
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Option Pricing by Mathematical Programming

Flåm, Sjur

2007

Link to publication

Citation for published version (APA):
Flåm, S. (2007). Option Pricing by Mathematical Programming. (Working Papers, Department of Economics,
Lund University; No. 10). Department of Economics, Lund University.
http://swopec.hhs.se/lunewp/abs/lunewp2007_010.htm

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/41f82a2e-e6ad-4f37-b418-dbb1197707a6
http://swopec.hhs.se/lunewp/abs/lunewp2007_010.htm


Option Pricing by Mathematical Programming

Sjur Didrik Flåm∗

June 4, 2007
Dedicated to Professor Hubertus Th. Jongen on his 60th birthday.

Abstract. Financial options typically incorporate times of exercise. Al-
ternatively, they embody set-up costs or indivisibilities. Such features lead to
planning problems with integer decision variables. Provided the sample space
be finite, it is shown here that integrality constraints can often be relaxed.
In fact, simple mathematical programming, aimed at arbitrage or replication,
may bound or identify option prices. When the asset market is incomplete, the
bounds stem from nonlinear pricing functionals.

Keywords: asset pricing, arbitrage, options, finite sample space, scenario tree,
equivalent martingale measures, bid-ask intervals, incomplete market, linear
programming, combinatorial optimization, totally unimodular matrices.
JEL: C61, G12; MSC: 90C05, 90C15, 90C27.

1. Introduction
Asset pricing is a chief concern in finance. That concern relates intimately to queries
about possible arbitrage. In fact, much of financial analysis or speculation aims at
finding money for free. When such can be found, and portfolios are unrestricted,
asset pricing is not a well posed task.
But otherwise, while market values remain finite, it’s often a challenge to estimate

them. That challenge is especially pressing in case of options. These might derive
from underlying papers - or, when stemming from other opportunities, they could
reside outside the marketable space. In the latter case, replicating them via portfolios
becomes impossible and evaluation non-unique.
Additional complexity comes with the fact that many options, notably of Amer-

ican sort, involve random exercise times [1], [19], [23], [25], [27]. The latter may be
construed as discrete decision variables. As is well known, presence of such variables
renders many a planning problem combinatorial hence ”intricate” [22], [30].
The difficulties of combinatorics notwithstanding, this paper recommends opti-

mization - alias mathematical programming - as a convenient vehicle. In finance its
advantages are since long well known and quite many [8], [24]. For one: pricing and
replication often obtain in a single shot. For others: one may rather easily incorporate
∗Economics Department, Bergen University, 5007 Norway; sjur.flaam@econ.uib.no. Thanks are

due Finansmarkedsfondet and the Arne Ryde Foundation for support - and a referee for very helpful
criticism and comments.

1



Option Pricing by Mathematical Programming 2

taxes, transaction costs, trade restrictions, portfolio constraints, and bid-ask spreads
[6], [19]. Also, prices may evolve in quite general manner, allowing path dependence.
It appears however, less known among financial analysts that discrete variables

often cause no inconvenience. Indeed, it happens frequently that integer choice,
when and where required, comes automatically - at no extra cost. This has recently
been brought out in finance by Pennanen and King (2004) who dealt with American
contingent claims. Following their lead this paper considers assets that incorporate
constrained exercise times. When the corresponding constraints are linear, with a
totally unimodular matrix, the integrality restrictions can safely be relaxed [12], [13],
[16], [26].
The material below addresses both readers of finance and optimization, empha-

sizing strong links between the two fields. On one hand, it deals with standard
financial problems of pricing, portfolio choice, replication, and hedging. On the other
hand, presuming a finite sample space, all those problems are stated as mathemat-
ical programs, often linear. The approach is computational, direct, and simple. It
differs somewhat from the customary one of finance by describing decision processes
and information flows in manners most familiar to stochastic programmers and game
theorists [3], [9], [10], [17], [21].
The scenario tree unifies various descriptions. It helps Sections 2-5 to draw parts of

finance and optimization technology somewhat closer to one another. Those sections
claim no originality but invite stochastic programmers to financial analysis - and
financial analysts to stochastic programming. Sections 6&7 offer some novelties and
arguments for option pricing by means of continuous optimization.

2. The Scenario Tree and the Assets
This section prepares the ground. It starts by briefly describing three different struc-
tures, each naturally leading to what is commonly called a scenario tree [9]. Prices of
primitive assets will thereafter be posted along that tree. As in [11], time is discrete.
That choice facilitates both analysis and computation.

An information structure: Considered here is an exhaustive, non-empty set S
of possible but mutually exclusive scenarios or states. Information as to which state
is relevant arrives gradually, step by step. At time t ∈ {0, ..., T} the investor can
ascertain to which part Pt(s) in a prescribed partition Pt of S the true s belongs.
Arrival of novel information means that any part Pt+1 ∈ Pt+1, t < T, is contained in
a unique ancestor A(Pt+1) = Pt ∈ Pt; see figure below.
Since no conclusive knowledge about s is given ex ante, one naturally posits P0 :=

{S}. Similarly, to avoid redundancy, let PT := {{s} : s ∈ S} . That is, for the sake of
having S small - in fact, minimal - reduce each terminal part PT ∈ PT to a singleton.
For computational reasons, I hesitate not in assuming S finite.
If some concerned party perceives the setting as risky, he predicts that s will hap-

pen with (objective or subjective) probability Pr(s). Then, to maintain S minimal,
he should have Pr(s) > 0 for all s ∈ S. If plagued instead by uncertainty, he might
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envisage a closed set of probability measures, each non-degenerate; see [14].

