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ABSTRACT: Presumption of Equality enjoins that individuals be treated 
equally in the absence of discriminating information. My objective in this paper 
is to make this principle more precise, viewing it as a norm of fairness, in order 
to determine why and under what conditions it should be obeyed. 
   Presumption norms are procedural constraints, but their justification might 
come from the expected outcomes of the procedures they regulate. This 
outcome-oriented approach to fairness is pursued in the paper. The suggestion is 
that in the absence of information that would discriminate between the 
individuals, equal treatment minimizes the expected unfairness in the outcome. 
Another suggestion is that, under these circumstances, equal treatment also 
minimizes maximal possible unfairness, i.e., it is minimally unfair if ‘worst 
comes to worst’. Whether these suggestions are correct depends on the 
properties of the underlying unfairness measure.  

 
 

1. Introduction 
 
This paper examines Presumption of Equality (PE), which enjoins us to treat 
different individuals equally if we can’t discriminate between them on the basis 
of the available information. I will view this principle as a requirement of 
fairness – more specifically, as a procedural principle whose goal is to promote 
fairness in outcome. The objective is to make PE so understood more precise 
and to determine why and under what conditions it should be obeyed.  

Why, then, should PE be obeyed? A natural answer is that, in the absence 
of relevant discriminating information, treating some individuals better than 
others is arbitrary, which is a bad thing. There’s certainly some truth in this 
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explanation. But while arbitrariness considerations are important, they are not 
always decisive. In some cases in which the discriminating information is 
absent, unequal treatment might still be right, despite its arbitrariness. To 
illustrate, suppose two individuals compete for two scholarships, one of which 
is more attractive than the other. Your task is to make the decision, but the 
information you have is limited. While you know that both candidates are 
deserving, you have no clue which of them, if any, has stronger merits. 
Suppose you have no opportunity to gather further information. Since the 
scholarships aren’t equally attractive, to give one to one individual and the 
other to the other is to treat them unequally, which is arbitrary and to that 
extent unsatisfactory. At the same time, one could treat them equally by 
withholding scholarships from both. Such ‘levelling down’, however, would be 
grossly unfair given that both of them deserve a scholarship. Avoidance of 
arbitrariness is thus not all that matters. To justify equal treatment, in cases in 
which such treatment can be justified, we need to rely on other considerations. 

At this point, I expect an objection: Why not decide who gets what 
scholarship by a toss of a coin? This would give each individual a fifty-fifty 
chance of getting the more attractive scholarship, but even the loser would not 
come away empty-handed: She would receive the other scholarship instead. 
Arguably, such a lottery is itself a form of equal treatment, since it gives each 
person equal chances. By tossing a coin, we avoid arbitrariness but at the same 
time see to it that both persons are awarded, which they deserve.  

It is true that, in the case at hand, drawing lots or tossing a coin is the 
obvious thing to do. Avoidance of arbitrariness is important. I would deny, 
however, that equal lottery on unequal treatments is on a par with equal 
treatment. On an outcome-oriented approach to fairness, which is adopted in 
this paper, this is not so. The outcome of the lottery will still be unequal. And 
inequality in outcome may well matter from the point of view of fairness. 

Here is the suggestion I instead want to examine: Principles of fairness can 
be constraints on procedures or constraints on outcomes. Presumption norms 
such as PE constrain procedures, but procedural constraints can often be 
justified in terms of the expected outcomes of the procedures that obey these 
constraints. This is the path that will be pursued in my paper: The suggestion is 
that equal treatment should be chosen because, and to the extent that, it 
minimizes the expected unfairness in outcome. When the available information 
does not discriminate between the individuals concerned, expected unfairness 



will normally be at its lowest if individuals are treated equally. Normally, but 
not always. As will be seen, the scholarship example provides an exception to 
this rule.  

It has been suggested that the core reason behind presumption norms is to 
be found in the differential costs of potential errors.1 Thus, for example, 
presumption of innocence in criminal law is justified by the greater moral cost 
of punishing an innocent person as compared with that of letting a guilty 
person go free. Louis Katzner applied this idea to the choice between 
presumption of equality and its opposite, presumption of inequality: 

 
The only possible basis for opting for one of them rather than the other 
is which state of affairs one would rather see – that in which some of 
those who are similar are treated differently or that in which some of 
those who are different are treated similarly. (Katzner 1973, p. 92)2

 
My approach to PE is different. As will be seen, for this principle to hold, the 
moral cost of treating equals unequally need not be greater than that of the 
equal treatment of unequals. 

Some presumptions might have more to do with the differential probability 
of errors than with their differential costs: What’s being presumed is deemed to 
be sufficiently probable to function as a default assumption.3 But my argument 

                                                 

1See Ullmann-Margalit (1983), p. 159: “It is the justification of presumptions in 
normative terms which touches what I take to be the core of the concept of 
presumption. […] this normative type of consideration has to do with the 
acceptabil- ity of error.” (p. 159) Making a presumption is grounded in “certain 
evaluative considerations which are primarily concerned with the differential 
acceptability of the relevant sorts of expected errors: the fact that one sort of error 
is judged to be, in the long run and all things considered, preferred on grounds of 
moral values or social goals to the alternative sort(s) constitutes an overriding 
reason for the decision underlying the presumption rule.” (p. 162) 
2 Quoted in Ullmann-Margalit (1983). 
3 Cf. Ullmann-Margalit (1983), p. 157: “with presumption rules relating to 
presumptions that accord with the normal balance of probability the chance of an 
error […] is reduced.” 



