
NoC-based CSP Support for
a Java Chip Multiprocessor

Chip multiprocessor:
▪On FPGA
▪ Java Optimized

Processors (JOP) [2]
▪A predictable network

on chip (NoC)

Hardware Software

Problem:
▪Today only multiprocessors offer enough performance
▪Shared memory scales poorly (limited bandwidth/cache coherence issues)

A Solution:
▪Hoare's Communicating Sequential Processes (CSP) [1]- (Transputers/Occam)

Background

NoC:
▪ TDMA-based (each

processor has a slot it
can write data to)
▪ Sends packets around
▪ Similar to a shift register
▪ Ring/mesh topology
▪Very simple routers

JOP:
▪ Java embedded processor, direct bytecode execution
▪ Predictable, suitable for real-time
▪Used previously in a CMP based on shared memory

JOP

JOP0 1

23

TDMA packet

Slot (*) Dst (*) Type (2) Load (32)

Si
m

pC
on

 IF

JOP

JOP

out
Reg

OUT
Ack?

IN

a = node
address

rcv

SND
FIFO

SimpCon IF

RCV
FIFO

slot?

new
packet

snd(a+a+32)

dstsrc

Ack
rcv

mask

snd
rdy

Routers:
▪Can send/receive one message at the time
▪Messages are made of packets
▪Handle packets of types: Nil, Data, EoD, Ack
▪ Send or forward one word/clock cycle
▪ Reply with Ack for each Data/EoD

Basics:
▪ Processes share

processors
▪CSP channels share

physical channels
▪CSP channels may

map to local, NoC or
even stream channels

Sharing NoC channels:
▪ Several CSP channels map to the same NoC slot
▪CSP requires synchronous message passing (both the

sender and the receiver block), so...
▪ ...use two asynchronous channels to implement this,

one for the message and one for the Ack
▪ NoCListener: a system task to manage channels

Under development:
▪Automatic mapping of processes and channels
 ▪A more complete class library, with Occam-like ALT, PRI

ALT, PAR, PRI PAR

NoC
Listener

send M

NoC
Listener

send Ack M
store Ack M

rcv Ack?
false

rcv M?

false

true

Message
List

store M

Receiver
Process

rcv M?

rcv Ack?
true

Message
List

Sender
Process

Process C

DataStreamch4

5,6
7

Process D

8

Process A

Process B

ch1

ch3

ch2

1

3

2

4

k

m

NoC
slots

node k node m

Evaluation
Setup:
▪ Routers and NoC implemented in VHDL
▪A system with three JOPs synthesized/tested on Altera

Cyclone (EP1C12) and Digilent Nexys2 (XC3S1200)
▪A Java library of 11 classes supporting local, NoC, and

stream channels was also implemented and tested
▪Communication speed-up for shared heap (with TDMA

arbitration [3]) vs. channels on the three JOP system?

Results:
▪NoC adds 15% to the design resource consumption
▪On Altera Cyclone communication via NoC is 2.3x (5.1x)

faster than shared SRAM for short (long) packets
▪On Digilent Nexys2 communication via NoC is 3.8x

(11.5x) faster than shared onboard SRAM for short
(long) packets

Poster © Flavius Gruian, made for NORCHIP 2010, Tampere, Finland

Flavius Gruian
Lund University, Sweden
flavius.gruian@cs.lth.se

Martin Schoeberl
Technical University of

Denmark
masca@imm.dtu.dk

▪ Files access at http://www.jopwiki.com/Download
▪ VHDL modules in vhdl/paper/csp (Altera Cyclone) and

vhdl/paper/nexys2_csp (Nexys2)
▪ software support for CSP in java/target/src/paper/csp

[1] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.
[2] M. Schoeberl. A Java processor architecture for embedded real-time systems. Journal of Systems Architecture, 54/1–2:265–286, 2008.
[3] C. Pitter and M. Schoeberl. A real-time Java chip-multiprocessor. ACM Trans. Embed. Comput. Syst., 10(1):9:1–34, 2010