A stochastic process: It’s often natural to construe S as comprising all relevant
scenarios or trajectories s = (s0, ..., sT ) of a stochastic process, with s0 already speci-
fied. Component st is unveiled at time t. Then, s0 ∈ Pt(s)⇔ (s00, ..., s

0
t) = (s0, ..., st).

In this setting it’s convenient to let S be the sample space, still assumed finite. If
an agent distributes probability across S, then reasonably, Pr(s) > 0 for each s - as
before.

A decision framework: The said probability measure Pr can be dispensed with.
To see how, suppose a planner merely be concerned with various ”decision nodes.”
These constitute a non-empty finite set N on which is prescribed an antisymmet-
ric, transitive precedence order ≺. That order should never recombine ”non-aligned”
chains, meaning:

(n ≺ n0 & n̄ ≺ n0)⇒ (n ≺ n̄ or n̄ ¹ n).

Further, the past should always provide common connections:

∀n, n̄ ∈ N ∃n̂ ∈ N such that (n̂ ¹ n & n̂ ¹ n̄).

Under these assumptions each node n ∈ N , except one, has a unique immediate
ancestor A(n) ∈ N . The exceptional node, called the root, has none. If n is the
ancestor of c ∈ N , the latter is declared a child, and we write c ∈ C(n). Nodes without
children are called leafs. When a chain of immediate successors n0 ≺ n1 ≺ · · · ≺ nt
emanates from the root n0 to reach node nt, we say the latter is located at height t,
and write nt ∈ Nt.With no loss of generality let all leafs have the same height T > 0.
An investor need not entertain a probabilistic perspective. Instead, he might

merely hold beliefs about the likelihood or occurrence of various nodes. For the
minimality of N it imports though, that his subjective opinion, say in the form a
non-additive measure [5], assigns positive weight to each leaf.

The scenario tree: The three structures just outlined all fit a common form. Indeed,
identify parts Pt ∈ Pt with nodes nt ∈ Nt such that Pt = A(Pt+1) ⇔ nt = A(nt+1).
Thus emerges a tree with node set N = ∪Tt=0Nt that features a directed branch from
n to c iff c ∈ C(n).
Calling this construct a tree is justified by letting an oriented branch lead from

Pt ∈ Pt to Pt+1 ∈ Pt+1 iff Pt ⊇ Pt+1, t < T ; see figure of (a fallen over) tree below.
The pictorial representation thus obtained is a directed graph that springs from the
root n0 and stretches via intermediate nodes up to the leafs nT ∈ NT . As in nature,
the tree never recombines. Thus, from the root to each subsequent node leads exactly
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one directed path.

root n0 =

⎡⎣ s
s0

s00

⎤⎦ %

&

∙
s
s0

¸
[s00]

%
→
→

[s]
[s0]
[s00]

⎫⎬⎭ leafs

Legend: A tree with 3 stages/states/scenarios and 6 nodes.

The probability distribution Pr, if any, plays from here on no chief role. It serves
merely to identify the set S as support, comprising precisely those states that always
carry positive probability (likelihood or belief).
Any (non-degenerate) probability measure µ over S amounts to have the same over

NT . On deeper nodes n /∈ NT it recursively induces probability µ(n) := µ(C(n)) :=P
c∈C(n) µ(c). If µ(n) > 0 and n /∈ NT , there is a transition probability µ(c|n) :=

µ(c)/µ(n) from parent node n to child c ∈ C(n). To convey that µ and Pr are positive
on the same states we write µ ∼ Pr .

Traded assets: Central and fixed here is a non-empty finite set J of primitive
traded assets. At node n ∈ N a share of asset j ∈ J commands nominal price pjn
(cum dividend if any). No conditions are imposed on these. While merely defined at
the nodes, prices can be: driven by multiple factors, strongly affected by the preced-
ing path, and come rather jumpy in nature. The investor has no impact on prices,
and he watches their evolution along the tree.
A special paper, henceforth called a ”bond” (or numeraire), is singled out and

labeled b ∈ J. It has pbn > 0 at each node n. If pbc remains constant across c ∈ C(n),
paper b is declared predictable (or previsible) at n.1 In terms of the bond define dis-
count factors δn := pbn0/pbn.

2

Some remarks on filtrations and adapted variables: Most presentations of
finance are probabilistic in form or flavor.3 Specifically, let the field Ft comprise all
possible unions of parts Pt ∈ Pt. Progressive acquisition of knowledge reflects in the
string

{∅,S} := F0 ⊆ F1 ⊆ · · · ⊆ FT := 2S,
called a filtration. Accordingly, no state-dependent price, when realized at time t,
should unveil more information than already imbedded in Ft. In other words: the
entities pjt(s), j ∈ J, must all be Ft-measurable, meaning known or knowable at time
t. Under that proviso, the price process is declared adapted.
Clearly, a variable defined on S is Ft-measurable iff constant on each Pt ∈ Pt,

these parts being the atoms of Ft. Therefore, the one-one correspondence Pt ↔ nt,
1For any node n /∈ NT constancy of pbc across c ∈ C(n) points to b as locally riskless.
2One may interprete pbn as the face value of a zero-coupon bond that matures at node n. Thus

the spot rate (pbc − pbn)/pbn, c ∈ C(n), of a predictable bond is perfectly known at node n. The
mapping n 7→ δn = pb0/pbn is often called the term structure. It may well be random [29].

