
NoC-based CSP Support for
a Java Chip Multiprocessor

Chip multiprocessor:
▪On FPGA
▪ Java Optimized 

Processors (JOP) [2]
▪A predictable network 

on chip (NoC)

Hardware Software

Problem:
▪Today only multiprocessors offer enough performance
▪Shared memory scales poorly (limited bandwidth/cache coherence issues)

A Solution:
▪Hoare's Communicating Sequential Processes (CSP) [1]- (Transputers/Occam)

Background

NoC:
▪ TDMA-based (each 

processor has a slot it 
can write data to)
▪ Sends packets around
▪ Similar to a shift register
▪ Ring/mesh topology
▪Very simple routers

JOP:
▪ Java embedded processor, direct bytecode execution
▪ Predictable, suitable for real-time
▪Used previously in a CMP based on shared memory
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Routers:
▪Can send/receive one message at the time
▪Messages are made of packets
▪Handle packets of types: Nil, Data, EoD, Ack
▪ Send or forward one word/clock cycle
▪ Reply with Ack for each Data/EoD

Basics:
▪ Processes share 

processors
▪CSP channels share 

physical channels
▪CSP channels may 

map to local, NoC or 
even stream channels

Sharing NoC channels:
▪ Several CSP channels map to the same NoC slot
▪CSP requires synchronous message passing (both the 

sender and the receiver block), so...
▪ ...use two asynchronous channels to implement this, 

one for the message and one for the Ack
▪  NoCListener: a system task to manage channels

Under development:
▪Automatic mapping of processes and channels
 ▪A more complete class library, with Occam-like ALT, PRI 
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Evaluation
Setup:
▪ Routers and NoC implemented in VHDL
▪A system with three JOPs synthesized/tested on Altera 

Cyclone (EP1C12) and Digilent Nexys2 (XC3S1200)
▪A Java library of 11 classes supporting local, NoC, and 

stream channels was also implemented and tested
▪Communication speed-up for shared heap (with TDMA 

arbitration [3]) vs. channels on the three JOP system?

Results:
▪NoC adds 15% to the design resource consumption
▪On Altera Cyclone communication via NoC is 2.3x (5.1x) 

faster than shared SRAM for short (long) packets
▪On Digilent Nexys2 communication via NoC is 3.8x 

(11.5x) faster than shared onboard SRAM for short 
(long) packets
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▪ Files access at http://www.jopwiki.com/Download
▪ VHDL modules in vhdl/paper/csp (Altera Cyclone) and 

vhdl/paper/nexys2_csp (Nexys2)
▪ software support for CSP in java/target/src/paper/csp
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