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9 On the Emission Spectra of the
Chemical ElementsT

J. R. RYDBERG

15. The Series of Differences of Wave Numbers

As the numbers n @ differ from the oscillation numbers only by
a constant factor (see above), we can use them instead of these
without affecting the form of the functions. It then appears
jmmediately, when these numbers have been arranged in series in
the same way as the corresponding wavelengths, that a consider-
able improvement has been achieved. Since the beginning of the
work, after having tried arranging the lines in series, I always
calculated the differences between successive lines, in order to
see whether there was any regular variation with increasing
ordinal number of the lines. Here I calculated in the same way,
but whereas in the former case no relation was detectable between
these differences in the various series, either for the same element
or for analogous elements, it was here immediately apparent that
there is a regularity which can serve as a guide in finding cor-
responding lines of different elements. To see this, it is sufficient
to examine Table I® (Chapter VI), which gives the wave-number
series of the alkali metals. We find, for example, that the differ-
ences between these numbers for the Li and Na series are in exact
agreement:

+ Sections 15 and 16 from Den Kongliga Svenska Vetenskaps Akademiens
Handlingar 23 (11), 1889. Translated by J. B. Sykes.
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Sharp series Diffuse series .

Li Na Li Na
Series 1 Series 2 Series 1 Series 2
3290-2 31656 3159-0 53383 53867 5386-8
1694-5 1647-0 1655-6 24767 2484-9 24770
1349-5 13579 13639

The analogy is still more striking for the group of elements Mg,
Zn, Cd, Hg, where the values of the first two differences are as
follows:

First sharp series
Mg Zn Cd Hg
106795 117640 11090-7 11616-1
40172 43125 41153 42563

First diffuse series

Mg Zn Cd Hg
6241-8 5812-3 5871-1 5800-8
2775-3 26364 26327 2631-8

Thus the difference of the wave numbers of corresponding lines
are almost the same for elements of the same group. In order to
examine these relations more closely I have calculated the relevant
differences, which I denote by An, for all the series known to me.
It appears that there are numbers of all magnitudes but that the
values of An in one series are all either larger or smaller than those
of the corresponding terms of another series. This will be most
clearly seen by means of the following table, which gives the
values of An for successive lines in most of the series which are
known over a fairly wide interval. The series are placed in order
of decreasing Az in the second term, since the first term is not
known for all the series. The notation for the series is described
in Chapter V.

An examination of the table shows that the terms in all the
series decrease quite rapidly with increasing ordinal number,
while the values of Az in a given series as well as in different series
become closer. But on comparing the series term by term we
find, as already stated, that the difference is always in the same
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VALUES OF An

: Ordinal number of difference
Series 1 2 3 4 5 6 7 8

Li[P12] 16026-8 55424 25566 13644 824-6 5338 369-5 2589
Na[Dq] — 53867 24849 13579 8139 5235 — @ —

Ca[D1] — 49967 23239 12463 7234 — — @ —
NafPq] 133149 47514 22802 1233-§ — — @— @ —
TI[S,] 122783 43951 2089-6 1213-0 7324 465-6 350-1 2502
K[Py] 116859 4303-8 2050-3 1158-0 723-0 451-8 322-5 2455
MgfS:] 106795 40172 19575 11165 6856 — —  —
CalS;] 89437 3507-8 17593 10150 6206 — — —
Na[S;] 74848 31656 16470 9626 600-1 4076 -— —

KiD1] — 28427 15075 8812 550-5 385-8 2569 —
MglD;4] 6241-8 27753 14767 8684 5614 — — @ —
Zn[D1] 5812-3 26364 14168 8627 — @— @— —

direction. If, therefore, we start from the value 16026-8 and follow
the first column downwards, then the remaining columns down
to 2455, we can see that all the values of An form a single series of
steadily decreasing numbers. There are, however, some excep-
tions, mmBoE 723-4 in the Ca[D,] series, which is less than the
following number 732-4, and the numbers 561-4 (apparently too
large) and 256-9 (apparently too small). These anomalies, each
occurring in the last term of a series, which is always somewhat
uncertain, are well within the limit of error, and probably arise
from the inaccuracy of the measurements. Instead of 2569, for
example, the parallel series K[D,] gives 266-9; the two mwo.ﬁa.cn
equal, and the latter value agrees perfectly with the Az in m&o_EH.-m
series. To give an idea of the effect of errors of observation, I will
quote here the series Zn[D;] as given in the table according to the
observations of Hartley and Adeney, and as given by Liveing and

