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Abstract—Braided convolutional codes (BCCs) are a class of

spatially coupled turbo-like codes with a structure that is similar

to product codes or generalized LDPC codes. We derive explicit

input/output transfer functions of the component convolutional

decoders for the binary erasure channel (BEC). These are then

used to formulate exact density evolution equations for blockwise

BCCs under belief propagation (BP) decoding with optimal

component APP decoders. Thresholds are computed for the

coupled and uncoupled case, which is equivalent to tailbiting. Due

to the relatively high rate of the component codes a significant

threshold improvement by spatial coupling can be observed.

I. INTRODUCTION

Braided block codes (BBCs) [1] are a class of generalized
low-density parity-check (LDPC) convolutional codes that can
be viewed as a spatially coupled version of Elias’ product
codes [2]. Similar to LDPC codes, sparsity can be introduced
into their structure, without changing the component codes, in
order to construct codes of arbitrary length or memory. BBCs
with BCH component codes were recently considered for high-
speed optical communications in [3], where product-like codes
are commonly applied [4]. Like the closely related staircase
codes [5], they show an excellent performance together with
low-complexity iterative hard decision decoding.

In this paper we consider a counterpart of BBCs called
braided convolutional codes (BCCs) [6]. Again the encod-
ing can be described by a two-dimensional sliding array
in which each symbol is protected by a horizontal and a
vertical component code. But now the component codes are
convolutional codes, resulting in a class of spatially coupled
turbo-like codes with a structure similar to generalized LDPC
codes. Unlike parallel or serially concatenated convolutional
codes all information and parity symbols are protected by both
component codes in a symmetric fashion.

For a random ensemble of BCCs with Markov permutors
it was shown in [6] that the minimum distance of typical
codes grows linearly with their constraint length, i.e., BCCs
are asymptotically good. Although a formal proof is still open,
it is expected that this is also the case for the slightly different
blockwise BCC construction that we consider here. Indeed, the
simulation results for blockwise BCCs in [6, Fig. 12] indicate
superior distance properties compared to parallel concatenated
codes since no error floor is visible for comparable permutor
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sizes. At the same time, unlike serial concatenated codes,
the BCCs can compete with the parallel concatenation in
the waterfall region. Interestingly, the simulated codes in [6,
Fig. 12] performed significantly better than the tailbiting case
in [6, Fig. 13]. For the latter case the AWGN channel threshold
was estimated by Monte Carlo techniques. It was conjectured
that this performance improvement can be prescribed to a
similar effect as the threshold saturation phenomenon known
for coupled LDPC codes [7].

The aim of this paper is to confirm this conjecture by
performing a threshold analysis of blockwise BCCs. After
introducing BCCs and their decoding in Section II and Sec-
tion III, we derive explicit input/output transfer functions that
characterize the a posteriori probability (APP) decoders of
their component codes in Section IV. Considering the binary
erasure channel (BEC), these transfer functions can be com-
puted analytically by means of a Markov chain analysis of the
decoder metrics, as presented in [8] for rate R = 1/2 encoders.
We apply the technique from [8] to rate R = 2/3 encoders
with different input and output probabilities for each symbol
type, resulting in a three-dimensional transfer function for each
of the output symbols. These transfer functions are then used
in Section V to formulate exact density evolution recursions
for the blockwise BCCs and compute belief propagation
(BP) thresholds for the coupled and tailbiting (or uncoupled)
case. Due to the higher rate of the component codes the
tailbiting/uncoupled threshold is worse than the thresholds of
typical parallel concatenated codes. However, as expected, the
coupled ensemble has a significantly better threshold.