 

does not assume that equality in deserts is probabilistically privileged in this 
way. Indeed, PE might well be justified even in those cases in which it is very 
improbable, or perhaps even excluded, that the individuals are equally 
deserving. 

While the justification I offer does not appeal to the differences in the costs 
of errors or in the probabilities of errors, it does appeal to the differences in the 
expected costs of errors. The suggestion is that in the absence of discriminating 
information we should treat individuals as if they were equal because the 
expected moral cost of error is minimized in this way: Equal treatment 
minimizes expected unfairness. To get an idea why it is so, note that unfairness 
may be seen as a kind of distance between the way individuals are treated and 
the way they deserve to be treated. A treatment’s expected unfairness is on this 
view its expected distance from the fair treatment. We can thus think of the set 
of possible treatments as a set of points forming a spatial area. One of these 
points is the fair treatment but, in the absence of information, we don’t know 
which point it is. Consequently, we don’t know how large is the distance 
between the treatment we choose and the fair treatment. Now, the conjecture is 
that equal treatment lies in the center of this spatial area. At the same time, in 
the absence of information that discriminates between individuals, no dírection 
in the area is more privileged than other directions. Therefore, by positioning 
ourselves in the center we should minimize our expected distance from the fair 
treatment, i.e. keep the expected unfairness in outcome at a minimum. 

I want to examine under what conditions on the unfairness measure equal 
treatment will in fact have this feature of centrality. I will also inquire what 
happens if we instead choose a ‘minimax’ approach, i.e. opt for a treatment 
that is least unfair if ‘worst comes to worst’. In other words, I will also 
examine under the conditions on the unfairness measure under which equal 
treatment minimizes maximal possible unfairness. Intuitively, centrality should 
guarantee this result as well. 
 
 

2. Individuals and Treatments 
 
The model to be used is highly abstract and allows of different interpretations. 
Its main components are a non-empty finite set I = {i1, ..., in} of individuals 
and a non-empty set T = {a, b, c, ...} of possible treatments of individuals in I. 



Every treatment a in T is assumed to be a vector (a1, …, an), where, for every k 
(1 ≤ k ≤ n), ak  is the way in which individual ik is treated in a. We shall 
sometimes use the notation a(ik) for ak. Treatment a is equal iff a1 = … = an. 
Other components of the model will be introduced later. 

The three interpretations of the model that follow are themselves relatively 
abstract. Each can in turn be instantiated in many different ways.  
 
Interpretation 1: Cake-Divisions 
A ‘cake’ is a homogeneous object or resource that is to be divided, without 
remainder, among the individuals in I. A treatment a is a vector of real 
numbers, (a1, ..., an), with each ak being the share of the cake assigned by a to 
individual ik. The shares are all non-negative and together they sum up to one. 
T is the set of all possible vectors of this kind. The equal treatment, (1/n, ..., 
1/n), divides the cake equally among the members of I. 

Representing cake-divisions in this way means that we view them as types 
rather than tokens. Thus, to illustrate, if a cake is divided in pieces of equal 
size, it doesn’t matter who gets which piece, since the cake is homogeneous. 
There is therefore no reason to make this distinction in the model. This is a 
general feature of our approach. Treatments are interpreted as types that 
specify the relevant characteristics of their tokens. As a result, any two 
treatments in the model are supposed to be relevantly different from each other.  
 
Interpretation 2: Rankings 
On this interpretation, T is the set of all possible rankings of the individuals in 
I. That a treatment a ranks i above j means that i is treated better than j in a. A 
tie in a between i and j means that they are treated equally well. The ranking 
interpretation of treatments is appropriate when ordinal differences between 
the individuals are all that matters from the point of view of fairness, i.e., when 
fairness only requires that the more deserving individuals should be better 
treated and that the equally deserving individuals should be treated equally 
well.  

A ranking may be represented as an assignment of ordinal numbers to 
individuals, with 1 being the highest level in the ranking, 2 being the second 
highest level, etc. The assignment of levels starts from the highest one and 
continues downwards. Thus, equal treatment is the ranking in which every 



 

individual is assigned the highest level: (1, …, 1). (For another logically 
equivalent representation of rankings see below, section 3.) 
 
Interpretation 3: Indivisible Goods 
Suppose that G is a set of indivisible objects that are to be distributed, with or 
without remainder, among the individuals in I. a(i) is the subset of G that 
treatment a assigns to an individual i. For some i, a(i) may be empty, and for 
distinct i and j, a(i) and a(j) are disjoint, i.e. have no elements in common. 
Some objects in G may be withheld from the distribution. The scholarship case 
provides an example. There, G consists of two scholarships, the more attractive 
one, A, and the less attractive B, and possible treatments amount to different 
partial or total distributions of G among the two individuals involved. Thus, for 
example, a = ({A}, {B}) is the assignment in which A goes to i and B goes to j, 
while b = ({B}, {A}) assigns B to i and A to j. The equal treatment is the 
distribution (∅, ∅) in which scholarships are withheld from both idividuals, 
i.e., each of them is assigned the empty set.  

 
For simplicity, I exclude decision problems in which there is no equal 

treatment or in which several treatments are equal. (The latter restriction would 
be violated, for example, in Cake-Division, if we allowed divisions in which 
part of the cake remains undistributed. The number of equal treatments would 
then increase from one to infinity.) I will also assume that T is closed under 
permutations on individuals. Thus, we impose two conditions on the set of 
treatments:  
 

A1. For every permutation f on I and every a in T, T contains some b 
such that for every i in I, f(i) is treated in b as i is treated in a. I.e., for 
every i, b(f(i)) = a(i). 
 