3See for instance the excellent text [11].
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described above, ensures that adapted prices pjt(s) = pjt(s0, ..., st) = pjn are defined
quite simply and merely in terms of nodes.
A stochastic process t 7→ θt, indexed by time, is adapted - or progressively mea-

surable - iff θt is defined on Nt. Then, instead of θt(s) we simply write θn, tacitly
understanding that node n ∈ Nt points to part Pt(s) ∈ Pt. Henceforth we use 0 as
shorthand for the root node n0.

3. Arbitrage
Denote by θjn ∈ R the number of shares an investor holds in paper j ∈ J upon
leaving node n. Suppose he buys (outgoing) portfolio θn := (θjn) ∈ RJ at n 6= 0 and
liquidates there the (incoming) portfolio θA(n) bought at the ancestor node. Absent
transaction costs, those operations bring him nominal, current gain

Gn(θ) := pn · θA(n) − pn · θn.

(The dot always denotes the standard inner product.) At node n = 0 let G0(θ) :=
−p0 · θ0. He might naturally ask: Can the market be milked for money? That simple
question motivates the following

Definition: The market allows arbitrage iff the system

Gn(θ) ≥ 0 for all n and pn · θn ≥ 0 for each leaf , (1)

admits a solution θ = (θn) with at least one strict inequality. Otherwise the market
is declared arbitrage-free.4 ¤

The fundamental theorem of asset pricing: The market is arbitrage-free iff
there exists a strictly positive probability measure µ on NT such that the transition
probabilities, induced by µ on N , satisfy the martingale condition

δnpn = Eµ [δcpc|n] =
X
c∈C(n)

δcpcµ(c |n) for all n /∈ NT . (2)

In particular, whenever the bond is predictable at some n /∈ NT , and δ(n) := δc/δn,
c ∈ C(n), denotes the local discount factor there, the equation in (2) amounts to

pn = δ(n)Eµ [pc|n] = δ(n)
X
c∈C(n)

pcµ(c |n).

Proof. Fix any probabilities πn > 0 across n ∈ NT , and use the induced probabilities
πn at nodes n /∈ NT . Consider the homogeneous linear program

max
θ

X
n

δnπnGn(θ) +
X
n∈NT

δnπnpn · θn s.t. (1). (3)

4Customary but weaker definitions of arbitrage require that θ be self-financing in that Gn(θ) = 0
for all n 6= 0 (or for all n); see e.g. [18].
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Clearly, the market is arbitrage-free iff the optimal value of (3) is 0. Associate multi-
plier δnyn ≥ 0 to inequality Gn(θ) ≥ 0, and δnYn ≥ 0 to leaf constraint pn · θn ≥ 0.
Maximizing the resulting LagrangianX

n

δn(πn + yn)Gn(θ) +
X
n∈NT

δn(πn + Yn)pn · θn =

X
n/∈NT

⎡⎣X
c∈C(n)

δc(πc + yc)pc − δn(πn + yn)pn

⎤⎦ · θn + X
n∈NT

δn(Yn − yn)pn · θn (4)

with respect to the free variable θ we see that the dual of (3) amounts to solve

δn(πn + yn)pn =
X
c∈C(n)

δc(πc + yc)pc for all n /∈ NT with y ≥ 0.

Suppose the latter system is indeed solvable. In that case, by LP duality, problem
(3) has 0 as optimal value, and there are no arbitrage opportunities. Then consider
component b of the last equation to get πn+yn =

P
c∈C(n)(πc+yc).Therefore µ(c |n) :=

(πc + yc)/(πn + yn) defines strictly positive transition probabilities that satisfy (2).
Conversely, suppose some strictly positive measure µ on NT suits (2). In (4) let

π = µ and each yn, Yn = 0 to get

X
n

δnµnGn(θ) +
X
n∈NT

δnµnpn · θn =
X
n/∈NT

⎡⎣X
c∈C(n)

δcµcpc − δnµnpn

⎤⎦ · θn = 0
for all θ. Thus arbitrage is impossible. ¤

For subsequent reference let M denote the (bounded convex) set of all probability
measures µ ∼ Pr on S that satisfy (2). Clearly, M depends only on the price process
p = (pjn) ∈ RJ×N . By the fundamental theorem, M = ∅ iff there are arbitrage
opportunities. Any µ ∈M is called an equivalent martingale measure.
When b is predictable at some node n /∈ NT , construe δ(n)µ(c|n) as the price there

of an elementary Arrow-Debreu like paper that pays 1 unit of account in contingency
c ∈ C(n) and nil otherwise. Viewed from that perspective, component j of (2)
regulates consistent and arbitrage-free prices of paper j at any non-terminal node.
In probabilistic jargon: under any µ ∈ M the discounted price process becomes a
martingale.

4. Asset Pricing and Super-replication
Besides the given ensemble J of primary securities, consider next another asset, fully
described by its ”dividend process” D = (Dn)n6=0 ∈ RNÂ0. The latter derives from
payouts on some special paper or exogenous project. We assume that introduction
of D doesn’t affect price process p.
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Now, if ownership to D is thinly traded, or not traded at all, one naturally asks:
how much is it worth at node 0? More precisely, at that node, above what value v̄
should D be sold?
For an answer, this section recalls some known results, following [18], [19], [23]

and [24]. The answer - or the value estimate v̄ - typically comes by super-replicating
D via iterated trades in existing papers j ∈ J . In that business, called dynamic
portfolio choice, optimization has the great advantage of aiming expressly at net
gains or efficient choices.
Specifically, the investor might ask: what up-front expense p0 · θ0 and subsequent

portfolio choices θn would suffice to gain Gn(θ) ≥ Dn at each node n 6= 0 - and avoid
terminal debt as well? That question amounts to state linear problem

P [D] :
minimize p0 · θ0
subject to pn · θA(n) − pn · θn ≥ Dn for n 6= 0 (*)
with pn · θn ≥ 0 for each leaf n ∈ NT .