II. BRAIDED CONVOLUTIONAL CODES

Similar to turbo codes, BCCs have convolutional codes as
component codes but the most important difference between
turbo codes and braided codes is that, in BCCs, the parity
symbols of one component encoder are used as future inputs
of the other component encoder. Throughout this paper we
limit ourselves to the example of rate R = 1/3 blockwise
BCCs as illustrated in Fig.1. They consist of two systematic
convolutional component encoders of rate R = 2/3. At time
t, a block of N information symbols ut and a block of N
parity symbols v(2)

t�1 (there is a delay DN of one block) enter
Encoder A directly and through the block permutor P (2),
respectively. Encoder B has permuted information symbols
through block permutor P (0) and permuted parity symbols
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v(1)
t�1 from Encoder A through block permutor P (1) and delay

block, as inputs. The output of the encoder at time t is
vt = (v(0)

t ,v(1)
t ,v(2)

t ), where v(0)
t = ut. It follows from the

encoding procedure that BCCs are a class of spatially coupled
codes because the encoded blocks vt depend on blocks from
previous time instants.

An uncoupled braided code can be defined by omitting the
delay blocks. It is also possible to use block length N = 1
and not to use the permutors. In this case the codes are called
tightly braided convolutional codes (TBCCs).

BCCs are closely related to classic product codes, in which
the data is written in an infinite two-dimentional array and
the rows and columns are encoded by separate component
codes. Moreover, the horizontal and vertical encoders are
linked for BCCs through parity feedback. The array of a TBCC
is illustrated in Fig. 2. It consists of three diagonal ribbons
and the information symbols are placed in the center ribbon.
The parity symbols of the horizontal and vertical encoder are
stored in the upper and lower ribbons, respectively. At time
t, the output of the horizontal encoder, which is shown by
v(1)

t , depends on the current information symbol ut, its left
neighbor v(2)

t�1 and the encoder state. v(1)
t will be placed as the

right neighbor of ut in the array. Shaded squares of the array
contain the previous inputs and outputs, which are assumed to
be known. The operation of the vertical encoder is analogous
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Fig. 2. Array representation of TBC codes
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Fig. 3. Factor graph of a blockwise BCC at time t.

to the horizontal one. Finally, at time t, the coded symbols
vt = (ut, v

(1)
t , v(2)

t ) are sent over the channel.
Throughout this paper we consider transmission of a se-

quence of L coupled blocks v1,v2, . . . ,vL, and distinguish
between encoders with termination or tailbiting. In the first
case the encoder is terminated and the blocks at times t < 1
and t > L are equal to vt = 0. In the second case we have a
circular structure. Uncoupled BCCs can be defined by using
tailbiting with L = 1.

III. ITERATIVE DECODING

A factor graph representation of a blockwise BCC is shown
in Fig. 3. We consider BP decoding, i.e., an iterative message
passing decoder in which the trellises of the component
codes are decoded by the BCJR algorithm. In every iteration
each decoding block at time t, t = 1, . . . , L receives log-
likelihood ratios (LLRs) from the channel and the decoders
at the same time t and the neighboring blocks at time t � 1
and t + 1, resulting from previous iteration. Fig. 4 shows the
connection of the decoders at different time instants and how
they exchange LLRs between time slots for coupled BCCs.
Note that we omit the permutations in the block diagram in
order to simplify the illustration. LLRs coming from time
t < 1 and t > L are set to +1, since the corresponding
symbols are equal to zero by definition.

Based on the input values L(k)
in,t, k = 0, 1, 2, the BCJR de-

coders create new extrinsic output values L(k)
out,t that are passed

back to the other BCJR decoder in the same and neighboring
time instants. An illustration of the decoding block at time t
is given in Fig. 5. Here L(k)

ch,t denotes the channel LLRs of
the kth symbol block v(k)

t and L(k)
t,A!B defines the extrinsic

outputs L(k)
out,t of Decoder A, which contributes to the input

of Decoder B. L(k)
t,B!A is defined analogously. In the first

decoding iteration the values from the previous iteration are
initialized as erasures, which means that the respective LLRs
are defined as zero.

In the BCC decoding block of Fig. 5, green lines show the
LLRs that are exchanged with the past, and LLRs exchanged
with the future are illustrated in brown lines. Some LLRs
are produced at the current time instant and only used at the
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Fig. 4. Block diagram of the iterative message passing decoder of a blockwise BCC.
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current time, namely those which are related to the first inputs
of the component decoders. Blue lines show this kind of LLRs.