Dewar:

H.A. 5812-3 26364 1416-8 862-7
L.D. 5792-1 2621-9 1409-4 830:6
Diff. 202 145 74 3211

The difference is thus greatest in the last term, no doubt because
the weakest lines are measured less accurately than the others.
With these examples in front of us, we need not .cm deterred by
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the slight anomalies which occur, and can consider that the
numbers in the table confirm the following law:

If the series of An derived from known series of wave numbers are
arranged in order of magnitude of any term, all the other terms in
the series will be in the same order. This is true even when any
series is shifted relative to the others by increasing or decreasing
the ordinal number of each term of the series by a fixed whole
number.

This law may also be stated as follows:

All differences between corresponding terms of any two series of
An have the same sign.

If these series of Az are imagined to be plotted graphically with
the ordinal numbers m of the terms as abscissae and the values of
An as ordinates, and the resulting points to be joined by con-
tinuous curves, the above property simply means that these curves
will not intersect at a finite distance; for if they did, the terms of
one series would be greater on one side of the point of intersection,
and on the other side they would be smaller, than the correspond-
ing terms of the other series, which contradicts the above-
mentioned law. A displacement of the series as described above
corresponds geometrically to a translation of the curves parallel
to the axis of abscissae by an amount equal to a whole number of
units of m. After such a translation there are again no points of
intersection between different curves. But if this is true for all the
curves, it may be regarded as very probable that they also do not
intersect during the translation, and that when one curve passes
another they coincide exactly. For, if we consider Fig. 2.1, we see
the series Zn[D,] in two positions (¢ and b) differing in the
values of m, which in the latter case are one more than in the
former. If we suppose that the curve reaches the second position
by a translation parallel to the m axis, the table shows it has
passed through all the other curves, of which three are shown in
the diagram. A glance at these curves will surely show the plausi-
bility of the assumption that all the curves can be made to coincide
by translations parallel to the m axis, since, so far as can be
judged from the diagram, the difference of abscissae for any two
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Series of wave

| number differences
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10000

An Ca[s|]

Zn[D(}

5000

FiG. 2.1

curves is constant for all values of the ordinate. If, contrary to
expectation, this assumption is not strictly true, it will at least give
a very satisfactory approximation.

Let us therefore suppose that the curves are all of the same
shape and differ only in position. If the equation of any one
curve is

An =F(m)
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the other curves will have equations of the form
An = F(m+p)

where p is a constant which takes different values for different
series, and which shows the distance through which the curve in
question must be moved in order to coincide with the first. Thus
the general expression for a series of differences becomes

An = F(m+ ) (5)

where An is the wave-number difference of two consecutive terms
in a series of lines, 7 the ordinal number of the difference and x a
characteristic constant of the series. Hence it follows that the form
of the function F and of all the constants except | is the same for
every series. It must be remembered, however, that our con-
clusions are drawn from a consideration of the properties of series,
and are therefore subject to the same uncertainty as the measure-
ments of the lines forming these series.

16. The Series of Wave Numbers

We can now return without difficulty to the original series,
which consist of the wave numbers of spectral lines. The wave
numbers n always increase with the ordinal numbers of the lines,

and we have generally
Ny = Ny —AN

n_ being the wave number of the mth line of a series, or, replacing
An by its value from equation (5) and continuing the series,
oy = =§+w|~uﬁ§+.=v
Bty = =S+NIMA§+H+E‘V
sz = Nyr3—F(m+2+1)

We have already assumed in section 13, when considering the
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series of n, that the value of n continually approaches, at m =00,
a finite limit which we call 7o, and the form of the series of An and
of the corresponding curves compels us to suppose that the limit
of An or of F(im+ p) is zero at m = 0. Adding the respective sides
of the foregoing equations, we therefore have

o = o= 2. Flm-+1) ©

where the sum is always finite if 7, is.
Another series gives similarly

0
n, =np—y F(m+p)
m

where nj, p' are the constants corresponding to 7y, K in the
previous equation, and 7, the value of the mth term of the series.
The two sums in these equations have the same number of terms,
and we know from the previous discussion that any term in one
of the sums differs from the corresponding term in the other sum
only by the value of p. Thus one sum is changed into the other if
u is replaced by ', and so it follows that they are simply two
different values of the same function of p. Putting

