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Abstract
The paper considers period overruns in control tasks
with variations in execution time (or response time).
A simple model is used, where the input and output
operations are assumed to be time-triggered, and the
execution-time distribution of the task is assumed
to be known. Three overrun strategies, called Abort,
Skip, and Queue, are modeled as discrete-time jump
linear systems and are analyzed with regard to
control performance. The analysis is exemplified
on an integrator process. It is argued that the
Skip strategy has good performance, is simple to
analyze, and is easy to implement in real-time
operating systems. Some simple extensions are also
considered.

1. Introduction
In embedded control systems, the computational
resources are limited and must be used as efficiently
as possible. In such systems, it may not always
be feasible to use high sampling rates and to base
the real-time system design on worst-case execution
times.

In this paper, we study controllers that experience
variations in their execution times from sample to
sample. If the control task has not finished its
execution by the end of the sampling period, an
overrun is said to have occurred. The overrun can
be viewed as an exception that must be handled by
the real-time operating system and by the controller.
The variations in execution time may stem from
the control application itself, from the real-time
system, or from the computing hardware. Examples
in the first category include discrete logic and data-
dependencies in the control algorithm. In the second
category, we find preemption from higher-priority
tasks and interrupts1. The third category includes
hardware effects such as cache misses.

1The total execution time, including preemption from higher-
priority tasks, is usually referred to as the response time of the
task.

At the heart of the problem is a trade-off between the
sampling period and the probability and consequence
of overruns. Using conventional notation from real-
time systems, the CPU utilization U of a task is
given by

U = C
T

(1)

where C is the worst-case execution time of the task,
and T is the task period. It is seen that, for a given
value of U , a large enough T must be chosen to
accommodate the largest possible execution time.
It is well known that an overly long sampling
period leads to degraded control performance. Hence,
it can be tempting to choose a smaller T than
what is dictated by (1). The penalty that must be
payed is that of possible execution overruns. If the
performance loss due to the overruns is smaller than
the performance gain due to the shorter sampling
period, then such a design could be considered to be
“better” than a classical worst-case design.

The influence of the sampling interval on the control
performance is relatively easy to understand and
to compute. The consequence of execution overruns
is considerably more difficult to predict. The result
depends on a large number of factors, including
how the I/O is performed, the basic scheduling
algorithm used in the operating system, the specific
overrun handling method used, the execution-time
characteristics of the control task, the controller and
plant dynamics, and whether or not the controller
can compensate for overruns. Hence, it may not be
possible to devise an overrun handling method that
is “the best” for all control applications.

To allow for some control analysis, in this paper
we will consider a very simple model of a real-
time control system. The model is based on the
seminal paper on real-time scheduling theory, [Liu
and Layland, 1973]. The input and output operations
of the controller are assumed to be time-triggered
and synchronized such that the reading and writing
of measurement and control signals occur at the
same time. Hence, assuming non-zero computation



times, there will be a computational delay of at least
one sample in the feedback loop. Furthermore, it
is assumed that the execution time of the control
algorithm in successive periods is independent and
can be described by a stochastic variable with a
known distribution. These assumptions will allow
us to model the real-time control system as a jump
linear system. The performance of the system (as
measured by a quadratic cost function) can then be
evaluated for different overrun handling strategies.

1.1 Related work
The study of execution overruns is closely related to
the analysis of control systems with random delays.
Systems with random sampling and random delays
are modeled as jump linear systems in [Krasovskii
and Lidskii, 1961]. Discrete-time jump linear sys-
tems are treated in e.g. [Ji et al., 1991]. Control sys-
tems with random delays and skips are also treated
in [Davidson, 1973]. Linear-quadratic analysis and
control of systems with random network delays are
studied in [Nilsson et al., 1998]. Jitterbug [Lincoln
and Cervin, 2002] is a MATLAB-based toolbox that
allows the evaluation of a quadratic cost function for
a control system with aperiodic sampling, skips, etc.

Skips and overruns have been studied quite ex-
tensively in the real-time literature. Scheduling of
systems that allow skips is treated in [Koren and
Shasha, 1995] and [Ramanathan, 1997]. The lat-
ter paper considers scheduling that guarantees that
at least k out of n instantiations will execute. A
slightly different motivation for skipping samples is
presented in [Caccamo and Buttazzo, 1997]. Here the
main objective is to use the obtained execution time
to enhance the responsiveness of aperiodic tasks.