As the considered channel is the BEC, the LLRs from the
channel and from the outputs of the decoders can only be one
of the values +1, 0 and �1 for 0, erasure and 1 and the
only combinations that are possible to happen are as follows:

+1 + 1 = +1 0 + 1 = +1
�1 � 1 = �1 0 � 1 = �1

IV. PROBABILITY OF BIT ERASURE FOR COMPONENT
CONVOLUTIONAL CODES

In order to derive an analytical expression for the proba-
bility of erasure of BCCs, the probabilities of erasure of the
component codes are required. To catch this goal, we use the
method proposed in [8] and apply it to convolutional codes
with rate R = 2/3.

The extrinsic output erasure probabilities are functions of
the input erasure probabilities p0, p1 and p2,

pe,0 = f0(p0, p1, p2) (1)

pe,1 = f1(p0, p1, p2)

pe,2 = f2(p0, p1, p2)

For each component code, there is a BCJR decoder and its
lth input at trellis section n is denoted by L(l)

in,n.1

Moving over the trellis, forward and backward state metric
values are obtained from the following equations2:

↵n(�) = max⇤
�0(�n(�0, �) + ↵n�1(�

0)) (2)

�n�1(�
0) = max⇤

�(�n(�0, �) + �n(�)) (3)

where � and �0 denote the states at time n and n � 1,
respectively, and

�n(�0, �) =
3X

l=1

L(l)
in,n ·

✓
1

2
� v(l)

n

◆

Finally, the lth output (extrinsic information) can be calculated
as

L(l)
out,n = max⇤

(�0,�):v(l)
n =0

(↵n�1(�
0) + �n(�0, �) + �n(�))

� max⇤
(�0,�):v(l)

n =1
(↵n�1(�

0) + �n(�0, �) + �n(�))

We define the metric vectors µµµ↵,n and µµµ�,n, whose length is
equal to the number of the states. µµµ↵,n(i) is the forward metric
of ith state at time n and µµµ�,n has the backward metric of the
ith state as the ith element. Since for both µµµ↵,n and µµµ�,n

nonzero elements are always equal, we can normalize these
entires to 1.

Due to the linearity of the code, we can assume in the
analysis that the all-zero codeword has been transmitted. Let
M↵ = {���(1)

↵ ,���(2)
↵ , . . . ���(|M↵|)

↵ } and M� denote the set of
all possible µµµ↵,n and µµµ�,n, respectively. µµµ↵,n is one of the
elements of M↵.

Example 1: Consider the rate R = 2/3 convolutional code
with generator matrix

G(D) =

 
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

!
=

✓
1 0 1/7
0 1 5/7

◆
(4)

1We use l to denote the symbol index from the perspective of the component
decoder, whereas k denotes the index from the perspective of the overall code.
Likewise, t is the time index of the code sequence vt, while n denotes the
index within the trellis of a component decoder at a given time instant t.

2
max

⇤ denotes the Jacobian logarithm.



For this code, using observer canonical form, there are four
states and in this case, M↵ and M� are equal and have finite
number of elements.

M↵ = M� =

{(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}

The sequence . . . ,µµµ↵,n�1,µµµ↵,n,µµµ↵,n+1, . . . forms a
Markov chain with transition matrix M↵, in which M↵(j, k)
is the probability of coming from state ���(j)

↵ to sate ���(k)
↵ .

This probability depends on the input erasure probabilities
pl, l = 0, 1, 2. Using the following formula, we can obtain
the steady state distribution of the Markov chain,

⇡↵ = M↵⇡↵ . (5)

With the same method, M� and ⇡� are obtained.
For the encoder defined in (4) we get

M↵ =

2

66664

(1 � p)2(2p + 1) (1 � p)2 (1 � p)3 0 0
p2(1 � p) 0 p(1 � p)2 p3 � 2p + 1 (1 � p)2

p2(1 � p) p(1 � p) p(1 � p)2 0 0
p2(1 � p) p(1 � p) p(1 � p)2 0 0

p3 p2 p2(3 � 2p) p2(2 � p) p(2 � p)

3

77775

For simpler presentation we have asssumed that p0, p1 and
p2 are equal to p, however in general the elements of this
matrix are calculated as a function of these three variables.

