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Abstract

The Simplex S D is the sample space of a D-part composition. There are
only a few distributions defined on the Simplex and even fewer defined on the
Cartesian product S D × S D. Based on the Dirichlet distribution, defined
on S D, we propose a new bicompositional Dirichlet distribution defined on
S D × S D, and examine some of its properties, such as moments as well as
marginal and conditional distributions. The proposed distribution allows for
modelling of covariation between compositions without leaving S D × S D.

Keywords: Cartesian product, compositional data, Dirichlet distribution, Sim-
plex

1 Introduction

1.1 Compositions
A composition is a vector of non-negative components summing to a constant,
usually 1. The components of a composition are what we usually think of as
proportions (at least when the vector sums to one). Compositions arise in many
different areas; the geochemical compositions of different rock specimens, the
proportion of expenditures on different commodity groups in household bud-
gets, and the party preferences in a party preference survey are all three examples
of compositions from different scientific areas. For more examples of composi-
tions, see for instance Aitchison (1986) (or the reprint (Aitchison, 2003)).

Compositions differ from other multivariate random vectors on the real
space due the summation constraint. Whereas the Cartesian product of two
random vectors on the real space Rp will form a new random vector on the real
space Rp+p, this is not the case for compositions.
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When describing dependency structures, the compositional analysis has
been primarily concerned with describing the dependency structures within
a composition, i.e. the relation between the components of a composition.
Aitchison (1986, Ch. 10) for instance devotes an entire chapter to this, and as a
recent example Ongaro et al. (2008) construct a new distribution for modelling
such relations. In this paper we will not be considering the relation between the
components of a composition, but the relation between two compositions. We
will use the term bicompositional when referring to two compositions (with
same number of components) and the term unicompositional when referring to
one composition. A composition with two components will be referred to as a
bicomponent composition, as opposed to a multicomponent composition.

1.2 The Simplex
The sample space of a composition is the Simplex. (For simplicity we will
always take the summing constant to be 1.) We define the D-dimensional
Simplex space S D as

S D =
{

(x1, . . . , xD)′ ∈ RD
+ :

D∑
j=1

xj = 1
}

where R+ is the positive real space. As noted above, it is a sample space that
occurs in a wide variety of applications. There are however only a limited
number of distributions defined on the Simplex; the two most notable are the
Dirichlet distribution and the logistic normal distribution class described by
Aitchison and Shen (1980). There are also a number of generalisations of these
two distributions.

The sample space of the joint distribution of two compositions is the Carte-
sian product S D × S D. This sample space is the subspace of RD+D

+ , where

D∑
j=1

xj =
D+D∑

j=D+1

xj = 1.

There are almost no distributions defined on S D × S D. For the case D = 2,
the bicomponent case, there have been proposed a few bivariate Beta distribu-
tions (though usually not in a compositional context). See for instance in recent
years Olkin and Liu (2003), Nadarajah and Kotz (2005), Nadarajah (2006) or
Nadarajah (2007). For D > 2, the multicomponent case, we have not found
any distributions at all in the literature.

1.3 An Example
A trivial example of a composition is the vector of length two consisting of the
proportion Employed and the proportion Not employed, the latter of which of
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Figure 1. The proportion Employed in Sweden in June plotted versus the cor-
responding proportion in January the previous year, for the years 1977 through
2004. The marginal proportions are plotted on the axes.

course is one minus the first one. In Figure 1 the composition (Employed, Not
employed) in Sweden in June has been plotted versus the same composition
for January the previous year, for the years 1977 through 2004. Data come
from the Swedish Labour Force Survey (AKU), conducted by Statistics Sweden;
see Persson and Henkel (2005) for a description of the Swedish Labour Force
Survey. The marginal compositions are plotted on the axes. We clearly see
a positive linear relation between the two months. To be able to model this
relation we need distributions defined on S 2 × S 2.

It would of course also be interesting to examine the three-component com-
position: (Employed, Unemployed, Not in the labour force). This would how-
ever require a four-dimensional plot. We acknowledge though the need for
modelling the covariation between two compositions with D components in
the space S D × S D.

As well as studying the joint probability density of two compositions, we
could study the probability density for a composition conditioned on the values
of another composition. In our example we might study the composition (Em-
ployed, Not employed) or (Employed, Unemployed, Not in the labour force)
in June, conditioned on the value in January the previous year. Also for this
context we need suitable distributions to be able to create models.
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2 A Bicompositional Dirichlet Distribution
Following Aitchison (1986), we define d = D−1. We let x = (x1, . . . , xd , xD)′ ∈
S D. The well-known (unicompositional) Dirichlet distribution with parame-
ter a ∈ RD

+ is defined as

fX(x) =
G (a1 + · · ·+ aD)∏D

j=1 G(aj)

D∏
j=1

x
aj−1
j

where G(·) is the Gamma function.
Based on the Dirichlet distribution we will now define a bicompositional

generalisation for X and Y.