Any feasible portfolio process θ = (θn) for problem P [D] is said to super-replicate or
super-hedge D. Such a process represents an information-adapted investment strategy
that stays on the upper safe side, eliminating all downside risk. In optimum, if any,
one may posit θn = 0 at each leaf.
Note that problem P [D] is free of preference and probability. It involves no

utility function, no risk aversion parameters, and no ad hoc probability measure.5

Let v̄ = v̄(D) = inf P [D] denote the optimal value. Suppose D is demanded for price
V > v̄ at node 0. A seller or supplier can there pocket positive profit V − v̄ right
away, pay v̄ = p0 · θ0 for an optimal super-hedge θ of D, and still look forward to net
payment process G(θ)−D ≥ 0 with no terminal debt.
The instance D = 0 is particularly interesting because P [0], being homogeneous,

has optimal value v̄(0) ∈ {0,−∞} . Clearly, v̄(0) = −∞ iff the system

p0 · θ0 < 0, Gn(θ) ≥ 0 for n 6= 0, and pn · θn ≥ 0 at each leaf,

is solvable. Absent arbitrage, no solution exists but, by the fundamental theorem,
there is least one equivalent martingale measure. This observation motivates what is
called

Martingale Pricing: Assign a Lagrange multiplier δnµn ≥ 0 to restriction (*).
Similarly, couple a multiplier δnµ̄n ≥ 0 to the constraint pn ·θn ≥ 0, n ∈ NT . Thereby
emerges a real-valued Lagrangian

L(θ, µ, µ̄) := p0 · θ0 +
X
n6=0

δnµn
£
Dn + pn · θn − pn · θA(n)

¤
−
X
n∈NT

δnµ̄npn · θn (5)

5For a relation to utility maximization see [4] and references therein.
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
P

n6=0 δnµnDn) +
h
p0 −

P
c∈C(0) δcµcpc

i
· θ0+

P
n/∈0∪NT

h
δnµnpn −

P
c∈C(n) δcµcpc

i
· θn+P

n∈NT δn(µn − µ̄n)pn · θn.

As customary, for given µ ∈ RNÂ0+ and µ̄ ∈ RNT+ , minimize L(θ, µ, µ̄) with respect
to θ = (θn). That operation, when finite-valued, associates to P̄ [D] a corresponding
dual problem, namely:

maximize
P

n6=0 δnµnDn
subject to δnµnpn =

P
c∈C(n) δcµcpc ∀n /∈ NT , µ ≥ 0, and µ0 = 1.

(The vector µ̄ ∈ RNT+ disappeared here because µn = µ̄n for n ∈ NT .) Considering
component b of the last constraint we get µn =

P
c∈C(n) µc at each n /∈ NT . Since

µ0 = 1 and µ ≥ 0, it follows that µ defines a probability measure over NT ↔ S, and
the preceding problem reads

D̄ [D] :
maximize Eµ

P
n6=0 δnDn over probability all measures µ

such that δnµnpn =
P

c∈C(n) δcµcpc at each non-terminal node n. (**)

One may regard optimal solutions to D̄ [D] as risk-neutral, equivalent probability
distributions that depict the expected present value of process D as favorably as
possible. When an optimal µn is unique, it supports a standard interpretation. To
wit, if the investor withdraws wealth wn ≈ 0 at node n 6= 0 subject to the reasonable
restriction

pn · θA(n) − pn · θn − wn ≥ Dn,
the up-front investment cost increases by δnµnwn. Thus the contingent ”shadow price”
µn ≥ 0 reports the value of money made available only at node n.
Clearly, when all µn > 0, condition (**) coincides with (2). In case the market is

arbitrage-free, andM ⊆ M̂ ⊆ clM, problem D̄ [D] can be restated as supµ∈M̂ Eµ
P

n6=0 δnDn.

Proposition (On the ask value v̄). Suppose the market is arbitrage-free. Then
the optimal value v̄ = inf P [D] is finite and attained, and

v = v(D) := sup
µ∈M

Eµ
X
n6=0

δnDn = sup
µ∈clM

Eµ
X
n6=0

δnDn.

The function D 7→ v̄(D) is convex, piecewise linear and positively homogenous.

Proof. By linear programming duality, v(D) = sup D̄ [D]. Positive homogeneity
derives directly. The closure clM ofM is a non-empty compact polyhedron, having a
finite set ext(clM) of extreme points. Therefore v̄(D), being the maximum of linear
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functions µ 7→ Eµ
P

n6=0 δnDn, µ ∈ ext(clM), comes out convex and piecewise linear.
¤

Problem P [D] didn’t embody the constraint G0(θ) ≥ 0 in (1). Also, its objective
differs from (3). Therefore v may be finite even when there are arbitrage opportuni-
ties.
Absent arbitrage, only non-degenerate measures µ ∼ Pr need be considered.

To argue differently for non-degeneracy, suppose some market agent maximizes a
separable ”utility” criterion

P
n∈N δnun(dn) in decision variables d, θ ∈ RN sub-

ject to −p0 · θ0 ≥ d0 and the constraints of P̄ [d] . Then, in terms of conjugates
u
(∗)
n (µn) := supdn {un(dn)− µndn}, the dual problem reads:

minimize
X
n∈N

δnu
(∗)
n (µn) s.t. µ ≥ 0 and δnµnpn =

X
c∈C(n)

δcµcpc for all n /∈ NT .