The constant bandwidth server [Abeni and Buttazzo,
1998] is a scheduling mechanisms for soft and/or
aperiodic tasks. When a task has an overrun, the
deadline is postponed by a period so that the schedu-
lability of other tasks are not jeopardized. A vari-
ant of the constant-bandwidth server specifically de-
signed to handle overruns in real-time control sys-
tems is presented in [Caccamo et al., 2002]. The pro-
posed server, called CBShd, differs from the original
CBS by postponing the deadline only by the amount
needed to complete the job. In this way, the task can
be scheduled more efficiently and finish earlier.

1.2 Outline
In Section 2, the system model is given, and three
different overrun handling strategies are suggested.
The strategies are modeled as Markov chains, allow-
ing the closed-loop system to be described as a jump
linear system. In Section 3, the analysis is exempli-
fied on an integrator process, and in Section 4, some
extensions and relationships to real-time scheduling
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Figure 1 The system model assumed in this paper. The
I/O is time-triggered with the period T .

algorithms are discussed. Finally, Section 5 contains
the conclusions.

2. Overrun Strategies

2.1 System model and performance evaluation
The real-time control system assumed in this paper
is shown in Fig. 1. The plant and the control
computer are interfaced by a time-triggered I/O unit
that takes measurement samples with from the plant
and forwards control signals (using zero-order hold)
from the controller, both with the period T .

Each measurement sample generates a job (task
instance) in the computer. If the execution time
of the job is larger than the sampling period, an
overrun occurs and the control signal will not be
updated in the next sampling interval.

The plant is described by a linear continuous-time
system P(s), and the controller is described by a
linear discrete-time system, C(z). The controller is
typically designed taking the one-sample delay in
the feedback path into account. Both systems are
assumed to be disturbed by white noise processes.

The execution time (or response time) of the con-
trol algorithm is described by a probability density
function fc(x). An example of an execution-time dis-
tribution is shown in Fig. 2. Here, the execution time
varies between a common, lower, nominal value cnom
and an upper, maximum value cmax. This could model
a task which experiences occasional cache misses. In
a real system, the execution times from sample to
sample are typically not independent. Another mod-
eling problem is that it can be very hard to find the
maximum execution time.
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Figure 2 Example of a probability density function
describing the execution-time distribution of a control
task.
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Figure 3 The Abort strategy.

Below, we describe three different overrun handling
strategies; Abort, Skip, and Queue; and show how
they can be modeled using Markov chains. Also, the
implementation of the strategies in the real-time
system are discussed.

In our models, a Markov chain makes two transitions
every period T . Each transition takes T/2 seconds,
during which the continuous-time dynamics of the
plant evolve. When a node is reached, a discrete-time
system (the I/O or the controller) associated with
the node may be updated. Sampling the plant with
the interval T/2, the closed-loop system can then be
written as a discrete-time jump linear system,

x(k+ 1) = Φnx(k) + Γnv(k) (2)

where the state vector x collects the plant, controller,
and I/O states, v is a discrete-time white noise
process, and the transition matrix Φn and the input
matrix Γn depend on the current Markov state n.

Given a Markov chain, it is straightforward to
compute the stationary covariance of x by iteration
and to evaluate a quadratic cost function for the
system. For the calculations in this paper, we have
used the Jitterbug toolbox [Lincoln and Cervin,
2002].

2.2 The Abort strategy
From a real-time perspective, a period overrun can
be viewed as a missed deadline. If the real-time op-
erating system supports the monitoring of deadlines,
an exception can be generated when the overrun oc-
curs, killing the job. This is referred to as the Abort
strategy. An illustration of the strategy is given in
Figure 3. Aborting the current job means that no
new control signal will be produced this period, but,
at the same time, the next job will have a better
chance of finishing before its deadline.

The Abort strategy can be modeled by a simple
Markov chain as shown in Fig. 4. The I/O system
is updated at the beginning of each period. Then,
with a probability of p =

∫ T
0 fc(x)dx, the job will

finish before the period, causing the controller C
to be executed. If the controller has executed, the
control signal will be delivered to the plant by the
I/O at the beginning of the next period.