Define the matrices T(l)

T (l)
i,j = P

⇣
L(l)

out,n = 0|µµµ↵,n = ���(i)
↵ ,µµµ�,n+1 = ���(j)

�

⌘

The probability of erasure is equal to

p(l)
e = P

⇣
L(l)

out,n = 0
⌘

=

|M↵|X

i=1

|M� |X

j=1

P
⇣
L(l)

out,n = 0|µµµ↵,n = ���(i)
↵ ,µµµ�,n+1 = ���(j)

�

⌘

· P
⇣
µµµ↵,n = ���(i)

↵

⌘
· P
⇣
µµµ�,n+1 = ���(j)

�

⌘

= ⇡↵ · T(l) · ⇡� .

(6)

Using the above formula, the desired transfer functions of (1)
are acquired.

V. ANALYSIS OF ITERATIVE DECODING

A. Density Evolution for BCCs

By means of the erasure probability of the component
decoders, we are able to calculate the evolution of the erasure
probability during the decoding procedure.3 As the decoder
is the same in all iterations we can use the transfer functions
obtained in the previous section recursively to obtain the exact
decoding probability of erasure after a certain number of
iterations.

3An assumption in density evolution is that the messages exchanged by the
decoders are independent. For turbo codes it has been shown in [9] that this
can be achieved by considering a windowed BCJR decoder. A formal proof
for BCCs is still an open problem, but we expect that the technique in [9]
can be generalized to the ensembles considered here.

For coupled BCCs, the decoding probability of erasure for
symbol l = 0, 1, 2 of decoder A at time t after i iterations can
be obtained as

p(i,t)
DA,0 =fDA,0

⇣
q(i�1)
DB ,0 , q(i�1)

DB ,1 , q(i�1)
DB ,2

⌘
(7)

p(i,t)
DA,1 =fDA,1

⇣
q(i�1)
DB ,0 , q(i�1)

DB ,1 , q(i�1)
DB ,2

⌘
(8)

p(i,t)
DA,2 =fDA,2

⇣
q(i�1)
DB ,0 , q(i�1)

DB ,1 , q(i�1)
DB ,2

⌘
, (9)

where

q(i�1)
DB ,0 =✏ · p(i�1,t)

DB ,0 (10)

q(i�1)
DB ,1 =✏ · p(i�1,t�1)

DB ,2 (11)

q(i�1)
DB ,2 =✏ · p(i�1,t+1)

DB ,1 . (12)

Here fDA,l is the transfer function for the lth symbol of the
component decoder DA and ✏ denotes the erasure probability
of the channel. Because of the symmetric design, the update
equations for decoder DB are identical to those of decoder
DA after interchanging DA and DB in equations (7)–(12).

The initial LLRs from before the first iteration are assumed
to be set to zero, i.e., p(i=0,t)

DA,l = p(i=0,t)
DB ,l = 1 for l = 0, 1, 2.

However, for coupling length L, all messages which come
from time t < 1 or t > L are assumed to be known, i.e., all
probabilities with time index t < 1 or t > L are equal to zero.
The decoding probability of erasure at time t for blockwise
BCCs after i iterations is:

pe,t = ✏ · p(i,t)
DA,0 · p(i,t)

DB ,0

As a special case, an uncoupled BCC can be achieved
by tailbiting and the assumption of L = 1. The transfer
function for the uncoupled case can be achieved from the
above mentioned equations for coupled BCCs by omitting the
time index t.