At each leaf n naturally assume u(∗)n (µn) = +∞ whenever µn ≤ 0. Consequently, the
very last problem is infeasible unless µn > 0 at every n ∈ NT . This suffices to have
all µn positive.

5. Bid Pricing and Completeness
Problem P [D] approximates D within the market, but from above and as cheaply as
possible. Alternatively, D might be approximated from below and as expensively as
possible. Thus, a prudent buyer of D, who prefers conservative estimates of present
values, could choose to formulate the following problem:

P [D] :
maximize p0 · θ0
subject to Dn ≥ pn · θA(n) − pn · θn for n 6= 0,
with pn · θn ≤ 0 when n ∈ NT .

In optimum, if any, one may posit θn = 0 at each leaf. The optimal value v = v(D) of
P [D] is the maximal amount of current cash an investor can extract from the market
at node 0 when allowed terminal debt but no gain Gn(θ) > Dn at any node n 6= 0. If
processD is offered for value V < v at node 0, a buyer could choose any minimizing θ,
cash in v − V > 0 at once, and thereafter still enjoy the subsequent payment process
D −G(θ) ≥ 0.
The Lagrangian of P [D] assumes the same form (5). So, arguing exactly as above,

the associated dual now reads:

D [D] : minimize Eµ
P

n6=0 δnDn over probability all measures µ s.t. (**).

It follows likewise a
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Proposition (On the bid value v). Suppose the market is arbitrage-free. Then
the optimal value v:= supP[D] is finite and attained, and

v = v(D) := inf
µ∈M

Eµ
X
n6=0

δnDn = inf
µ∈clM

Eµ
X
n6=0

δnDn.

The function D 7→ v(D) is concave, piecewise linear and positively homogenous.
Moreover, v(D) = −v̄(−D). ¤

Proof. Only the very last assertion requires justification. For this, simply note
that θ is feasible for P[D] iff −θ is feasible for P̄ [−D]. ¤

Again, because the constraint set and objective of P[D] differ from counterparts
(1),(3), it may happen that v is finite even under arbitrage opportunities.
Anyway, the upshot is that two valuation schemes v(·), v(·) operate on dividend

processes. When these schemes differ, both are nonlinear. It turns out that linearity,
when in vigor, relates to what is called

A complete market. Any price outside the bid-ask interval [v, v] creates an arbi-
trage opportunity. Indeed, D is undervalued at a price < v and overvalued at a price
> v̄. So, when is the appropriate value unique? That is, when is the interval [v, v]
degenerate?
The answer comes in terms of the marketable space D, consisting of all dividend

processes D = (Dn)n6=0 ∈ RNÂ0 that satisfy
Dn = pn · θA(n) − pn · θn (6)

for some portfolio process θ = (θn) with θn = 0 at each leaf. One says that process
D ∈ D is attainable - or replicable, or made redundant - by dynamic portfolio choice.
Accordingly, the market is declared complete iff D = RNÂ0.

Theorem (On unique values and a complete market). Suppose the market is arbitrage-
free. Then,
• a process D ∈ RNÂ0 has a unique value v(D) = v(D) = v̄(D) iff D ∈ D;
• the asset market is complete iff there is only one equivalent martingale measure.

Proof. Suppose θ = (θn) replicates D ∈ D in that (6) holds for all n 6= 0 with
θn = 0 on NT . Because θ is feasible for both P̄(D) and P(D), it follows that

v̄(D) ≤ p0 · θ0 ≤ v(D).
Also, sinceM is non-empty, v̄(D) ≥ v(D). Thus, v(D) = v̄(D) = p0 ·θ0, and this takes
care of the necessity in first bullet. For the second bullet, note that each martingale
measure µ generates a node-based function n 7→ µn, whence a linear mapping

hµ,Di := Eµ
X
n6=0

δnDn =
X
n6=0

µnδnDn
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on dividend processes D = (Dn)n6=0 ∈ RNÂ0. The functional hµ, ·i is thus defined on
all RNÂ0 - and naturally called the µ-valuation.
If more than one martingale measure exists, then some asset has different martingale-

valuations. That asset can’t belong to D, and then the market must be incomplete.
If indeed the market is incomplete, consider any D /∈ D. Let D̄ be its closest ap-

proximation (alias projection) inD, using the inner product hD∗,Di :=
P

n6=0D∗nδnDn
already mentioned above. ThenD∗ := D−D̄ is orthogonal onD, and µ̂ := µ+εD∗ > 0
for small enough ε > 0. The particular dividend process D̂ that first and last pays
1/δn at leaf n, is marketable; that is, D̂ ∈ D. Therefore,

1 =
X
n∈NT

µn =
X
n∈NT

µnδnD̂n =
D
µ, D̂

E
=
D
µ+ εD∗, D̂

E
=
D
µ̂, D̂

E
=
X
n∈NT

µ̂.

This string of equalities tells that µ̂ also constitutes a non-degenerate probability
distribution across the leafs. The orthogonality of D∗ on D entails that µ̂ generates
a martingale measure with hµ, ·i = hµ̂, ·i on D. However, because hD∗,Di > 0, we
get Eµ

P
n6=0 δnDn < Eµ̂

P
n6=0 δnDn. ¤

Some comments on extensions and reductions briefly conclude this section. For ex-
tensions, θn could comprise long and short positions θ

+
n , θ

−
n ∈ RJ+ traded at corre-

sponding prices p+n , p
−
n . Also there might be node-dependent transaction costs or taxes

Tn(θA(n), θn). And clearly, there might be constraints on various branches and nodes.
For reductions, consider merely the sub-tree that emanates from a non-terminal

node n 6= 0. Pricing the corresponding part of D only within that sub-tree, as de-
scribed above, gives values vn ≤ v̄n, node n now figuring as root. Finally, for up-front
asset pricing, the sub-tree may thereafter be erased, leaving only node n as a new
leaf with dividend Dn + [vn, v̄n] .
When vn = v̄n, numerous textbooks illustrate this procedure, in one form or

another, under various headings called backward recursion, dynamic programming or
portfolio replication. If vn < v̄n, the said sub-tree features incompleteness.