Definition 1 (Probability Density Function). Let X,Y ∈ S D and let

fX,Y(x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(x′y)g (1)

where aj, bj ∈ R+ for j = 1, . . . ,D and g is a real number.

The parameter g models the degree of covariation between X and Y. If
g = 0, (1) reduces to the product of two independent Dirichlet probability
density functions

fX,Y(x, y) = A
D∏

j=1

x
aj−1
j y

bj−1
j

where A is known:

A =
G (a1 + · · ·+ aD)G

(
b1 + · · ·+ bD

)∏D
j=1 G(aj)G(bj)

.

This motivates that (1) is referred to as the probability density function of a
bicompositional Dirichlet distribution. We let DD

1 (a) denote the unicomposi-
tional Dirichlet distribution with D components and parameter a = (a1, . . . , aD)′

and we let DD
2 (a, b;g) denote the bicompositional Dirichlet distribution with

D components and parameters a, b and g, where b = (b1, . . . , bD)′.
Next we examine some of the properties of this distribution: first in the

special bicomponent case, and then in the general multicomponent case.

3 The Bicomponent Case
For two bicomponent compositions, X = (X , 1−X )′ and Y = (Y , 1−Y )′, the
probability density function is a function of x = (x, 1− x)′ and y = (y, 1− y)′,
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but as it is completely determined by (x, y) we will for simplicity treat it as
function of (x, y). Hence the probability density function (1) is reduced to

fX ,Y (x, y) = Axa1−1(1− x)a2−1yb1−1(1− y)b2−1 (xy + (1 − x)(1 − y)
)g

. (2)

This distribution could of course also be considered a bivariate Beta distribu-
tion, if we regard it as a function of (x, y).

We begin our investigation of the distribution by stating for what values of
g the distribution exists.

Theorem 1. The distribution D2
2(a1, a2, b1, b2;g) exists if and only if g >

−min(a1 + b2, a2 + b1).

Proof. If g is a non-negative then the last factor in

xa1−1(1 − x)a2−1yb1−1(1 − y)b2−1 (xy + (1 − x)(1 − y)
)g

(3)

is bounded for x, y ∈ [0, 1] and the integral of (3) exists. If g is negative then
the last factor is unbounded.

Let g be negative and g = −g. Then the integral of (3) may be written as∫ 1

0

∫ 1

0

xa1−1(1 − x)a2−1yb1−1(1 − y)b2−1(
xy + (1 − x)(1 − y)

)g dxdy. (4)

The denominator is close to 0 only when (x, y) is close to either (0, 1) or (1, 0).
For the rest of the integration area the denominator is bounded away from 0. In
the triangle (0, .5), (0, 1), (.5, 1), i.e. the top left triangle, (xy + (1− x)(1− y))
may estimated from below by (x + 1− y)/2 and from above by (x + 1− y). In
the bottom right triangle, (xy + (1 − x)(1 − y)) may estimated from below by
(y + 1 − x)/2 and from above by (y + 1 − x). The integration area, with the
top left and bottom right triangles shaded, is shown in Figure 2.

The integral (4) thus exists if and only if the integral∫ 1

1
2

(∫ y− 1
2

0

xa1−1(1 − y)b2−1

(x + 1 − y)g dx

)
dy (5)

and the corresponding integral over the bottom triangle both exist. Introducing
u = x and v = x + 1 − y, (5) turns into∫ 1

2

0

(∫ v

0

ua1−1(v − u)b2−1

vg du
)

dv. (6)

If we replace u by vt, (6) may be written as∫ 1
2

0
va1+b2−g−1dv

∫ 1

0
ta1−1(1 − t)b2−1dt.
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Figure 2. The integration area of (4). The denominator is close to 0 only when
(x, y) is close to either (0, 1) or (1, 0).

The second integral of this product always exists, but the first one exists if
and only if a1 + b2 > g . With an analogous argument for the integral over
the bottom right triangle, we can show that this integral exists if and only if
a2 + b1 > g. Hence the density (2) exists if and only if g > −min(a1 +
b2, a2 + b1).

We next determine the normalisation constant A.

Theorem 2. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the normalisation constant A is determined by

1
A
=

1
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

) (7)

where B(p, q) is the Beta function:

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt =

G(p)G(q)
G(p + q)

.

