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ON THE MEASUREMENT OF BIANISOTROPIC
MATERIAL PARAMETERS IN METALLIC WAVEGUIDES

Daniel Sjöberg

Dept. Electroscience, Electromagnetic Theory, Lund Institute of Technology, Lund University
Box 118, S-211 00 Lund, Sweden

Abstract: We present a method for evaluating measurements of bianisotropic materials in awaveguide. By
solving an eigenvalue problem for a matrix formed from measuredS-parameters, propagation constants in
the material can be determined from the eigenvalues. The eigenvectors give additional information.

1 INTRODUCTION

In order to obtain a well controlled environment for making material measurements, it is common
to do the measurements in a metallic cavity or waveguide. Thegeometrical constraints of the
waveguide walls impose dispersive characteristics on the propagation,i.e., the wavelength of the
propagating wave depends on frequency in a nonlinear manner. In order to correctly interpret
the measurements, it is necessary to provide a suitable characterization of the waves inside the
waveguide. For isotropic media, this is well known and the modes can be characterized from an
eigenvalue problem depending only on the geometry of the waveguide.

For bianisotropic materials, no such eigenvalue problem can be found. However, modes can still
be defined from an eigenvalue problem involving the materialparameters as well as the frequency
ω as follows [1]
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ẑ × I 0

)(

En

Hn

)

=

[(

0 ∇xy × I

−∇xy × I 0

)

+ iω

(

ǫ ξ

ζ µ

)] (

En

Hn

)

(1)

and the electromagnetic field can be expanded in modes as
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As for isotropic materials, the wave propagation constantsγn depend on the frequencyω, but there
are very few cases where an explicit dispersion relation canbe found.

2 THE INVERSE SCATTERING PROBLEM

A typical geometry is depicted in the left part of Figure 1. The material under test (MUT) is placed
in a narrow part of the waveguide, and is surrounded by air-filled waveguide parts. The MUT
section is narrow enough to ensure that the number of propagating modes are the same inside and
outside the MUT. The construction is then connected to a network analyzer, which can measure the
S-parameters as a function of frequency. For a single-mode waveguide geometry, this corresponds
to a two-port network, but our analysis is valid for several propagating modes,i.e., an N -port
network.

To study the setup, it is convenient to work with the transmission matrixT , which maps all modes
on one end of the network to all modes on the other end, whereasthe scattering matrixS maps
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Figure 1: On the left is the X-band waveguide geometry and mesh. The narrow section is filled with a bian-
isotropic material. On the right is the result of our algorithm for a nonmagneticdielectric, with principal
values ofǫ as ǫx = 2 + iσ/(ωǫ0), ǫy = 3 + iσ/(ωǫ0), and ǫz = 4 + iσ/(ωǫ0), whereσ = 0.1 S/m in
all cases. The simulated frequency band is 7–15 GHz. Note that the reconstructedσ is plotted, which is a
rescaling of the imaginary part of the permittivity.

incident modes on both sides to scattered modes on both sides. In the simplest case, the two-port
network, theT -matrix is given by
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The good point about using this matrix instead of theS-parameters directly, is that we can cascade
T matrices. LetT1 model the left vacuum waveguide up to the MUT, andT2 the corresponding
right waveguide following the MUT. The total transmission matrix is then

Ttot(d) = T1TM(d)T2 (4)

whereTM(d) is the transmission matrix for the MUT. This matrix has eigenvalues corresponding
to the propagation factorseγnd, but we can only measureTtot, andT1 andT2 are initially unknown.
However, we can combine measurements for two different sample lengthsd1 andd2 to obtain

Ttot(d1)[Ttot(d2)]
−1 = T1TM(d1)T2T

−1
2 TM(d2)

−1T−1
1 = T1 TM(d1 − d2) T−1

1 (5)

This matrix is just a similarity transformation ofTM(d1 − d2), which has eigenvalueseγn(d1−d2).
Thus, we can determine the propagation constantsγn by determining the eigenvalues of the matrix
Ttot(d1)[Ttot(d2)]

−1, which can be determined from measurements without using information of
T1 or T2, i.e., without calibrating the network analyzer.

In order to infer knowledge of the material, it is necessary to introduce a relation such asγ2
n =

(π/a)2
− ǫµω2/c2, which is valid for isotropic media wherea is the width of the waveguide. It

is also valid for nonmagnetic anisotropic dielectrics, where the optical axes are aligned with a
rectangular waveguide [2]; in this case,ǫ is replaced with the appropriate principal valueǫx, ǫy, or
ǫz, respectively. This is the test case used to produce the right side of Figure 1.

There is also some information in the eigenvectors ofTtot(d1)[Ttot(d2)]
−1. Then:th eigenvector

has componentsumn with m as free index. It can be shown that these eigenvectors can be combined
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where index 0 indicates quantities related to the waveguides surrounding the MUT, and the primed
vectors are slightly tilted versions of the modes inside theMUT:
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In this equation,N is the number of propagating modes, andQpn represent the influence of evanes-
cent modes on the interface problem. Thus, sinceγn andumn are measurable quantities, equation
(6) is a means of determining information on the material parametersǫ, ξ, ζ, andµ. Additional
research is needed to infer information on the vectorsE′

n. This may be provided by additional
measurements.

3 CONCLUSIONS

We have presented a partial solution to the problem of measuring bianisotropic material parameters
in a waveguide setting, usingS-parameters which can be obtained from a network analyzer. Some
work remain before the algorithm is complete for arbitrary materials, but at least when explicit
expressions for the dispersion relationsγn(ω) are known, such as for biisotropic (chiral) media
[3], some information on the material can be extracted. Although we have not discussed it in
depth, the method can treat multimode propagation in the waveguides, as long as there is a method
of actually measuring the modes.

In this paper, we have not presented details regarding, for instance, propagation directions and
evanescent waves. Especially for nonreciprocal media, these are important points, but we have
kept the presentation simple in order not to obscure the mainideas of the algorithm.
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