A2. There is a unique element of T, call it e, such that e is an equal 
treatment. 

 
A2 is a substantial restriction. So is A1, which is a kind of completeness 

requirement on T. If T is the set of actually available treatments, this set 
sometimes might be too small for A1 to be satisfied. Here, however, I will 
ignore this difficulty and assume that T is ‘roomy’ enough.  



There are two ways of looking at T. If T is seen as the set of conceivable 
treatments, it is plausible to suppose that T is large enough to satisfy such 
conditions as A1. This way of looking at T is appropriate if we think of the 
elements of T as the possible ways in which the individuals might deserve to 
be treated. But if T instead is interpreted as the set of ways in which we can 
treat the individuals, i.e., as the set of available treatments, A1 is not that 
plausible. Still, in the context of our discussion, the simplifying assumption 
that the set of available treatments is as large as the set of conceivable 
treatments is innocuous: Remember that we want to know whether equal 
treatment minimizes expected unfairness (and/or maximal possible unfairness), 
as compared with available alternatives, in the absence of information that 
discriminates between the individuals. If this conjecture turns out to hold when 
the set of available treatments is large, it will obviously still hold if that set is 
diminished.  

Given A1, every permutation f on I induces the corresponding permutation 
on T that for to every a in T assigns some b in T in which for every individual 
i, f(i) is treated in the same way as i is treated in a. I will refer to the union of f 
and the permutation that f induces on T as an automorphism and use symbols 
p, p’, etc, to stand for different automorphisms. Intuitively, then, an 
automorphism is a simultaneous permutation of individuals into individuals 
and of treatments into treatments, in which the former permutation induces the 
latter.  
 

Definition: An automorphism, p, is a simultaneous permutation of I and 
of T such that for all i in I and all a in T, p(a)(p(i)) = a(i). 
 
Corollary of A1: Every permutation on I is included in exactly one 
automorphism.  

 
This notion of an automorphism will come in handy below.  

Here follow some examples of authomorphisms. Suppose that I consists of 
three individuals, i1, i2, i3, and let T be the set of cake-divisions among the 
members of I. One automorphism would then permute i1 into i2, i2 into i3 and i3 
into i1. This would effect the corresponding permutation on cake-divisions. For 
example, (0, 2/3, 1/3) would be permuted into (1/3, 0, 2/3). Analogously, if T 
is the set of rankings of i1, i2, and i3, the automorphism that permutes i1 into i2, 



 

i2 into i3 and i3 into i1 involves the corresponding permutation on rankings. For 
example, it permutes the ranking with i1 on top, followed by i2 and i3, in that 
order, into the ranking with i2 on top, followed by i3 and i1.  

It is easy to see that only equal treatment, e, stays invariant under all 
automorphisms: For all p, p(e) = e, and for all a ∈ T, if a ≠ e, then for p, p(a) ≠ 
a.  

We now define a relation between treatments that’s going to be important 
in what follows:  
 

Structural Identity: A treatment a is structurally identical to a treatment 
b iff there exists some automorphism p such that p(a) = b. 

 
Intuitively, this relation obtains between two treatments if we can get one from 
the other just by reshuffling individuals, while otherwise keeping the treatment 
unchanged. Structural identity is an equivalence relation: it is reflexive, 
symmetric, and transitive.4 We can therefore partition T into structures, S, S', 
etc., which are equivalence classes of treatments with respect to the relation of 
structural identity. As an example, suppose that T is the set of cake-divisions 
among three individuals, i1, i2, and i3. Consider a cake-division a = (1, 0, 0). Its 
structure consists of three treatments:  
 

(1, 0, 0), (0, 1, 0) and (0, 0, 1). 
 
On the other hand, the structure of b = (1/2, 1/3, 1/6) consists of six treatments. 
In b, each of the three individuals gets a different share and there are six ways 
in which we can assign these three different shares to three individuals.  

For any treatment a in T, let Sa be the structure of a. The number of 
treatments in a structure may vary but is always finite given that I is finite: If I 
contains n individuals, the number of treatments in a structure is at most equal 
to n!, which is the number of possible permutations on I. Different 

                                                 

4 This follows because it is true by definition that the set of automorphisms 
contains the identity automorphism and is closed under inverses and relative 
products. 



automorphisms correspond to different permutations on I and the number of 
treatments in a structure cannot exceed the number of automorphisms. But it 
can be smaller: In some cases, several permutations on I induce automorphisms 
transforming a into the same treatment, which decreases the size of Sa. This 
will be the case whenever two or more individuals are treated equally in a. 
Thus, for example, there are two permutations on individuals that give rise to 
automorphisms transforming (1, 0, 0) into (0, 1, 0). Each of them assigns i2 to 
i1, but they differ in their assignments to i2 and i3. Since the latter two 
individuals are treated equally in (1, 0, 0), in both cases (1, 0, 0) is transformed 
into the same treatment, (0, 1, 0).  

At one extreme, all the individuals are treated in the same way in e. 
Therefore, e's structure contains only e itself. At the other extreme, if all the 
individuals are treated differently in a, any two distinct automorphisms will 
transform a into different treatments, which means that the number of 
treatments in a's structure will equal the number of automorphisms. 
 
 

3. Unfairness Measure 
 
Before I introduce the last component of the model, an unfairness measure, let 
me first make a further simplifying assumption: In the situations to be 
considered, the agent knows that there is exactly one (perfectly) fair treatment 
in T, i.e. exactly one treatment in which everyone gets what he or she deserves. 
That there is at least one such treatment in T is plausible if we think of T as the 
set of coceivable ways in which the individuals might deserve to be treated. 
(See the discussion of A1 in the preceding section.). But that there is no more 
than one such way is a non-trivial constraint on the model. In some cases, it 
would need to be given up. 