Proof. Let x and h be defined by x = 1
2 (1 + x) and y = 1

2 (1 + h). Then
1 − x = 1

2 (1 − x), 1 − y = 1
2 (1 − h) and xy + (1 − x)(1 − y) = 1

2 (1 + xh) and
the Binomial expansion yields

(xy + (1 − x)(1 − y))g =
1
2g

∞∑
i=0

(
g

i

)
(xh)i. (8)
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We note that, since 0 < x < 1 and 0 < y < 1, and thus −1 < x < 1
and −1 < h < 1, the series on the right-hand side of (8) converges. The
normalisation constant is then determined by

1
A

=
1
2g

∞∑
i=0

(
g

i

)∫∫
xa1−1(1 − x)a2−1yb1−1(1 − y)b2−1(xh)kdxdy

=
1
2g

∞∑
i=0

(
g

i

)(∫
xa1−1(1 − x)a2−1xkdx

)(∫
yb1−1(1 − y)b2−1hkdy

)

=
1
2g

∞∑
i=0

(
g

i

)(∫
xa1−1(1 − x)a2−1(x − (1 − x))kdx

)

·
(∫

yb1−1(1 − y)b2−1(y − (1 − y))kdy
)

=
1
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)

where all integrals are over the unit interval.

Empirical trials show that the series (7) converges quickly for most exam-
ples. If all the parameters are close to 0, the series may converge very slowly. We
have also found that convergence can be slow when g is negative and close to
−min(a1 + b2, a2 + b1). These situations however mean that the probability
is concentrated near the edges of the sample space and hence perhaps of little
practical importance.

If g is a non-negative integer the results are simplified as shown next.

Theorem 3. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the normalisation constant A is determined by

1
A
=

g∑
j=0

(
g

j

)
B(a1 + j, a2 + g− j)B(b1 + j, b2 + g− j) (9)

where B(·, ·) is the Beta function.

Proof. The result follows from expanding the last factor of (2) using the Bi-
nomial theorem and then integrating using the definition of the Beta func-
tion.

We proceed by also stating the cumulative distribution function.
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Theorem 4. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the cumulative distribution function is

FX ,Y (x, y) =
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jBx(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kBy(b1 + k, b2 + i − k)

) (10)

where A is the constant given in Theorem 2 and Bx(p, q) is the incomplete Beta
function defined as

Bx(p, q) =
∫ x

0
tp−1(1 − t)q−1dt.

Proof. The proof is similar to the proof of Theorem 2, but uses the definition
of the incomplete Beta function instead of the Beta function.

If g is a non-negative integer the cumulative distribution function may be
expressed more simply.

Theorem 5. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the cumulative distribution function is

FX ,Y (x, y) = A
g∑

j=0

(
g

j

)
Bx(a1 + j, a2 + g− j)By(b1 + j, b2 + g− j) (11)

where A is the constant given in Theorem 3 and Bx(·, ·) is the incomplete Beta
function.

Proof. The result follows by integrating (2) with the use of the Binomial theo-
rem and the definition of the incomplete Beta function.

Next we give the product moments of the distribution.

Theorem 6. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the product moment E(X nY m) is

E(X nY m) =
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + n + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + m + k, b2 + i − k)

)

=
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + n + j, a2 + i − j)

(
n−1∏
l=0

a1 + j + l
a1 + a2 + g+ l

)
·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + m + k, b2 + i − k)

(
m−1∏
l=0

b1 + k + l
b1 + b2 + g+ l

))

9



where A is the constant given in Theorem 2.

Proof. The proof of the first equality is similar to that of Theorem 2. The
second equality follows from repeated use of the identity

B(p + 1, q) =
p

p + q
B(p, q). (12)

As before, if g is a non-negative integer, the calculations are simplified.

Theorem 7. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the product moment E(X nY m) is

E(X nY m) = A
g∑

j=0

(
g

j

)
B(a1 + n + j, a2 + g− j)B(b1 + m + j, b2 + g− j)

= A
g∑

j=0

(
g

j

)
B(a1 + j, a2 + g− j)B(b1 + j, b2 + g− j)

·

(
n−1∏
k=0

a1 + j + k
a1 + a2 + g+ k

)(
m−1∏
l=0

b1 + j + l
b1 + b2 + g+ l

)

where A is the constant given in Theorem 3.

Proof. The proof of the first equality is similar to the proof of Theorem 3. The
second equality follows from repeated use of the identity (12).

