution
progress (T2), participants’ where positive: “The visualization
could be used to show everyone’s progress.” “The visualization
could pinpoint areas to improve during spare time.” In cases
where the participants were well familiar with the test scope,
the gain in visualization was less “By experience I know what
to keep track of”.

For both the decision making tasks (T3 and T4), all partic-
ipants found views that they perceived supportive: “Deciding
on scope, the visualization helps identify similarities and to
sort out.”“Good support to make informed decision”.

C. Available data

We focused on visualizing historical test information and
extracted data from the test documentation in the three or-
ganizations. In the Mozilla Firefox case, we extracted test
data from their open, web-based, test management system,
Litmus, with a web crawler. In organization A data are stored
in a similar commercial system, HP Quality Center, from
which we manually extracted test information. In organization
B, test executions were documented in MS Word documents
and stored in a general document management system. We
extracted the historical test data (semi-)automatically.

The focus group participants perceived that visualization of
test execution history was useful for assessing test sufficiency
and for making decisions. As stated above, some participants
also suggested that the visual analytics tool should collect
data from additional data sources such as the source code
repository: “We need a link to software delta”, requirement
management system: “Link to requirements would be powerful
as well” and the defect tracking system. Such a system would
have similarities with project intelligence platforms which
enable trend and comparative analyses by collecting process
and product metrics from several sources [26]. However, a
prerequisite for enabling such analyses is that the information
is available, and that organizations have policies allowing in-
formation integration. Unfortunately, large organizations often



manage information in different content management systems,
typically offering limited interoperability (i.e. resulting in
“information silos”) [27].

D. Data transformation

In our visualization proposal, we transform test execution
information to data tables or “cases by variable arrays” [11]
where test coverage items (TCIs) are the cases. A TCI de-
scribes the scope of a test or set of tests [8] and is defined
by a set of variable values. We differ between two types of
variables: dimension variables with textual values and attribute
variables with numerical values. A dimension value describes
the hierarchical position of the TCI from one perspective, see
Table V.

There is no limitation in how many variables to include
in the analysis. However, the number of TCIs increases ex-
ponentially with the number of dimension variables. In total,
we visualized five different dimension variables: project and
functionality, for all data sets; execution patterns, for the
Mozilla Firefox and organization B data; platform variants,
for the Mozilla Firefox and organization A data; and process
for the organization A data. We could extract some dimension
values directly from the documentation, such as project infor-
mation (in terms of release numbers), platform variants and
process information (in terms of test activities). To derive the
hierarchical structure of the functionality dimension, we had
to interpret the test case descriptions in the light of available
documentation and expertise. In the Mozilla Firefox and or-
ganization B cases we based this functional classification on
keywords, while in the organization A case we did it manually.
The execution patterns dimension refers to a classification
based on hierarchical clustering on similarities between test
cases with respect to when, on what and with which verdict
they have been executed.

Our evaluation revealed needs to visualize different dimen-
sions or perspectives of the testing (O3), depending on the
user’s role and tasks. In the organization A focus group, one
of the participants suggested an organizational dimension to
evaluate the testing by teams or even by individuals. The func-
tionality dimension was considered useful to get an overview
(O1) of the scope and to navigate (O2) the information. The
classification based on similarities in execution patterns was
appreciated for planning but was not intuitive and required
clarification during the focus group.

Our evaluation also showed the need to measure different
attributes (O6, O7) of the TCIs for different tasks. Failure rate
showed to be useful for assessing the test design coverage
(T1). Several attributes were considered by at least one of the
participants when assessing execution progress (T2): #builds
tested, #languages tested, #platforms tested, #days since last
execution, #executions, #failures, failure rate and #days since
first execution. In addition to these attributes they used mea-
surements of similarity of execution patterns over different
platforms to plan testing of new product variants (T3). It is
important that the naming or description of attributes is clear
and thus consistently understood by all users of the tool.

E. Visual mapping

We mapped the test cases or test coverage items TCIs [8],
to the tiles in the mosaic view, i.e. each tile represents one TCI

Fig. 4. Example of pairwise overview of the TCI dimensions process and
project

from one perspective of the testing. Each element is associated
with a set of attribute values which may be visualized with
different colors for different ranges of values, see Figure 2.