The unfairness measure d is based on this assumption. d is a function from 
pairs of treatments to real numbers, with the following interpretation: d(a, b) 
specifies the degree of unfairness of a on a hypothetical supposition that it is b 
that is the (perfectly) fair treatment. This degree of unfairness can be seen as 
the distance from a to b: To the extent a’s unfairness is greater, a is farther 
away from b. On this interpretation, d can be assumed to satisfy the standard 
conditions on a distance measure:  
 



 

(D0)   d(a, b) ≥ 0;                                                         (Non-negativity) 
(D1)   d(a, b) = 0 iff a = b;                                                 (Minimality) 
(D2)   d(a, b) = d(b, a)                                                          (Symmetry) 
(D3)   d(a, b) + d(b, c) ≥ d(a, c)                             (Triangle Inequality) 

 
Interpreting d as distance gives the model a geometric flavour. The pair (T, d) 
is then a metric space: a set of points with a distance measure defined on it. 
The set I of individuals may be seen as the set of dimensions of that space: A 
point a = (a1, …, an) is defined by its coordinates on the different dimensions ik 
in I. 

As will be seen in the next section, interpreting unfairness as distance goes 
well beyond what’s needed for our purposes. In particular, it needn’t be 
assumed that the unfairness measure is symmetric or that it satisfies triangle 
inequality. Especially since some of these superfluous assumptions, such as 
symmetry, have quite notable implications.5 Nevertheless, this geometric 
interpretation is not implausible and, in addition, it makes the model more 
intuitive and easier to grasp. 

One further very natural condition on d is Impartiality, which requires d to 
be invariant under automorphisms:  
 

Impartiality: For all automorphisms p and all a, b in T, d(p(a), p(b)) = 
d(a, b). 

 
According to this condition, if one permutes the individuals in two treatments 
in the same way, the distance between the treatments doesn’t change. This 
means that the unfairness measure pays no attention to personal identities. 
Thus, for example, giving all of the cake to the individual who only deserves a 
small share is equally unfair independently of who it is who gets this unfair 
advantage. 

                                                 

5 Thus, symmetry implies that for every a in T, d(e, a) = d(a, e), which means that 
equal treatment of unequals is just as unfair as the correspondingly unequal 
treatment of equals. This means that, in the presence of symmetry, justification of 
PE cannot be traced back to the differential moral costs of errors (cf. section 1 
above).  



How is d to be understood on the different interpretations of our model? 
Consider Cake-Divisions first. It seems plausible that for each individual i, the 
distance between two cake-divisions should be an increasing function of the 
(absolute) difference between the shares of the cake they give to i. I.e., the 
distance between treatments a and b should be an increasing function of |a1 - 
b1|, ... , |an - bn|. The simplest function of this kind is the sum: |a1 - b1| + ... + |an 
- bn|. This kind of measure is sometimes called city-block distance. If we 
instead go for the sum of the squared differences and then take the square root 
of that sum, we get Euclidean distance. City-block and the Euclidean measure 
are two instances of the class of Minkowski distance functions. d belongs to 
this class iff, for some k ≥ l, and for all a, b in T, d(a, b) = the k-th root of the 
sum |a1 - b1|

k + ... + |an - bn|
k. If k = l, the so-defined d is the city-block distance; 

if k = 2, it is the Euclidean distance. The higher k is, the more disproportionate 
influence is given, by exponentiation, to the larger differences |ai – bi|, as 
compared with the smaller differences. Only if k = 1, all the differences are 
given influence proportionate to size. 

How is the distance measure to be understood for Rankings? Again, there 
are several possibilities, but the proposal due to Kemeny and Snell seems 
especially plausible. A ranking might be seen as a set of ordered pairs of 
individuals: A pair (i, j) belongs to a ranking a iff a ranks i at least as highly as 
it ranks j. We fully specify a given ranking by providing a list of such ordered 
pairs. Now, the distance between two rankings, a and b, can be measured by 
the number of pairs that belong to either a or b but not to both of these 
rankings. It is easy to show that this definition satisfies the standard conditions 
on a distance measure (D0 - D3 above).6

For the case of Indivisible Goods we don’t have a plausible definition of 
distance that is generally applicable. Different situations that exemplify the 

                                                 

6Cf. Kemeny & Snell 1962, chapter on Preference Ranking: An Axiomatic 
Approach. The authors show that this measure is the only distance function on 
rankings that satisfies the following condition:  
If a ranking b lies ‘between’ rankings a and c, in the sense that it is included in 
their union and includes their intersection, then d(a, b) + d(b, c) = d(a, c). 
I.e., if b lies between a and c in the specified sense, then, intuitively, b lies on the 
shortest line connecting a and c.  



 

general structure of Indivisible Goods require different specifications of the 
unfairness measure. Let us therefore focus on the scholarship example we have 
started with. The example involves two individuals, i and j, and two 
scholarships, one more attractive, A, and the other, B, less so. Let us suppose 
that one of them (though unknown which one) is more deserving than the 
other.7

There is no need to fully specify a suitable unfairness measure d. I will 
only assume that the following holds: the distance between alternative 
treatments in which each individual gets a scholarship, i.e., the distance 
between a = ({A}, {B}) and b = ({B}, {A}), is shorter than the distance to each 
of these treatments from the equal treatment e = (∅, ∅), in which none of the 
individuals gets anything. To put it formally,  
 

d(e, a) > d(b, a) = d(a, b) < d(e, b). 
 