3.1 Marginal Distributions
In the example in Section 1.3 we noted that not only the joint distribution,
but also the conditional distributions may be of interest when modelling bi-
compositional data. In order to determine the properties of the conditional
distributions, we first need to derive some of the properties of the marginal
distributions.

Theorem 8. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the marginal probability density function of X is

fX (x) =
A
2g

∞∑
i=0

(
g

i

)
xa1−1(1 − x)a2−1(x − (1 − x))i

·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

) (13)

where A is the constant given in Theorem 2.

10



Proof. The result follows by expanding (2) similarly to the proof of Theorem 7
and then integrating.

As previously the results are simplified for non-negative integer values on
g.

Theorem 9. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the marginal probability density function of X is

fX (x) = A
g∑

j=0

(
g

j

)
B(b1 + j, b2 + g− j)xa1+j−1(1 − x)a2+g−j−1 (14)

where A is the constant given in Theorem 3.

Proof. The result follows directly by integrating (2).

When g = 0, we see that (14) is reduced to the common unicompositional
Dirichlet distribution.

For completeness we also state the moments of the marginal distributions.

Theorem 10. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g > −min(a1 + b2, a2 +

b1), the nth moment of X is

E(X n) =
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + n + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)

=
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)

·

(
n−1∏
l=0

a1 + i + l
a1 + a2 + g+ l

)

where A is the constant given in Theorem 2.

Proof. The result follows by expanding (x − (1− x)))i, integrating, and repeat-
edly using the identity (12).

Again, the calculations are simplified for integer values.
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Theorem 11. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g is a non-negative integer,

the nth moment of X is

E(X n) = A
g∑

j=0

(
g

j

)
B(a1 + n + j, a2 + g− j)B(b1 + j, b2 + g− j)

= A
g∑

j=0

(
g

j

)
B(a1 + j, a2 + g− j)B(b1 + j, b2 + g− j)

(
n−1∏
k=0

a1 + j + k
a1 + a2 + g+ k

)

where A is the constant given in Theorem 3.

Proof. The result follows from direct calculation and repeated use of the iden-
tity (12).

We note that if g = 0, then E(X ) = a1
a1+a2

, i.e. precisely the expectation of
a Dirichlet distribution, as one would expect.

Due to the symmetry of the Bicompositional Dirichlet distribution, all of
the above results of course also apply to Y (with the appropriate changes of ai

to bi and vice versa).

3.2 Conditional Distributions
We now proceed with the bicomponent conditional distributions, first stating
the conditional probability density function.

Theorem 12. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g > −min(a1 + b2, a2 +

b1), the conditional probability density function for Y conditioned on X = x is

fY |X=x(y) = Cyb1−1(1 − y)b2−1 (xy + (1 − x)(1 − y)
)g

(15)

where

1
C

=
1
2g

∞∑
i=0

(
g

i

)
(x − (1 − x))i

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)
.

Proof. The result follows directly from (2) and Theorem 8.

Theorem 13. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g is a non-negative integer,

the conditional probability density function for Y conditioned on X = x is

fY |X=x(y) = D
g∑

k=0

(
g

k

)
xk(1 − x)g−kyb1+k−1(1 − y)b2+g−k−1 (16)

where
1
D

=

g∑
j=0

(
g

j

)
xj(1 − x)g−jB(b1 + j, b2 + g− j).

12



Proof. The result follows from directly from (2) and Theorem 9.

We note that when g = 0, (16) simplifies to the probability density func-
tion of the unicompositional Dirichlet distribution with parameters b1 and b2.

We also derive the moments for the conditional distributions.

Theorem 14. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g > −min(a1 + b2, a2 +

b1), the nth moment of Y |X = x is

E(Y n|X = x) =
C
2g

∞∑
i=0

(
g

i

)
(x − (1 − x))i

·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + n + k, b2 + i − k)

) (17)

where C was given in Theorem 12.

Proof. The proof is similar to the proof of Theorem 10.

Theorem 15. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g is a non-negative integer,

the nth moment of Y |X = x is

E(Y n|X = x) = D
g∑

j=0

(
g

j

)
xj(1 − x)g−jB(b1 + n + j, b2 + g− j) (18)

where D was given in Theorem 13.

Proof. The proof is similar to the proof of Theorem 11.

In both (17) and (18), the Beta function may be expanded to a product
similar to the ones in Theorems 10 and 11.

4 The Multicomponent Case
We now turn to the case when there are D > 2 components. Unfortunally, due
to the increased complexity, the results for this case are less elaborate than for
the bicomponent case.

The distribution exists if g is a non-negative real number. If g furthermore
is a non-negative integer, the normalisation constant may easily be determined.
To simplify the expressions, we let a. = a1 + · · · + aD, b. = b1 + · · · + bD

and k = (k1, . . . , kD).