B. Results and Discussion

We want to evaluate the largest probability of erasure of the
channel ✏ for which the probability of erasure of BP decoding
pe,t converges to zero for all t. To obtain such a threshold,
pe,t is evaluated as a function of the number of iterations
for different values of ✏ (density evolution). We consider two
examples of blockwise BCC ensembles of rate R = 1/3 with
identical component encoders. The first case corresponds to
component encoders with G(D) as defined in (4), i.e., with
generators (1/7, 5/7) in octal form. In the second case we
consider the generators (1/5, 7/5), i.e., the feedback polynomial
is exchanged. The thresholds ✏BP for the uncoupled case
(tailbiting with L = 1) and ✏SC for the coupled (terminated)
case are shown in Table I4. It can be observed that spatial
coupling leads to a significantly better BP decoding threshold.
The value ✏W

SC denotes the threshold that can be achieved with
a sliding window decoder that starts at time instant t = 1. For
the first encoder we see that ✏W

SC is worse than ✏SC, which
is due to the fact that the decoder converges better from

4It should be noted that the threshold for tailbiting, due to the circular
structure, is equal to the threshold for the uncoupled case for any value of L.



TABLE I
THRESHOLDS OF BLOCKWISE BCCS.

G(D) ✏BP ✏MAP ✏SC ✏W
SC

(1/7, 5/7) 0.5541 0.6654 0.6609 0.6554
(1/5, 7/5) 0.5541 0.6654 0.6609 0.6609

the end of the coupled sequence. This suboptimality of the
window decoding threshold can be avoided by exchanging the
generator polynomials.

Table I shows also an upper bound ✏MAP on the threshold of
an optimal MAP decoder of the uncoupled codes. This upper
bound can be obtained according to the area theorem [10] as
solution to the following equation:

Z 1

✏MAP

p̄extr(p)dp = R . (13)

Here R is the rate of the BCC and

p̄extr(p) =
1

3

⇣
p(1)

DA,0 · p(1)
DB ,0 + p(1)

DA,2 · p(1)
DB ,1 + p(1)

DA,1 · p(1)
DB ,2

⌘

denotes the extrinsic probability of erasure of uncoupled
BCCs, which is a function of the channel parameter p. To solve
this equation we compute the area under the curve p̄extr(p) for
a sufficiently large number of decoding iterations.

We see that the BP threshold of the coupled codes is close
to ✏MAP. However, some gap is still visible for the considered
ensemble, which is equivalent to the one introduced in [6]. As
shown in [11], this gap to the MAP threshold vanishes if the
original ensemble is generalized to larger coupling memories
mBCC > 1.

Another interesting observation is that for BCCs the cou-
pling gain, i.e., the gap between ✏SC and ✏BP appears to be
significantly larger than for conventional turbo codes (i.e., par-
allel concatenated convolutional codes). Although thresholds
for spatially coupled turbo codes have not yet been investigated
in the literature, this follows from the gap between their
uncoupled BP threshold and MAP threshold, which have been
determined in [10]. The large threshold improvement for the
coupled case can be justified by looking at the transfer function
of the component codes, as illustrated in Fig. 6.
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Fig. 6. Probability of erasure of the component convolutional codes.

On one hand, since a rate R = 2/3 encoder performs worse
than a R = 1/2 encoder it is natural that the BP threshold of
an uncoupled turbo code is better than the BP threshold of
an uncoupled BCC code. However, assuming that the second
input of the R = 2/3 encoder is known (i.e., p2 = 0) we
effectively obtain an equivalent encoder of R = 1/2 whose
performance is considerably improved (see black curve in
Fig. 6). This effect appears for the BCC ensemble at time
t = 1 and t = L, and it propagates further to the other time
instants during the iterative decoding procedure, resulting in a
threshold improvement.

VI. CONCLUSIONS
In this paper, we derived exact density evolution equa-

tions for blockwise BCCs under BP decoding over the BEC.
Considering component encoders of memory m = 2 we
computed BP thresholds for the coupled (terminated) and
uncoupled (tailbiting) case and compared them with an upper
bound on the MAP threshold. Our threshold analysis confirms
the conjecture made in [6] that terminated BCCs can have
much better thresholds than their tailbiting counterparts. The
threshold of the considered original BCC ensemble is already
close to the MAP threshold but for a vanishing gap some
generalization to larger coupling memories is required. A
major advantage of the BCC construction compared to other
turbo-like codes are the superior minimum distance properties
in combination with the capacity approaching thresholds.
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