Intuitive motivation: If a is fair or if b is fair, both individuals deserve a 
scholarship. But then withholding the scholarship from both is even more 
unfair than giving the somewhat more attractive scholarship to the less 
deserving individual. Also, since d is symmetric, d(b, a) = d(a, b).  
 
 

4. Information Measure and Expected Unfairness 
 
Apart from the fixed components, I, T, e, and d, our model contains one 
variable component: a probability distribution P on T, which reflects the 
agent’s information about the case at hand. For every a in T, P(a) stands for 
the agent’s probability for a being the (perfectly) fair treatment. 8  

                                                 

7 This assumption is made in order to guarantee that the fair treatment belongs to 
T. If both candidates were equally deserving, none of the available treatments 
would be fair. 
8 Fixed components are marked in bold, while the variable component is italicized. 
We take P to be variable, since we want to examine whether equal treatment ought 
to be chosen for every P that does not discriminate between the individuals. 



Since, as we have assumed, the agent knows that there is exactly one fair 
treatment in T, we take it that the P-values for different treatments sum up to 
one. There is a difficulty here, though. On some interpretations, such as Cake-
Divisions, the number of possible treatments in T is infinite. In such cases, the 
sum of P-values for different treatments might be lower than one and might 
even be zero if the probability is distributed uniformly over T. In such a 
uniform distribution, each treatment gets the probability zero (unless we allow 
infinitesimals as probability values) and the sum of zeros is zero. This 
difficulty could be dealt with by replacing summation with integration, but to 
keep the calculations at the elementary level I will assume that there exists a 
finite subset of T such that the agent is certain that the fair treatment belongs to 
that subset. Then P-values of different treatments will sum up to one, as 
desired, and, for any subset Y of T, we can define P(Y), the probability that Y 
contains the fair treatment, as the sum of P-values assigned to the elements of 
Y: 
 

P(Y) = Σa ∈ Y P(a). 
 

To say that the available information does not discriminate between the 
individuals in I must mean that structurally identical treatments are assigned 
the same P-values. Thus, we are led to the following definition:  
 

P does not discriminate between the individuals iff for all structurally 
identical a and b in T, P(a) = P(b).9

 
Two treatments are structurally identical iff there is an automorphism that 
transforms one into the other. Thus, P does not discriminate between the 
individuals iff it is invariant under automorphisms: for every p and a, P(a) = 
P(p(a)). Note also that if P does not discriminate between individuals, then for 
every a, P(a) equals the probability of a’s structure Sa, divided by the number 
of treatments that belong to this structure: P(a) = P(Sa)/card(Sa). 

                                                 

9 Our finiteness constraint on P doesn’t hinder P from being indiscriminative in 
this way. The reason is that every structure is finite if I is finite. 



 

It is easy to define the expected unfairness of a treatment a with respect to a 
given probability function P as the P-weighted sum of its distances to different 
possible treatments. For every treatment b, the distance from a to b is weighted 
with the probability P(b) of b being the fair treatment.  
 

Expected unfairness:       ExpUnfP(a) = Σb ∈ T P(b) d(a, b). 
 
For the expected value to be a meaningful notion, it’s enough if the underlying 
value function is unique up to positive affine transformations, i.e., up to the 
choice of unit and zero. Representing unfairness as distance implies that the 
only thing that’s left for an arbitrary decision is the unit of measurement. The 
zero-point for distance is not arbitrary: That each point’s distance to itself, and 
only to itself, equals zero is a defining feature of a distance measure.  

Even apart from the fixity of the zero-point, it should be clear that 
interpreting the unfairness measure d as a distance function is much more than 
we need in order to give meaning to the notion of expected unfairness. Neither 
symmetry nor triangle inequality are needed for this purpose. But, as suggested 
above, treating unfairness as distance is not implausible and it makes the model 
easier to grasp.  
 
 

5. Expected Unfairness and Equal Treatment 
 
Consider the following hypothesis: 
 

ExpUnf-minimization: For every P that does not discriminate between 
the individuals and for every treatment a in T, ExpUnfP(e) ≤ 
ExpUnfP(a). 

 
In other words, on this hypothesis, equal treatment minimizes expected 
unfairness in the absence of discriminating information. This would explain 
why PE should be accepted.  

We want to know under what circumstances the hypothesis is going to 
hold. More precisely, we want to know what condition on the unfairness 
measure would make ExpUnf-minimization valid. 



If Y is a finite set of treatments, let ⎯d(a, Y) stand for a’s average distance 
to the treatments in Y:  
 

⎯d(a, Y) = Σb ∈ Y d(a, b)/card(Y). 
 
The following condition on d can be shown to be both necessary and sufficient 
for ExpUnf-minimization: 
 
Structure Condition: For every structure S ⊆ T and every a ∈ T, ⎯d(e, S) ≤ 
⎯d(a, S). 
 
The condition states that, for every structure S, equal treatment has a minimal 
average distance to S, as compared with other treatments. 
 

Sufficiency:   Structure Condition   ⇒   ExpUnf-minimization 
 
Proof: 
 

Claim: If P does not discriminate between the individuals, then for 
every a ∈ T,  

ExpUnfP(a) = ΣS ⊆ T P(S)⎯d(a, S). 
 