The main components of a visual structure are the use of
space, the marks and the graphical properties of the marks [11].
In the prototype visualizations, the spatial position encoded the
dimension values of the TCIs in the mosaic window, which
provided a good overview from one perspective (O1). Altering
between different spatial encodings provided possibility to
change perspective (O3). Preferably, several dimensions should
be available at the same time (O3), for example with multiple
tabs. In our prototype visualizations we did not make use of
the two-dimensional positioning in the mosaic window, which
could enable pairwise overviews of TCI dimensions (O1),
e.g. functionality versus variability. Instead we created a two-
dimensional overview by mapping the dimension values of
one dimension variable to a set of attribute variables. Figure 4
shows an example of a pairwise overview (process/project) of
the test execution progress.

The attribute values are visible in the colors of the mosaic
tiles and in the histogram view on the right, see Figure 2. This
enables comparison of TCIs (O6). Participants commented on
the number of colors used to represent different ranges of
values of the attributes. The general opinion was that only
few colors should be used; two or three would be enough to
identify critical tests (O7).

The MosaiCode tool [9] only supported unstructured type
of axis [11] in the mosaic window. This means that the coor-
dinates of the tiles had no meaning. Instead the arrangement
of tiles into containers carried meaning. Thus, the dimension
values, or the hierarchal position, are visible to the user through
the grouping of tiles and in the tree browser, see Figure 2.
This lack of a coordinate system in the mosaic window was
frustrating for the testers. Participants in all focus groups



TABLE V. DATA TABLE OF EXAMPLE TEST COVERAGE ITEMS – THE HIERARCHICAL POSITIONS ARE DESCRIBED ALONG SIX DIMENSIONS OF THE
TESTING STRATEGY. TCI 11 IS HERE A SUB TCI OF TCI 1021 WITH RESPECT TO THE TIME DIMENSION. THE ABSTRACTION LEVEL OF THE TCI

DETERMINES THE DERIVED VALUES OF THE LIST OF ATTRIBUTES.

TCI 1021 TCI 11
Dimension: Functionality System/Social phonebook/Add contact System/Social phonebook/Add contact
Dimension: Purpose All/Interaction/Incoming message All/Interaction/Incoming message
Dimension: Variant All/Blue star All/Blue star
Dimension: Platform All All
Dimension: Organization OrganizationA/Application software/System integration test OrganizationA/Application software/System integration test
Dimension: Time All All/2012/w46
Attribute: #executions 13 0
Attribute: #failures 0 0
Attribute: #days since last
execution

30 30

... ... ...

requested at least a fixed position of tiles. They also suggested
that the meaning of the containers should be visible, not only
in the tree browser window, but also in the mosaic window.
This could be done by adding text labels to the containers or
to nominal axes. The use of nominal axis would also support
the visualization of missing information (O5). In Figure 4
nominal axes are combined with unstructured to provide a
3D view. Similarity in functional coverage is here visible in
the containers and progress over project and process is visible
through the coordinate system.

In the evaluation, we studied how the participants used
the different views to solve the tasks. The tree browser view
showed to be useful for navigating (O2) when participants
were familiar with the test scope and the structure of TCIs.
The mosaic view provides a good overview (O1) of both TCI
design coverage (T1) and TCI execution progress (T2) and
showed to be useful when the participants were new to the
data or when the dataset was large.

F. Human interaction

Participants in all three focus groups stressed the impor-
tance of human interaction. Several techniques exist to let the
user control the different types of data transformations in the
visual analytics process [11]. In the prototype visualizations,
the transformation from raw data into data tables as well as the
mapping from data tables to visual structures was hard coded.
Thus, the user interaction provided in focus groups, with
respect to these transformations, was limited to selecting which
prototype visualization to use for a certain task. Participants
in all focus groups requested a possibility to filter (O9) the
displayed data on different criteria, e.g. visualize test execution
history of functional area F by team A from Nov 2011.

Participants discussed two types of interactive visual map-
ping which they considered useful namely 1) the selection of
which TCI dimension to be mapped to the spatial position in
the mosaic view (O3) and 2) the setting of percentiles in the
histogram, that is, the mapping of colors to attribute values to
vary the size of the selection (O10).