6. Pricing Partly Manufactured Assets
Many a dividend process is exogenous, meaning totally unaffected by the investor. Of-
ten though, he has great impact on its evolution. In particular, such is the case when
pay-outs become nil beyond some deliberately chosen stopping time.6 More generally,
there might be opportunities to revise positions prior to their time of expiration. To
model instances of that sort suppose the dividend process is partly manufactured - or
largely influenced - by the investor in that adapted dividends have the form

Dn = Dn(xn0, xn1, ..., xn). (7)

Here x = (xn) is an underlying process, affected by uncertainty, but controlled by
the investor who responds to changing opportunities. The said x must reside in a

6As an example consider purchase of a physical asset, before or at the expiration of a lease.
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prescribed, non-empty set X ⊆ Πn∈NXn. In (7) n0, n1, ..., n is the unique path of
adjacent nodes that leads from the root up to n. To simplify notations write ~xn for
the corresponding part (xn0 , xn1 , ..., xn) of x. Denote by D(x) the resulting dividend
process, and assume that

P
n6=0 δnDn(~xn) is finite for each x ∈ X.

The preceding results apply immediately. To wit, for fixed x ∈ X, the inner
problem V̄ (x) := inf P̄ [D] amounts to find an optimal super-hedge for D = D(x).
The outer problem v̄ := supx∈X V̄ (x) first chooses x, to be followed by an op-
timal super-hedge. Together these decisions generate a max-min saddle problem:
supx∈X infθ P̄ [D(x)].
The interpretation is pretty much as before but depends on wether the seller owns

D or not. I consider only the upper problem P̄ [D]. Suppose a buyer offers value
V > v̄ for D and plans to implement x ∈ argmax V̄ . If the owner of D accepts the
offer, and opts for an optimal solution θ of P̄ [D(x)] , he immediately gets V − v̄ > 0,
thereafter payoff profile G(θ) − D(x) ≥ 0, and finally no debt. These arrangements
leave him no liabilities.
By contrast, consider somebody who doesn’t own D but decides to sell it short.

Admittedly, this situation is somewhat more intricate. Recall that any x ∈ X is a
strategy, implemented as a contingent plan. To hedge his position, suppose the seller
immediately requires, by contractual agreement, that the buyer commits to some
strategy x ∈ X, decided by the latter. Next, upon choosing θ ∈ argmin P̄ [D(x)] the
seller gets V − V̄ (x) ≥ V − v̄ > 0 up front. Thereafter his gain process G(θ) covers
his liabilities D(x), and finally he exits without debt.
Selling D short thus resembles a Stackelberg game [21]: The leader (alias buyer)

first commits a strategy x ∈ X; thereafter the follower (alias seller) responds with
θ. Plainly, such a setting isn’t always satisfactory or convincing. Why should the
leader reveal his strategy ex ante, play open loop, and forego all sorts of discretion
or opportunism?
Duality again proves useful by pointing to the equivalent optimization problem:

supx∈X supµ∈M D̄ [D(x)] in which both variables x, µ are oriented towards supremum.
Moreover, these interact only in the objective. The upshot is that saddle problems
are avoidable, as described next:

Proposition (On max-min price estimates). Suppose the market is arbitrage-free.
• Then the optimal value v̄ := v̄(D) := supx∈X inf P [D(x)] of the upper price problem
equals

sup
x∈X

sup
µ∈M

(
Eµ
X
n6=0

δnDn(~xn)
)
.

• Similarly, the optimal value v := v(D) := supx∈X supP[D(x)] of the lower price
problem equals

sup
x∈X

inf
µ∈M

(
Eµ
X
n6=0

δnDn(~xn)
)
.
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• Provided X be closed convex, and x 7→
P

n6=0 δnDn(~xn) upper semicontinuous con-
cave, there exists µ̄ ∈ clM such that

v = inf
µ∈M

sup
x∈X

(
Eµ
X
n6=0

δnDn(~xn)
)
= sup

x∈X

(
Eµ̄
X
n6=0

δnDn(~xn)
)
.

Proof. Only the last bullet needs justification. Since the objective

(µ, x) ∈ (clM)×X 7→ Eµ
X
n6=0

δnDn(~xn)

is convex in µ and concave in x, the result follows from the lopsided minimax theorem
in Chap. 6 of [2]. ¤

Clearly, the operation supµ∈M Eµ amounts to maxµ∈clM Eµ, and similarly for infi-
mum. Anyway, the preceding proposition underscores the convenience of having a
unique martingale measure µ whence a complete market. Problems

sup
x∈X

sup
µ∈M

Eµ
X
n6=0

δnDn(~xn) and sup
µ∈M

sup
x∈X

Eµ
X
n6=0

δnDn(~xn)

amount, in essence, to one and the same. Also, for any µ ∈ M , it follows from
dynamic programming, starting at leafs and proceeding recursively towards deeper
nodes, that

sup
x∈X

Eµ
X
n6=0

δnDn(~xn) = Eµ sup
x∈X

X
n6=0

δnDn(~xn).