Although simple to model, the Abort strategy may
be difficult to implement. Some languages, such as
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Figure 4 Markov chain for the Abort strategy.

t := StartTime() + T;

loop

select

delay until t;

then abort

Read_input();

Compute_control();

Write_output();

end

t := t + T;

delay until t;

end

Listing 1 Pseudo-code for implementation of the Abort
strategy.

Ada (e.g., [Burns and Wellings, 2001]) and Real-Time
Java (RTSJ, [Bollella et al., 2000]) have explicit sup-
port for timeouts and asynchronous transfer of con-
trol (program flow). Listing 1 shows the pseudo-code
for the Abort strategy (in an Ada-like language).
Generally, however, operating systems do not sup-
port asynchronous transfer. One alternative is to in-
sert extra checkpoints in the code. Here, the clock
can be read and it can be determined whether the
task is late, causing a branch to the end of the loop.
Another possibility is to use a timer and to lower
the priority (or equivalent) of the late task, letting
it run in the background until it has finished. Mean-
while, a new task, taken from a task pool, is used to
execute the next job. Such a scheme introduces addi-
tional overhead. Care must also be taken such that
the task data is in a consistent state throughout.

2.3 The Skip strategy
In the Skip strategy, subsequent jobs and samples
are skipped as long as the current instance has not
completed. The strategy is illustrated in Figure 3.
Contrasted to the Abort method, the Skip strategy
makes certain that new control signals are even-
tually delivered to the plant. If the overrun covers
several periods, many jobs may have to be skipped,
however.

The size of the associated Markov chain depends on
the ratio of the maximum execution time cmax and
the period T . The chain for the case cmax ≤ 2T is
shown in Fig. 6. With a probability p =

∫ T
0 fc(x)dx,
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Figure 5 The Skip strategy. When the first job over-
runs, the second job is skipped.
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Figure 6 Markov chain for the Skip strategy, assuming
cmax ≤ 2T .

the output will be delayed only one period, and in
the other case the output will be delayed two periods.
For longer maximum execution times, more branches
must be added to the chain.

The Skip strategy is very simple to implement in
most real-time systems. The pseudo-code is given
in Listing 2. The task must keep track of its own
time-base, i.e., when it was first released. When a
job finishes, it can read the system clock to find out
whether it is late or not. It can then set a flag to
indicate to the next job whether it should execute
the control algorithm.

2.4 The Queue strategy
The Queue strategy can be said to be the default
implementation in systems where overruns are not
considered. The strategy is illustrated in Figure 7.
When an overrun occurs, the following job is queued
and can start once the first instance completes.

Allowing the first job to complete, the second job will
be delayed, introducing extra input-output latency.
Also, since the second job is released late, it is less
likely to complete before the third job is released.

Note that, if several long execution times occur in a
row, a long queue of jobs may build up in the RTOS.
This can lead to very poor control performance. An
alternative is to queue only the most recent job. This
modified strategy will be referred to as Queue(1).
Modeling the Queue strategy as a Markov chain is

t := TimeBase() + T;

late := false;

loop

if not late then

Read_input();

Compute_control();

Write_output();

end;

t := t + T;

if Clock() < t

delay until t;

late = false;

else

late = true;

end

end loop

Listing 2 Pseudo-code for implementation of the Skip
strategy.PSfrag replacements
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Figure 7 The Queue strategy. The second job is queued
and can start once the first job completes.

more difficult than the other cases. If an arbitrary
number of jobs may be queued, the chain will
be infinite and must be truncated at some point.
Furthermore, the state of the task, i.e., the amount of
completed execution time of the job, must be stored
between periods. Since this state is continuous in
time, it must be discretized.

A Markov chain for the Queue(1) strategy for the
case cmax ≤ 2T is shown in Fig. 8. The left-most
node corresponds to the case where there is no
queue in the system and the job finishes before
the next period. Each branch in the right-hand
side corresponds to an overrun of some length kδ ,
where δ is the chosen discretization interval for the
queue length. Since the I/O unit always executes
periodically, it may also be necessary to store old
inputs (representing an input read by the control
task in the previous period). For this purpose, in the
model, the I/O delivers two samples; the current and
the previous one. The execution of C1 represents the
reading of the latest sample, while the execution of
C2 represents reading the old sample.