I.e., in the absence of discriminating information, a’s expected unfairness is a 
weighted sum of its average distances to different structures, with weights 
being the probabilities of these structures. Here’s the proof of the Claim: 
 

ExpUnfP(a)  =  Σb ∈ T P(b) d(a, b)                     [by the definition of ExpUnf] 
                     =  ΣS ⊆ T Σb ∈ S P(b) d(a, b)                [since T can be partitioned  
                      into structures] 
                     =  ΣS ⊆ T Σb ∈ S (P(S)/card(S)) d(a, b)                         [since P is  
                   indiscriminative] 
                     =  ΣS ⊆ T P(S) (Σb ∈ S d(a, b)/card(S))                       [by algebra] 
                     =  ΣS ⊆ T P(S)⎯d(a, S)                            [by the definition of ⎯d] 

 



 

Given the Structure Condition, the average distance from e to a structure S 
never exceeds the corresponding distance from any a to S. Consequently, 
Claim implies that ExpUnfP(e) ≤ ExpUnfP(a). � 
 
   We now want to prove that the Structure Condition is necessary for ExpUnf-
minimization: 
 

Necessity:   Structure Condition   ⇐   ExpUnf-minimization 
 
Proof: We need to show that if the Structure Condition is violated by our 
model, i.e., if for some structure S and treatment a, ⎯d(a, S) < ⎯d(e, S), then 
ExpUnf-minimization is violated as well: there exists a probability function 
P that does not discriminate between the individuals and is such that, with 
respect to P, the expected unfairness of a is lower than the expected 
unfairness of e. To construct a P like this, we simply let it be the uniform 
probability distribution on S. � 
 

To forestall possible misunderstandings, it should be pointed out that for a 
particular P that does not discriminate between the individuals, e might 
minimize expected unfairness with respect to that P even if the underlying 
unfairness measure d happens to violate Structure Condition. However, 
Structure Condition is necessary if e is to minimize expected unfairness for all 
possible P that do not discriminate between the individuals, as required by the 
hypothesis of ExpUnf-minimization. 

 
Is Structure Condition satisfied by the different interpretations of our 

model? I think it is fair to say that this condition usually holds. It can be shown 
to hold for all Minkowski-distance measures on cake-divisions.10 It can also be 

                                                 

10For the proof, see Rabinowicz (2008), Appendix A. In that appendix, I consider a 
more general interpretation on which T consists of all possible real-number 
assignments to individuals, i.e., not only those in which the assigned numbers are 
non-negative and add up to 1 (as in Cake-Divisions). On this interpretation, there 
are non-denumerably many equal treatments in T.  The following condition is 
shown to be satisfied by every Minkowki-distance measure on such a set T:  



shown to hold for the Kemeny-Snell distance measure on rankings.11 On the 
other hand, this condition is violated in the scholarship example. There, as we 
remember, the distance between treatments a = ({A}, {B}) and b = ({B}, {A}) 
is shorter than the distance to each of them from the equal treatment e = (∅, 
∅). Since the set {a, b} is a structure, it immediately follows that the average 
distance from a to this structure is shorter (in fact, more than twice as short) 
than the corresponding average distance from e to the structure in question: 
 

⎯d(a, {a, b}) = (d(a, a) + d(a, b))/2 = d(a, b)/2  
< (d(e, a) + d(e, b))/2 = ⎯d (e, {a, b}). 

 
Since Structure Condition is violated in this case, it follows that there exists 

a probability function P that does not discriminate between the individuals and 
with respect to which e's expected unfairness exceeds the expected unfairness 
of a: One such P is the uniform probability distribution on {a, b}. If we are 
certain that the fair treatment is either a or b, with each of these treatments 
being an equally likely candidate to the title, treating the individuals equally by 
withholding the scholarships from both will not minimize expected unfairness.  
 

                                                                                                      

 
Generalized Structure Condition: For every a ∈ T, there exists an equal 
treatment ea ∈ T such that for every structure S ⊆ T, ⎯d(ea, S) ≤ ⎯d(a, S). 

 
For Minkowski spaces, ea is obtained from a by averaging:  
 

For every individual i, ea(i) = (a1 + …. + an)/n.  
    
When T is restricted to the set of Cake-Divisions, in which real values assigned to 
the different individuals add up to 1, ea  will coincide with e, for every cake-
division a. Therefore, for this restricted set of treatments, the simple Structure 
Condition will hold. 
11 For the proof, see Rabinowicz (2008), Appendix B. 



 

As we have seen in this section, Structure Condition is both sufficient and 
necessary if equal treatment is to minimize expected unfairness. But this 
condition is neither especially transparent nor intuitive. It has a feel of a 
constraint that itself should be derivable from some more basic and simple 
conditions. What these conditions might be is not clear to me, however. One of 
them would probably be Impartiality mentioned in section 3, which implies 
that for each structure, all its elements are equi-distant from the equal 
treatment. But we obviously need other conditions as well.12 The conjecture is 
that they would guarantee, together with Impartiality, that for every structure, 
the treatments in that structure form vertices of a regular geometric figure that 
has equal treatment in its center, thereby implying the Structure Condition. 
Finding these underlying conditions is, as I see it, a major outstanding problem 
that is left for further inquiry. 
 
 

6. Minimax 
 
Given Structure Condition, equal treatment minimizes expected unfairness in 
the absence of discriminating information. However, for some people, this 
might not be a decisive consideration. They might feel that the proper course of 
action is not to minimize expected disvalue but rather to minimize the maximal 
potential disvalue, i.e. to minimize unfairness in the worst possible case that 
has a non-zero probability. What is the position of equal treatment from this 
‘minimax’ perspective? 