Mzie — f(m-+p)

the equation for the wave numbers of a series of spectral lines can be
written

n=ny—f(m+p ™

where n is the wave number of any line, m its ordinal number, and ny
and p two characteristic constants of the series, the form of the
function and any other constants involved being the same in all the
series.

The form of the curves which represent the series of n shows that
they probably have two asymptotes, one parallel to the m axis
as already described (the line = ng), the other parallel to the
n axis. For n = ng we thus have m =00 of

fm+p =0  for m= o
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The asymptote parallel to the n axis must have the form
m+u+C=0
C being a constant which, from the preceding discussion, has the
same value for every series. Since the absolute magnitude of the

constant g is undefined, we can include the constant C in it, and
the equation of the asymptote parallel to the n axis will be

m+u=0
whence f(m+p)=co for m+u=0

The simplest function which meets these conditions is
f(m+p) = Col(m+p)

where C, should be a constant common to all the series. The
resulting equation for 7, namely

n = nyo—Col(m+p) it
is just equation (2) of section 13,
(n—no)(m+py) =Cy

where p; = p and C; = —Co. We have already considered this
formula, which does not fulfil the condition of always giving the
same value of the constant Cj ; this may be seen by comparing the
values of this constant in the series given as examples in section 13.
The considerable differences which exist between theory and
observation have shown that this formula is invalid.

Let us therefore consider the next simplest formula,

n= =o!Zo\A§+EN ®

where N, is a constant. I was just in the course of examining this
equation when I saw Herr Balmer’s calculation of the hydrogen
spectrum. I then examined the formula used by Balmer, namely

H = hm?/(m*—4)

where H is the wavelength, m the ordinal number of the line and A
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a constant. If we replace wavelengths by wave numbers, putting
H = 10%/n, h = 10%/n,,

we find n = ny(m>—4)/m*
or n = ny—4ny/m?*

This is clearly the same equation as (9) if N, = 4n,, u = 0, which
shows that Balmer’s formula is a particular case of equation (9).
Since Balmer’s formula is known to give an entirely satisfactory
description of the elementary spectrum of hydrogen, we have
reason to think, a priori, that our equation (9) will be more
suitable than the previous equation (8).

Notes

(@) n denotes the wave number, which is related to the oscillation number
or frequency v by the expression = v/c. In Part 1 we use the symbol ¥ for
wave number.

(b) Table1is not reproduced here. It consists of a list of the wave numbers
of the spectral lines of the elements. Modern data of this kind can be readily
found from tables of term values (Charlotte Moore, 4tomic Energy Levels,
Vols. 1, 2, 3, 4, National Bureau of Standards, U.S.A.). Many books on
atomic spectra (e.g. Kuhn, Bibliography to Part 1) give simplified tables of
term values for a number of elements.

(¢) Rydberg’s notation for series is no longer used. The modern equivalents
with subscripts omitted where Rydberg did not distinguish fine structure
components are:

Rydberg Modern Rydberg Modern  |Rydberg Modern
notation notation [potation notation  [notation notation

Li[Py,] Li:228;,,-n2P
Na[D;] Na:32P3/,-n2D
Ca[Dq] Ca:43P,-n3D
Na[P1]Na:3281/,-n2P3/,

TIS2] T1:62Py;5-n2S1;,
K[P;] K:428;/,-7n2P3),
Mg[S1] Mg: 33P,-3S,;
Ca[S1] Ca:43P,—#38;

Na[S;] Na: wNWu\NIwNNmH\N
K[D1] K:42P3;5-n2D
Mg[D;]Mg:33P,—n3D
Zn[D1] Zn:43P,-n3D

In Rydberg’s paper the number given to a member of a series is not the
principal quantum number, as in the modern notation for terms, but is
merely an identification number.

(d) Section 13 is not included in this extract, but this passage is self-

explanatory.