Theorem 16. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then the

normalisation constant is determined by

1
A
=

∑
k1,...,kD≥0

k1+···+kD=g

(
g

k

)∏D
i=1 G(ai + ki)
G(a. + g)

∏D
i=1 G(bi + ki)
G(b. + g)

(19)
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where
(g

k

)
is the multinomial coefficient g!/(k1! · · · kD!).

Proof. The result follows from expanding the factor (x′y)g by using the Multi-
nomial theorem and from the properties of the Dirichlet integral.

For computational purposes, we note that (19) can for instance be written
as

1
A
=

g∑
k1=0

g−k1∑
k2=0

· · ·
g−

∑d−1
i=1 ki∑

kd=0

(
g

k

)∏D
i=1 G(ai + ki)
G(a. + g)

∏D
i=1 G(bi + ki)
G(b. + g)

if we define kD = g− k1 − · · · − kd .

4.1 Marginal Distributions
Before we examine the conditional distributions we give the marginal distribu-
tions for the multicomponent case.

First we give the probability density function.

Theorem 17. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then the

marginal probability density function for X is

fX(x) = A
∑

k1,...,kD≥0
k1+···+kD=g

(
g

k

)
xa1+k1−1

1 · · · xaD+kD−1
D

∏D
i=1 G(bi + ki)
G(b. + g)

. (20)

where A is the constant given in Theorem 16.

Proof. The proof is similar to that of Theorem 16.

Just as for the bicomponent case, we note that when g = 0, (20) simplifies
to a unicompositional Dirichlet distribution with parameter a. When g is
positive integer, (20) just like (1) is a mixture of unicompositional Dirichlet
distributions.

Next we determine the moments of the components of the marginal distri-
butions.

Theorem 18. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then

E(X n
j ) = A

∑
k1,...,kD≥0

k1+···+kD=g

(
g

k

)∏D
i=1 G(ai + ki)
G(a. + g)

∏D
i=1 G(bi + ki)
G(b. + g)

n−1∏
l=0

aj + kj + l

a. + g+ l

(21)

for j = 1, . . . ,D and n = 1, 2, . . ..

Proof. The result follows by using the Dirichlet integral and the identity G(x+
1) = xG(x) repeatedly.
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4.2 Conditional Distributions
Having determined the marginal distributions we continue by determining the
the multicomponent conditional distributions. We begin with the conditional
probability density function of the composition Y conditioned on the compo-
sition X = x.

Theorem 19. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then the

conditional probability density function for Y given X = x is

fY|X=x(y) =
yb1−1

1 · · · ybD−1
D (x1y1 + · · ·+ xDyD)g∑

k1,...,kD≥0
k1+···+kD=g

(g
k

)
xk1

1 · · · xkD
D

∏D
i=1 G(bi+ki)
G(b.+g)

. (22)

Proof. The result follows directly from (2) and Theorem 20.

As before, we note that if g = 0, (22) reduces to a unicompositional Dirich-
let distribution. Using (22) we next determine the moments of the multicom-
ponent conditional distribution.

Theorem 20. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then

E(Y n
j |X = x) = B

∑
k1,...,kD≥0

k1+···+kD=g

(
g

k

)
xk1

1 · · · xkD
D

∏D
i=1 G(bi + ki)
G(b. + g)

n−1∏
l=0

bj + kj + l

b. + g+ l

(23)

for j = 1, . . . ,D and n = 1, 2, . . .; here

1
B
=

∑
k1,...,kD≥0

k1+···+kD=g

(
g

k

)
xk1

1 · · · xkD
D

∏D
i=1 G(bi + ki)
G(b. + g)

.

Proof. The proof is similar to the proof of Theorem 18.

5 Discussion
There are not many distributions defined on the sample space consisting of
the Cartesian product of two Simplices. In this paper we have proposed a
bicompositional generalisation of the unicompositional Dirichlet distribution.
The proposed bicompositional Dirichlet distribution allows for modelling of
covariation between compositions without leaving S D × S D. We have de-
termined in the bicomponent case for what parameter values the distribution
exists. We have also derived the marginal and conditional distributions and
their moments. For the bicomponent case we have also derived the cumulative
distribution function and the product moment.
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The proposed distribution is meant to be a first suggestion for modelling
bicompositional data and it is developed primarily to possess properties that will
exploited in future work. Among these properties, are apart from simplicity, the
ability to model dependence and independence between compositions and also
the fact that the distributions constitute an exponential family of distributions.
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