When solving for v or v one naturally inquires what curvature the intermediate,
reduced objectives might have. To that end, recall that the pointwise supremum of
convex functions remains convex. Also, the maximum, if any, of a convex function
occurs at an extreme point of its domain [20]. (Quite similar properties hold for
concave functions, infimum then replacing the role of supremum.) By an extreme
point of a set, contained in a real vector space, is understood an element that can’t
equal a proper convex combination of other set members.
In the special case when X = Πn∈NXn, with each Xn convex, extremality of

x = (xn) means that xn must be an extreme point of Xn ∀n. Reverting to scenario
s ∈ Pt ↔ n ∈ Nt we see that xn = xt(s) is an extreme point in the Ft-measurable set
Xn = Xt(s).

Proposition (On curvature of objectives, and extreme solutions).
• If x 7→

P
n6=0 δnDn(~xn) is convex continuous, then so is the reduced upper objective

sup
µ∈M

(
Eµ
X
n6=0

δnDn(~xn)
)
.
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In that case, with X compact convex, an optimal solution to the upper pricing problem
supx∈X inf P [D(x)] is realized at an extreme point x ∈ X.

• Similarly, if x 7→
P

n6=0 δnDn(~xn) is concave, then so is the reduced lower ob-
jective infµ∈M

n
Eµ
P

n6=0 δnDn(~xn)
o
.

• The objective µ 7→ supx∈X

n
Eµ
P

n6=0 δnDn(~xn)
o
is convex. Consequently, the upper

value v, if realized, is attained at an extreme point µ ∈ clM. ¤

7. Pricing Options that feature Discrete Decisions
A surprisingly wide class of financial decision problems fit the format of continuous
optimization - as exemplified here above. An even larger class comes on stage when
some variables are integers; see [22], [30].
Such variables could stem from set-up costs or indivisibilities. Other, more chal-

lenging instances correspond discrete interventions at judiciously chosen times [7]. Ex-
amples include contingent closure/opening of fishing grounds/seasons - or of oil/mineral
deposits. Also covered are rotation problems in forestry. Common to these is pres-
ence of at least one stopping time, meaning a mapping τ : S→ {0, ..., T} ∪ {+∞}
such that {s : τ(s) ≤ t} ∈ Ft for every t ∈ {0, ..., T} .
To accommodate such objects, recall the one-one correspondence between nodes

and partitions: n↔ Pt(s) - and the resulting identification xt(s) ↔ xn. So, to high-
light the time aspect, write now x = (xt) for the decision process, indexed by time,
with the tacit understanding that xt be Ft-measurable, t ∈ {0, ..., T}. In short,
only adapted processes are allowed. Further, to elaborate on discrete choices, assume
henceforth that each component xt be purely integral.7

Examples of stopping times in finance: Numerous financial derivatives yield
dividend of the form Dt = Dt(S0, ..., St, x0, ..., xt) at time t. Underlying is then the
price process (St) on a specified stock. For instance, a call option

Ct := max
τ∈T (t)

{Sτ −Kτ , 0} = max
τ∈T (t),xτ∈{0,1}

{xτ (Sτ −Kτ ), 0}

or a put option

Pt := max
τ∈T (t)

{Kτ − Sτ , 0} = max
τ∈T (t),xτ∈{0,1}

{xτ (Kτ − Sτ ), 0}

with strike price Kτ , exercised or not at time τ ∈ T ⊆ {0, ..., T} , is named
American if T (t) = {t} and T = {0, ..., T} ,
Bermudan if T (t) = {t} and T ⊂ {0, ..., T} ,
European if T (t) = {t} and T = {T} ,

7One may envisage that continuous components, if any in x, have already been optimized away,
leaving a reduced objective. The remaining variables could correspond to stopping times.
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Russian if T (t) = {0, ..., t} and T = {0, ..., T} .
Each option is exercised at most once. Correspondingly, in case of a unique martingale
measure µ, one should

maximize Eµ
X
t≥1

δtDtxt

subject to (xt) adapted, all xt ∈ {0, 1},X
t/∈T

xt = 0, and
X
t∈T
xt ≤ 1, (8)

with either Dt = Ct or Dt = Pt for all t as the case may be. Some comparative statics
deserve mention here, briefly limited to call options:

Proposition (On comparative statics of call options).
• Any first- or second-order increased uncertainty in some stock-price St, causes the
call option value to increase.
• Everything else equal, if δt or St increases, or if Kt decreases, for some t, then the
optimal response xt cannot decrease for a call option.

Proof. Because Ct is non-decreasing and convex in St the first bullet follows immedi-
ately from stochastic dominance [31]. The second bullet derives from supermodularity
[28] and

∂2

∂St∂xt
Ct ≥ 0 and

∂2

∂(−Kt)∂xt
Ct ≥ 0. ¤

It’s natural to probe beyond linear restrictions like (8). This motivates a look at

Linearly constrained instances: Hereafter, for simplicity, consider the convex
polyhedron

C :=
©
x = (xt) : b ≤ Ax ≤ b, x ≤ x ≤ x̄

ª
(9)

with bounds b ≤ b and x ≤ x̄. The matrix A is random, lower triangular stochastic,
and it comes in the block form:

A =

⎡⎢⎢⎢⎣
A00 0 · · ·
A10 A11 0 · · ·
...

...
...