The implementation of the plain Queue strategy is
trivial in most systems, since the overrun exceptions
are not really handled. The pseudo-code is given in
Listing 3. The modified Queue(1) strategy may be
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Figure 8 Markov chain for the Queue(1) strategy,
assuming cmax ≤ 2T .

t := TimeBase() + T;

loop

Read_input();

Compute_control();

Write_output();

t := t + T;

delay until t;

end loop

Listing 3 Pseudo-code for implementation of the Queue
strategy.

implemented using a technique similar to Listing 2.

3. Example
The analysis is exemplified on an integrator process,

P(s) = 1
s

which is assumed to be disturbed by a white noise
process with unit incremental variance. The con-
troller is designed to minimize the stationary cost
function

J = lim
t→∞

1
t

∫ t

0
y2(τ ) dτ

i.e., the controller is a minimum-variance controller
[Åström and Wittenmark, 1997]. The sampling inter-
val T and a computational delay of T is assumed in
the design.

An execution-time distribution is assumed according
to Figure 2, where p = 0.8, cnom = 1, and cmax = 2.
The performance for each strategy is computed for
different sampling intervals between T = 1 and T =
2. Note that the case T = 2 corresponds to a worst-
case design, where no overruns are possible. In this
case, the cost can be computed to be

√
3/3 + 3. For
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Figure 9 Comparison of costs in different overrun
handling strategies.

the Queue strategy, the queue length was discretized
with step size of δ = T/10. The results are displayed
in Figure 9, where the cost J is plotted as a function
of the sampling period T .

The cost of the Abort strategy initially decreases as
the period is decreased from cmax. This is due to
the shorter sampling interval used. As the period
becomes shorter, however, the cost increases rapidly
due to the larger number of missed outputs. The
minimum cost of J = 3.4 is obtained for T = 1.6.

For the Skip strategy, the results are reversed—the
cost initially increases due to occasional skips, but
then decreases again as the period becomes shorter.
The minimum cost J = 3.2 is obtained for the
shortest sampling interval, T = 1.

For the Queue strategy, the cost increases monoton-
ically with shorter sampling periods. The increase is
due to the successive long delays caused by the queu-
ing of jobs. The minimum cost, J = 3.6, is obtained
for the longest sampling period, T = 2.

In this example, the Skip strategy has the best
overall performance, assuming that the period can be
chosen freely. In some cases, however, the sampling
period may be dictated by the application (consider
for instance a camera delivering images at a fixed
rate), and then the Abort strategy may give better
performance. For time-triggered inputs and outputs,
the queue strategy does not seem to work very well.
This is due to the domino effect that causes repeated
missed outputs.

4. Extensions
The analysis presented in this paper are based
on two simplifying assumptions: that the execution
times are independent between periods, and that the
I/O is time-triggered. Removing either of these as-
sumptions makes the analysis much harder. Having



t := TimeBase() + T;

loop

Read_input();

Compute_control();

Write_output();

if Clock() < t

delay until t;

else

t := Clock() + T;

end

end loop

Listing 4 Pseudo-code for implementation of the
Queue–Shift strategy.
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Figure 10 Comparison of the Skip and Queue–Shift
strategies.

execution-time dependencies between jobs requires
the addition of another dimension to the Markov
chains. Removing the I/O points, one must consider
both sampling jitter and output jitter in the analysis,
and these depend on the scheduling policy used, etc.

One case that is easy to model, however, is a model
that could be called “Queue–Shift”. The idea is
the following. When a job overruns, the following
I/O operations and jobs are shifted by the same
amount as the overrun. This of course requires that
the I/O unit can be reprogrammed on the fly. The
task implementation for this strategy is simple, see
Listing. 4.

Due to the minimization of delays in the case of
overruns, the Queue–Shift strategy is expected to
outperform the other strategies. Fig. 10 compares the
cost to the Skip strategy. The Queue–Shift strategy
performs better throughout (except, of course, for
T = 2.)
It is also natural to consider control algorithms that
compensate for overruns. For instance, in the case of
state feedback from an observer, the Kalman filter
can be modified so that it considers the number of
samples the previous control signal has been active.

5. Conclusion
The problem of overruns due to varying control task
execution times has been investigated. Theoretical
analysis of simple models has shown that the perfor-
mance can be improved by choosing shorter sampling
periods that what is dictated by worst-case consider-
ations. Of the three basic overrun methods investi-
gated in the example, the Skip strategy seems to be
the most robust one. It is also very simple to imple-
ment in existing real-time systems.
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