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ON THE MEASUREMENT OF BIANISOTROPIC
MATERIAL PARAMETERSIN METALLIC WAVEGUIDES

Daniel Sjoberg

Dept. Electroscience, Electromagnetic Theory, Lund tatgiof Technology, Lund University
Box 118, S-211 00 Lund, Sweden

Abstract: We present a method for evaluating measurements of bianisotropic materialsireguide. By
solving an eigenvalue problem for a matrix formed from meas\$grarameters, propagation constants in
the material can be determined from the eigenvalues. The eigenvectemadglitional information.

1 INTRODUCTION

In order to obtain a well controlled environment for makingterial measurements, it is common
to do the measurements in a metallic cavity or waveguide. Jdwmetrical constraints of the
waveguide walls impose dispersive characteristics on thpgmationj.e., the wavelength of the
propagating wave depends on frequency in a nonlinear marineorder to correctly interpret
the measurements, it is necessary to provide a suitablecearzation of the waves inside the
waveguide. For isotropic media, this is well known and thedlesocan be characterized from an
eigenvalue problem depending only on the geometry of theeguaide.

For bianisotropic materials, no such eigenvalue problembmmfound. However, modes can still
be defined from an eigenvalue problem involving the mat@@ahmeters as well as the frequency
w as follows [1]
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and the electromagnetic field can be expanded in modes as
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As for isotropic materials, the wave propagation constaptdepend on the frequency but there
are very few cases where an explicit dispersion relationbeafound.

2 THEINVERSE SCATTERING PROBLEM

A typical geometry is depicted in the left part of Figure 1.eTthaterial under test (MUT) is placed
in a narrow part of the waveguide, and is surrounded by dadfilvaveguide parts. The MUT
section is narrow enough to ensure that the number of prdpggaodes are the same inside and
outside the MUT. The construction is then connected to aomtanalyzer, which can measure the
S-parameters as a function of frequency. For a single-modegade geometry, this corresponds
to a two-port network, but our analysis is valid for severedgagating modeg,e., an N-port
network.

To study the setup, it is convenient to work with the transnois matrix7’, which maps all modes
on one end of the network to all modes on the other end, wheneascattering matrixé maps
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Figure 1: On the left is the X-band waveguide geometry and mesh. Thansection is filled with a bian-
isotropic material. On the right is the result of our algorithm for a nonmagneigtectric, with principal
values ofe ase, = 2 +i0/(wep), €, = 3 +io/(wep), ande, = 4 + io/(wep), whereo = 0.1S/m in
all cases. The simulated frequency band is 7-15 GHz. Note that thestaacteds is plotted, which is a
rescaling of the imaginary part of the permittivity.

incident modes on both sides to scattered modes on both $id#®e simplest case, the two-port
network, thel'-matrix is given by

(Tll T12) _ ( 1/S21 _S22/S21 ) (3)
T21 T22 511/521 (812521 - 311522>/521
The good point about using this matrix instead of fhparameters directly, is that we can cascade

T matrices. Letl; model the left vacuum waveguide up to the MUT, aldthe corresponding
right waveguide following the MUT. The total transmissiomtmix is then

Tiot(d) = Th T (d) T (4)

whereT),(d) is the transmission matrix for the MUT. This matrix has eipguoes corresponding
to the propagation factors~?, but we can only measuf®&,;, and7; and7; are initially unknown.
However, we can combine measurements for two different tahapgthsd,; andd, to obtain

Ttot(dl)[ﬂot(d2>]il = TlTM(dl)TZTgilTM(dZ)ilel =T, Ty (dy — do) Tfl (5)

This matrix is just a similarity transformation @f,;(d; — d,), which has eigenvaluas~(@—),
Thus, we can determine the propagation constgntsy determining the eigenvalues of the matrix

Tiot(d1)[Tiot(d2)] ™1, which can be determined from measurements without usifogniration of
T, or Ty, i.e., without calibrating the network analyzer.

In order to infer knowledge of the material, it is necessaryntroduce a relation such ag =
(m/a)?* — euw?/c*, which is valid for isotropic media where is the width of the waveguide. It
is also valid for nonmagnetic anisotropic dielectrics, vehthe optical axes are aligned with a
rectangular waveguide [2]; in this casés replaced with the appropriate principal vakyge,, or
€., respectively. This is the test case used to produce thesidé of Figure 1.

There is also some information in the eigenvectordgf(d;)[Ti.:(d2)]~'. Then:th eigenvector
has components,,,, with m as free index. It can be shown that these eigenvectors camtigiced



with the propagation constants to form
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where index 0 indicates quantities related to the wavegwsderounding the MUT, and the primed
vectors are slightly tilted versions of the modes insideNRéT:
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In this equation/V is the number of propagating modes, @pg, represent the influence of evanes-
cent modes on the interface problem. Thus, smcandu,,, are measurable quantities, equation
(6) is a means of determining information on the materiabpeeters, &, ¢, andu. Additional
research is needed to infer information on the vec#®fs This may be provided by additional
measurements.

3 CONCLUSIONS

We have presented a partial solution to the problem of méeaghranisotropic material parameters
in a waveguide setting, usingrparameters which can be obtained from a network analyzeneS
work remain before the algorithm is complete for arbitrargtaerials, but at least when explicit
expressions for the dispersion relatiopgw) are known, such as for biisotropic (chiral) media
[3], some information on the material can be extracted. @&ltgh we have not discussed it in
depth, the method can treat multimode propagation in theg@des, as long as there is a method
of actually measuring the modes.

In this paper, we have not presented details regarding,nf&tance, propagation directions and
evanescent waves. Especially for nonreciprocal mediaetlage important points, but we have
kept the presentation simple in order not to obscure the idags of the algorithm.

REFERENCES

[1] Barybin, A. A., “Modal expansions and orthogonal compknts in the theory of complex
media waveguide excitation by external sources for isattognisotropic, and bianisotropic
media,”Progress in Electromagnetics Researetl. 19, 1998, pp. 241-300.

[2] Damaskos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and. FE. Uslenghi, “The inverse
problem for biaxial materialsJEEE Trans. Microwave Theory Tec¢kiol. 32, no. 4, Apr. 1984,
pp. 400-405.

[3] Reinert, J., G. Busse, and A. F. Jacob, “Waveguide chariaation of chiral material: Theory,”
IEEE Trans. Microwave Theory Techol. 47, no. 3, 1999, pp. 290-296.