...
AT0 AT1 · · · ATT

⎤⎥⎥⎥⎦
The block entry s 7→ Atτ (s) is constant on each part Pt ∈ Pt for t ≥ τ , and it has
exactly as many columns as xτ has components. The bounding vectors

b =

⎡⎢⎢⎢⎣
b0
b1
...
bT

⎤⎥⎥⎥⎦ , b̄ =
⎡⎢⎢⎢⎣
b0
b1
...
bT

⎤⎥⎥⎥⎦ , x =
⎡⎢⎢⎢⎣
x0
x1
...
xT

⎤⎥⎥⎥⎦ , x =
⎡⎢⎢⎢⎣
x0
x1
...
xT

⎤⎥⎥⎥⎦
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are of compatible measurability and size. For example, the part bt is observable at
time t, and it has exactly as many rows as Atτ for t ≥ τ .When all these qualifications
are in vigor, data (A, b, b, x, x) is certified as adapted. Henceforth suppose x ∈ X ⇔
x is adapted and belongs to polyhedron C.

Unimodularity: Amatrix A is declared totally unimodular if for any integer bound-
ing vectors b, b, x, x, of suitable dimensions, all extreme points of the convex polyhe-
dron C, defined in (9), become integral. This happens iff every square sub-matrix of
A has determinant −1, 0 or +1. Then, necessarily, every entry of A must be either
−1, 0 or +1; see [16]. Sufficient for total unimodularity of a matrix A, having but
entries −1, 0 or +1, is that
• no more than two nonzero entries appear in each column;
• the rows can be partitioned into two subsets such that if a column contains two
nonzero elements of the same (opposite) sign, then the corresponding row indices
belong to the opposite (respectively, same) subset [13].

Proposition (On integer extreme solutions). Suppose (A, b, b, x, x) is adapted and
integral. Also suppose that every diagonal block Att is totally unimodular. Then every
adapted, extreme solution x is integer-valued in each component.

Proof. x0 must satisfy

b0 ≤ A00x0 ≤ b0 and x0 ≤ x0 ≤ x0.

It follows that every extreme x0 must be integer. Next, an extreme x1 must satisfy

b1 −A10x0 ≤ A11x1 ≤ b1 −A10x0 and x1 ≤ x1 ≤ x1

hence be integral as well. Continue in this manner to conclude. ¤

Proposition (On integer solutions). Suppose (A, b, b, x, x) adapted and integral. Fur-
ther suppose that every diagonal block Att is totally unimodular. If

x 7→
X
t≥1

δtDt(x0, ..., xt)

is convex, then so is the reduced upper objective

V̄ (x) := sup
µ∈M

(
Eµ
X
t≥1

δtDt(x0, ..., xt)
)
.

In that case an optimal solution, if any, to the upper pricing problem supx∈X inf P [D(x)]
is realized at an integral extreme point x ∈ X. ¤
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Proof. V̄ (·), being the supremum of convex functions, must itself be convex. There-
fore, as argued above, if argmax V̄ is non-empty, it must intersect the set extX of
extreme points in X. By the preceding proposition each x ∈ extX is integral. ¤

Quite often dividends depend on the path. Examples include American, Bermudan
and barrier options [1], [19], [23], [25], [27]. Common to these are restrictions on when
and how often the investor may exercise contracted rights. Considered in conclusion is

An example with American-like options: Suppose exercise happens at most
once. For computational purposes construct a flow problem in the following capaci-
tated network [26]: Let exN ⊆ NÂ0 denote the set nodes at which the option can
be exercised. For each node n ∈ exN create a duplicate node n0 and the directed link
(n, n0). From each said duplicate n0 - and from each original leaf n ∈ NT - introduce
a link towards a common, auxiliary node, called sink to reflect its absorbing role.
Denote by E the resulting set of edges; see figure below.
In the oriented network so constructed, let each edge that leads into the sink have

capacity interval [0, 1] . This means that the amount which flows through that edge is
bounded below by 0 and above by 1. Other edges impose no upper restrictions; they
all have [0,+∞) as capacity interval.
The root is the only source of flow. Endow that special node with integer supply

|S| = |NT |. That same amount is demanded at the unique sink. Any other node
serves merely for transshipment : what flows in there equals precisely what flows out.
Let y = (ye) denote any feasible flow pattern along the directed edges e ∈ E in the
extended network just laid out.
So far, this was all physical design. Economic data enter next. At the duplicate

n0 of original node n ∈ exN let Dn0 equal the dividend if the option is exercised at
n. At each leaf n ∈ NT let Dn equal the value of not exercising there. The reduced
objective

y 7→ sup
µ∈M

Eµ

( X
n∈exN

δnDn0y(n0 ,sink) +
X
n∈NT

δnDny(n,sink)

)
is convex. Thus the upper value v̄, if realized, is at attained at an extreme point of
the polytope comprised of all feasible flows. Such points have integral coordinates
[20].
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Figure: A capacitated network for a simple American option.

8. Concluding Remarks
To have something for free - that is, to make arbitrage - motivates much of finance.
Related activities include asset evaluation and portfolio choice. For such purposes
optimization helps a lot and is often indispensable. Yet surprisingly few finance books
make much out of optimization technology. And conversely, financial problems are
rare or absent in most texts devoted to optimization.
In fact, mathematical finance has very much become a field for specialists in sto-

chastic processes, optimal control, partial differential equations, or numerical analysis.
Mathematical programming, although a close relative, stays somewhat at distance.
In my opinion that discipline may gain and offer much by connecting closer to fi-
nance. Reflecting on this, the present paper has advocated that popular algorithms
be brought to bear on some chief financial issues. On a didactical note, it emphasized
the great convenience and generality of scenario trees. On a more substantial note,
it observed that integral constraints, stemming from indivisibilities or exercise times,
can often be relaxed.
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