A treatment a’s maximal possible unfairness with respect to a probability 
distribution P can be defined as a’s maximal distance to a positively P-valued 
treatment: 

 
Maximal possible unfairness: 

MaxUnfP(a) = max{d(a, b): b ∈ T & P(b) > 0}.13

                                                 

12 Impartiality is satisfied in the scholarship example despite the fact that this 
example violates Structure Condition. 
13If the set {d(a, b): b ∈ T & P(b) > 0} is infinitely large, it might lack a maximum 
(or even an upper bound). However, this problem won’t arise as long as we hold on 



 
With this notion in hand, we can consider the following hypothesis: 
 

MaxUnf-minimization:  For all P that do not discriminate between the 
individuals, and all a in T, MaxUnfP(e) ≤ MaxUnfP(a). 
 

If this hypothesis holds, it would provide another potential reason for accepting 
PE. 

As is easily seen, the following condition on d is both necessary and 
sufficient for the validity of MaxUnf-minimization: 
 

Minimax Condition:  For every a in T and every structure S ⊆ T, 
max{d(e, b): b ∈ S}  ≤  max{d(a, b): b ∈ S}. 

 
According to Minimax Condition, equal treatment minimizes maximal distance 
to every structure, as compared with other treatments in T. 
 

Sufficiency:   Minimax Condition   ⇒   MaxUnf-minimization 
 
Proof: Let c be any treatment such that P(c) > 0 and MaxUnfP(e) = d(e, c). Let 
Sc be the structure of c. By Minimax Condition, it holds for every a in T that 
 

max{d(e, b): b ∈ Sc}  ≤  max{d(a, b): b ∈ Sc}. 
 
But then, for some c’ ∈ Sc, d(a, c’) = max{d(a, b): b ∈ Sc} ≥ max{d(e, b): b ∈ 
Sc} = d(e, c). Since P(c) > 0 and P does not discriminate between the 
individuals, P(c’) = P(c) > 0. Consequently, MaxUnfP(a) ≥ d(a, c’). Since d(a, 
c’) ≥ d(e, c) = MaxUnfP(e), it follows that MaxUnfP(a) ≥ MaxUnfP(e). � 
 

Necessity:   Minimax Condition   ⇐   MI-minimization 
 

                                                                                                      

to our simplifying assumption that the number of treatments in T with positive P-
values is finite. 



 

Proof: Suppose that for some a and S, Minimax Condition is violated: 
 

max{d(e, b): b ∈ S} > max{d(a, b): b ∈ S}. 
 
Let P be the uniform probability distribution on S. Then P does not 
discriminate between the individuals, but MaxUnfP(e) = max{d(e, b): b ∈ S} > 
max{d(a, b): b ∈ S} = MaxUnfP(a). Which means that MaxUnf-minimization 
is violated as well. � 
 

If the distance measure satisfies the Structure Condition and Impartiality, 
there is no need to impose Minimax Condition as an independent constraint. It 
can be shown that 
 

Structure Condition & Impartiality   ⇒   Minimax Condition. 
 
Proof: Impartiality implies that for every a in T and every automorphism p, 
d(e, a) = d(p(e), p(a)) = d(e, p(a)). Since a and b are structurally identical iff b 
= p(a) for some automorphism p, and since e is invariant under automorphisms, 
the following must hold given Impartiality: 
 

For all structurally identical treatments a, b in T, d(e, a) = d(e, b). 
 
Thus, for every structure S, e is equi-distant from every treatment in S. Now, 
consider any treatment a in T. By the Structure Condition, ⎯d(e, S) ≤ ⎯d(a, S). 
Therefore, since e's distance to different treatments in S is constant, the 
maximal distance from e to the elements of S cannot exceed the maximal 
distance from a to the elements of S. Minimax Condition follows. � 
 

Thus, given the impartiality of the distance measure, equal treatment will 
automatically minimize not only expected unfairness but also maximal possible 
unfairness, if that measure satisfies the Structure Condition.14 There is 
                                                 

14 This means, in particular, that equal treatment minimizes maximal possible 
unfairness in Rankings with Kemeny-Snell distance and in Cake-Divisions with 
Minkowski distance, but does not minimize it in the scholarship example. If P({A}, 



therefore no need for an independent worry about minimax considerations. 
However, an interesting question is whether there are any plausible 
interpretations of our model in which the distance measure satisfies Minimax 
but violates the Structure Condition. On such interpretations, it will be possible 
to have probability distributions that do not discriminate between individuals 
and with respect to which e does not minimize expected unfairness, even 
though on all non-discriminative probability distributions e will minimize 
maximal possible unfairness. The issue whether to opt for equal treatment will 
on such interpretations sometimes depend on whether we adhere to the 
minimization of expected disvalue or to minimaxing. I don’t know, however, 
of any plausible interpretation of this kind.  
 
 

7. Extensions 
 
The model we have presented rests on a series of simplifying assumptions. 
While it always is a good idea to start out with a simple formal framework, this 
makes our approach unrealistic in several respects. It is therefore natural to 
consider possible extensions of the modeling. Here are some rather obvious 
questions to ask: 
 
(i) What if the set of treatments contains more than one equal treatment?  
 
In some cases of this kind there might not exist any equal treatment that 
minimizes expected unfairness or maximal possible unfairness as compared 
with all other treatments in T. What one might hope for, though, is that for 
every treatment a in T there is always some equal treatment that is at least as 
satisfactory as a in terms of minimization of expected unfairness and/or 
minimization of maximal possible unfairness. This would mean that treating 
individuals unequally is never preferable to all forms of equal treatment. More 

                                                                                                      

{B}) = P({B}, {A}) = ½, the equal treatment (∅, ∅) will be a bad choice for a 
minimaxer. 