The MosaiCode tool provides interactive view transforma-
tions in terms of browsing (O2) and zooming (O4) as well
as controlling the tile size and number of different colors on
tiles. In addition, automatic mapping between the different
views enables searching for elements in, for example, the tree
browser by selecting them in the mosaic window. Practitioners
considered the zooming function very useful and stressed the

importance of a direct mapping between different views i.e.
if a certain test coverage item is selected in the tree browser
view, the same item should be selected in the mosaic view.
Furthermore they requested automatic setting of tile sizes but
manual setting of tile color ranges based on the TCI attributes.
Additionally, they wanted to be able to select and count test
cases to support the test planning (O7, O8).

G. Summary of results

The outcome of DS2 is a mapping of the regression
test scoping problem to an information visualization problem.
We used data tables of TCIs to represent test execution
information. TCIs may be defined by dimension variables
and attribute variables. We identified 5 dimension variables
and 10 attribute variables that were useful to visualize in
different regression test scoping decisions. These are listed
and explained in SectionVI-D. We also identified 11 generic
visual analytics operations (See Table IV), which were required
to meet previously identified challenges in regression test
scoping.

The outcome of DS3 is the design of the visual encoding
and interaction. We used heat maps to visualize the TCIs.
Colors of tiles represent attribute values and spatial position
of tiles represents the dimension values. During evaluation we
observed needs related to the views and interactions. While
performing the scope analysis it should be possible to alter
between different perspectives, i.e. change both dimension
variables and attribute values and to select and count TCIs.
To elaborate on the size of the selection user need also be
able to manually set attribute value ranges for the colors. Only
few colors (two or three) are needed to differentiate ranges of
attribute values.

VII. CONCLUSION

We have continued our design study on how to support
regression test scoping in a complex software development
context. We provided prototype visualizations based on three
different sets of industrial data and evaluated the visual an-
alytics in three focus groups with participants from software
industry. Contributions presented in this paper are the descrip-
tion and evaluation of a generic solution concept in terms
of required operations and a proposed data representation; as
well as an exemplification and evaluation of how to design the
visual mapping and interaction. The generic solution provided
in this paper is relevant in cases were large amounts of test



cases are executed and there is a need to cut testing costs.
However it need to be further refined and evaluated in the
actual application context. Both indirect and direct effects [28]
on the organization should be considered.

ACKNOWLEDGEMENT

The authors are very thankful to the case companies and the
focus group participants, for letting us access them and their
data, as well as giving valuable feedback on our findings. We
also thank the SERG reading group for review comments to
an earlier version of the paper. This work was partly funded
by ELLIIT (The Linköping-Lund Initiative on IT and Mo-
bile Communication, www.elliit.liu.se) and EASE (Industrial
Excellence Center on Embedded Applications Software En-
gineering, ease.cs.lth.se). Emelie Engström and Markus Borg
are members of the SWELL research school, (Swedish V&V
Excellence, www.swell.se).

REFERENCES

[1] E. Engström, P. Runeson, and M. Skoglund, “A systematic review
on regression test selection techniques,” Information and Software
Technology, vol. 52, no. 1, pp. 14–30, Jan. 2010.

[2] E. Engström and P. Runeson, “Software product line testing a sys-
tematic mapping study,” Information and Software Technology, vol. 53,
no. 1, pp. 2–13, 2011.

[3] P. C. Wong and J. Thomas, “Visual analytics,” IEEE Computer Graphics
and Applications, vol. 24, no. 5, pp. 20 – 21, Oct. 2004.

[4] K. A. Cook and J. J. Thomas, “Illuminating the path: The research and
development agenda for visual analytics,” Pacific Northwest National
Laboratory (PNNL), Richland, WA (US), Tech. Rep. PNNL-SA-45230,
May 2005.

[5] T. Munzner, “A nested model for visualization design and validation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 6, pp. 921–928, Dec. 2009.

[6] E. Engström and P. Runeson, “A qualitative survey of regression
testing practices,” in Product-Focused Software Process Improvement,
ser. Lecture Notes in Computer Science, M. Ali Babar, M. Vierimaa,
and M. Oivo, Eds. Springer Berlin / Heidelberg, 2010, vol. 6156, pp.
3–16.