 

precisely, if we just focus on minimization of expected unfairness, what one 
might hope for is the following:  
 

Generalized ExpUnf-minimization: For every treatment a in T, T 
contains some equal treatment ea such that for every P that does not 
discriminate between individuals, ExpUnfP(ea) ≤ ExpUnfP(a).  

 
It is easy to prove that the condition on the distance measure that is both 
necessary and sufficient for Generalized ExpUnf-minimization is a generalized 
version of the Structure Condition: 
 

Generalized Structure Condition: For every a ∈ T, there exists an equal 
treatment ea ∈ T such that for every structure S ⊆ T,  

⎯d(ea, S) ≤ ⎯d (a, S).15

 
A natural question is whether this Generalized Structure Condition can be 
derived from some set of more intuitive and basic assumptions about the 
distance measure. 
 
(ii) What if the available information is indiscriminative between the 
individuals within a subgroup X ⊆ I, but not necessarily outside that subgroup?  
 
Let me introduce some definitions: 
 

If X ⊆ I, p is an X-automorphism iff p is an automorphism that 
permutes X onto X and for all i in I that do not belong to X, p(i) = i. 
 
A probability distribution P on T does not discriminate between the 
individuals in X ⊆ I iff P is invariant under X-automorphisms, i.e, iff 
for all X-automorphisms p and all a ∈ T, P(p(a)) = P(a). 
 

                                                 

15 For a discussion of Generalized Structure Condition, see footnote 10 above. 



If X ⊆ I and a, b ∈ T, a and b are X-structurally identical iff there is 
some X-automorphism p such that p(a) = b. 
 
a is an X-equal treatment iff for all i, j in X, a(i) = a(j). 

 
If we just focus on the minimization of expected unfairness, we might be 
interested in the following hypothesis:  
 

Subgroup-Generalized ExpUnf-minimization: For every X ⊆ I and 
every a ∈ T, T contains some X-equal treatment ea, X such that for every 
P that does not discriminate between individuals in X, ExpUnfP(ea, X) ≤ 
ExpUnfP(a).  

 
This hypothesis provides reasons for equal treatment of those individuals 
between which our information does not discriminate. 
Since X-structural identity is an equivalence relation, just like the ordinary 
structural identity, T can be partitioned into X-structures – equivalence classes 
with respect to X-structural identity. The condition on the distance measure that 
is necessary and sufficient for Subgroup-Generalized ExpUnf-minimization is 
a further generalization of the Generalized Stucture Condition: 
 

Subgroup-Generalized Structure Condition: For every X ⊆ I and every 
a ∈ T, there exists an X-equal treatment ea, X ∈ T such that for every X-
structure S ⊆ T, ⎯d (ea, X, S) ≤ ⎯d (a, S).16

 

                                                 

16 In the case of Cake-Divisions, we may conjecture that ea,X is obtainable from a 
as follows: (i) for every i in X, ea, X assigns to i the average of the values assigned 
by a to the members of X; while (ii) for every i outside X, ea, X(i) = a(i). It is less 
clear, however, how to construct ea, X in the case of Rankings. The individuals in X 
should be of course be ranked equally in ea, X. But how should these individuals be 
ranked vis-à-vis the individuals that do not belong to X? There is no obvious 
answer to this question. 



 

It is easy to see that this condition entails the Generalized Structure Condition 
as a special case (for X = I), but it would be interesting to know how to derive 
it from some more basic conditions on a distance measure. 
 
(iii) What if there might be several (perfectly) fair treatments, and not just one?  
 
We would then need to work with a different unfairness measure: 
 

d(a, Y) – the degree of unfairness of a on the hypothetical assumption 
that Y is the set of all fair treatments in T.  
 

We take it that d(a, Y) is defined only if Y is non-empty and finite. (Finiteness 
is assumed for the sake of simplicity.) An obvious requirement on this measure 
is that d(a, Y) = 0 iff a ∈ Y. In other words, the degree of unfairness of a is 
zero if and only if a is one of the (perfectly) fair treatments. In fact, d(a, Y) 
could simply be defined in terms of distance between treatments, as the 
minimal distance from a to the elements of Y.17

We would also need a different measure of information. The new measure 
would have to be a probability distribution on sets of treatments rather than on 
individual treatments: 
 

P(Y) – the probability that Y is the set of all fair treatments in T. 
 
For such a probability measure P, the notion of non-discrimination would have 
to be appropriately re-defined: 
 

P does not discriminate among the individuals iff for all automorphisms 
p, P(p(Y)) = P(Y), where p(Y) = {b: ∃a∈Y p(a) = b}. 

 

                                                 

17 I.e., we could let d(a, Y) be min{b∈ Y: d(a, b)}, with d(a, b) now interpreted as 
d(a, {b}). If Y were allowed to be infinite, d(a, Y) could be instead be identified 
with the greatest lower bound of {d(a, b): b ∈ Y}. 



And we would need to correspondingly re-define the notions of expected 
unfairness and maximal expected unfairness: 
 

ExpUnfP(a): ΣY ⊆ T P(Y) d(a, Y). 
MaxUnfP(a) = max{d(a, Y): Y ⊆ T & P(Y) > 0} 

 
The obvious question is: What conditions on the re-defined unfairness measure 
will then guarantee that, in the absence of discriminating information, equal 
treatment will minimize expected unfairness and/or maximal expected 
unfairness? Will some condition analogous to our Structure Condition do the 
job?18

 
These are just some of the follow-up questions that could be raised. But their 
examination would require another paper.19
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