[7] E. Engström, P. Runeson, and A. Ljung, “Improving regression testing
transparency and efficiency with history based prioritization an indus-
trial case study,” in Proceedings of the 4th International Conference on
Software Testing Verification and Validation (ICST’11), 2011, pp. 367
–376.

[8] E. Engström and P. Runeson, “Test overlay in an emerging software
product line an industrial case study,” Information and Software
Technology, vol. 55, no. 3, pp. 581–594, Mar. 2013.

[9] J. I. Maletic, D. J. Mosora, C. D. Newman, M. L. Collard, A. Sutton,
and B. P. Robinson, “MosaiCode: visualizing large scale software:
A tool demonstration,” in 2011 6th IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT), Sep.
2011, pp. 1–4.

[10] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, Mar. 2012.

[11] S. K. Card, J. Mackinlay, and B. Shneiderman, Eds., Readings in
Information Visualization: Using Vision to Think, 1st ed. Academic
Press, Feb. 1999.

[12] T. A. Ball and S. G. Eick, “Software visualization in the large,”
Computer, vol. 29, no. 4, pp. 33 –43, Apr. 1996.

[13] D. Graanin, K. Matkovi, and M. Eltoweissy, “Software visualization,”
Innovations in Systems and Software Engineering, vol. 1, no. 2, pp.
221–230, 2005.

[14] R. Koschke, “Software visualization for reverse engineering,” in Soft-
ware Visualization, ser. Lecture Notes in Computer Science, S. Diehl,
Ed. Springer Berlin Heidelberg, Jan. 2002, no. 2269, pp. 138–150.

[15] S. Bassil and R. K. Keller, “Software visualization tools: survey and
analysis,” in Proceedings of the 9th International Workshop on Program
Comprehension (IWPC 2001), 2001, pp. 7–17.

[16] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software, 1st ed. Springer, May 2007.

[17] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the ACM 24th
International Conference on Software Engineering (ICSE ’02), 2002,
pp. 467–477.

[18] V. P. Araya, “Test blueprint: an effective visual support for test cover-
age,” in Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). New York, NY, USA: ACM, 2011, pp.
1140—1142.

[19] R. Feldt, M. Staron, E. Hult, and T. Liljegren, “Supporting software de-
cision meetings: Heatmaps for visualising test and code measurements,”
in 2013 39th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), 2013, pp. 62–69.

[20] H. M. Kienle and H. A. Müller, “Requirements of software visualization
tools: A literature survey,” in IEEE Proceedings of the 4th International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT 2007), Jun. 2007, pp. 2 –9.

[21] L. Wilkinson and M. Friendly, “The history of the cluster heat map,”
The American Statistician, vol. 63, no. 2, 2009.

[22] S. Eick, J. Steffen, and J. Sumner, E.E., “Seesoft-a tool for visualiz-
ing line oriented software statistics,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 957–968, 1992.

[23] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering Guidelines and Examples. Wiley, 2012.

[24] P. Runeson and E. Engström, “Software product line testing a 3D
regression testing problem,” in Proceedings of the IEEE Fifth Inter-
national Conference on Software Testing, Verification and Validation
(ICST), Apr. 2012, pp. 742 –746.

[25] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” in Proceedings IEEE Symposium on Visual
Languages, Sep. 1996, pp. 336–343.

[26] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. Mas y
Parareda, and M. Pizka, “Tool support for continuous quality control,”
IEEE Software, vol. 25, no. 5, pp. 60–67, Oct. 2008.

[27] J. A. Vayghan, S. M. Garfinkle, C. Walenta, D. C. Healy, and
Z. Valentin, “The internal information transformation of IBM,” IBM
Systems Journal, vol. 46, no. 4, pp. 669–684, 2007.

[28] E. Engström, R. Feldt, and R. Torkar, “Indirect effects in evidential
assessment: a case study on regression test technology adoption,” in
Proceedings of the 2nd international workshop on Evidential assessment
of software technologies, ser. EAST ’12. ACM, 2012, pp. 15–20.


