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Abstract 

This paper considers off-line optimization of a switch- 
ing sequence for a given finite set of linear con- 
trol systems and joint optimization of control laws. 
A linear quadratic full information criterion is op- 
timized and dynamic programming is used to find 
the optimal switching sequence and control laws. 
The main result is a method for efficient pruning 
of the search tree to avoid combinatoric explosion. 
A method to prove optimality of a found candidate 
switch sequence and corresponding control laws is 
presented. 

1 Introduction and Motivation 

In real-time control systems, there are oRen restric- 
tions in communication bandwidth or CPU perfor- 
mance. The different control loops have to  share 
some resource, which is often done by time-division- 
multiplexing, i.e. using some time slots for one loop 
and some other for another loop. When the shared 
media is a computer network, it is called a networked 
control system (NCS) and has been investigated in a 
number of recent papers [5, 91. A special (and inter- 
esting) case is control over a wireless network envi- 
ronment such as Bluetooth [3], since the packets are 
long and the maximum sample rate is restricted. In 
Bluetooth only one network device can be accessed 
every 1.25 ms, so the controller has to choose which 
device to control (or sample), see Figure 1. 

The scheduling, i.e the choice of control and measure- 
ments sequences, is normally optimized off-line. The 
possibility to use on-line information in the schedul- 
ing algorithms, such as local information about sig- 
nal values, has also been suggested recently (see [l]). 
Such on-line scheduling is more complicated and will 
not be studied here. 

Off-line scheduling of linear control systems under 
quadratic criteria has been treated recently in [7, 81, 
where a separation property between control and es- 

Figure 1: A simple problem. The controller can only ac- 
cess one plant each time slot. Which sequence 
gives the best expected cost? 

timation is presented. Also [2, 4, 61 have similar 
set-ups. These references, however, do not present 
any efficient solving methods for finding a good se- 
quence and lead to search problems over large trees. 
When the control horizon increases the size of the 
trees grows exponentially. The purpose of the present 
paper is to present a tree search method that seems 
to decrease this complexity drastically. The reason 
for the improvements is believed to  be that the tree 
pruning is closely tuned to the optimization criterion. 

2 Problem Formulation 

The problems we are interested in can be formulated 
as finding the best switching sequence for discrete- 
time linear systems with respect to  a quadratic cost 
function, given a time-varying linear system 

z ( n  + 1) = @(n)z (n )  + r ( n ) u ( n )  + G(n)u(n) .  (1) 

Here z is the (extended) state space vector, U the con- 
trol signals, and U standard stochastic, independent, 
disturbances with zero mean and unit covariance. 
The system matrices @(n), r ( n )  and G(n)  can be 
chosen by the controller in each step from a small set 
of M alternative systems {(ai, Ti, Gi)}, i = 1,.  . . , M .  

For example, the problem of controlling one of several 
plants (Ai, Bi, Gi) in each time dot  can be formdated 

0-7803-6638-7/00$10.00 0 2000 IEEE 1828 



in this context by defining 

0 ... 

. .  0 AM 
GI ... 0 

G = [ 0 e . .  0 1 .  
0 GM 

The problem is to find the linear feedback law 
u(n) = -L(n)z(n)  and the sequence K ( 0 , N )  = 
{k(O),  k ( 1 ) ,  k ( 2 ) , , .  . . , k ( N ) }  corresponding to choos- 
ing @ ( n )  = @ k ( n ) ,  r ( n )  = r k ( n ) ,  G ( n )  = GL+), and 
Q(n)  = Qk(n) that minimizes the cost 

V(PZ(O), L( . ) ,  K(O9N)) = 

' + z ( N ) ~ Q N z ( N ) }  ( 2 )  

where E{z(O)} = 0 and E { Z ( O ) ~ ( O ) ~ )  = P,(O). 

3 Finding the Optimal Sequence 

We will find the optimal scheduling sequence and 
control law by doing backwards recursion of the cost 
combined with tree pruning. The optimization to find 
the best expected cost is done off-line, so no feedback 
information is used in optimization of the scheduling. 

3.1 Cost Representation and Feedback Gain 
For a fixed choice of K ( 0 ,  N ) ,  the problem is a stan- 
dard time-varying quadratic control problem. There- 
fore the best achievable cost can be written as 

V(K(O,N)) = z ( 0 ) T S K ( O , N ) Z ( O )  + CK(O,N), (3) 

where SK(O,N) is a positive symmetric matrix and 
CK(O,N)  is a constant term due to the noise. The opti- 
mal feedback law is 

u(n) = -FE ( n , N )  -' F z n , N )  T z ( n )  (4) 

and 

3.2 Finding a Candidate Sequence 
Finding the optimal sequence is, as mentioned be- 
fore, done by backwards iteration. At each step, the 
tree is first expanded by all new possible sequence 

Time 

N-3 N-2 N-l . N 

Figure 2: The control sequence tree for M = 2 when 
expanding all possibilities from N - 3 to N .  

choices (see Figure 2 ) ,  and then pruned (branches 
are removed) using the algorithm below. The set 
Kcand ( n  + 1, N )  of possible control sequences from time 
n + 1 t o  N is expanded by 

The algorithm has one tuning parameter, R > 0, 
which must be chosen by hand. A higher R will re- 
sult in a larger tree, but a too small R may not give 
the optimal solution (as is seen when trying to  prove 
optimality using the method in the next section). The 
pruning algorithm is based on the optimality proving 
method, and therefore it may not be immediately in- 
tuitive (an explanation is given below). The idea of 
the algorithm is to  make sure that pruned sequences 
would have resulted in a higher cost than those re- 
maining after the pruning. If this holds for every 
pruned sequence, the found candidate is optimal, as 
shown in the next section. 

The remaining sequences are kept in the set 
Kcand(& N ) ,  and the removed are in ~ ~ - ~ ( n ,  N ) .  
M (n,  N )  is called motivation data, and contains data 
on a pruned sequence and on the sequence which was 
judged better. This data is used in the next section to 
prove optimality of the found sequence. A sequence 
which has been used to prune another sequence can- 
not itself be pruned (this makes the later proof sim- 
pler). See also Figure 3. 

The pruning algorithm is as follows: 
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1. 

2. 

3. 

4. 

Start with Kpme(n,N),  KcC,,d(n,N), and 
M(n,  N )  being empty sets and calculate cmin = 

KEKexPmd ( n N  

If Kexpand(n, N )  is empty then quit else choose 
ICpNne E Kewand( n, N )  for possible pruning. 

such that 

min C K .  

If3Kcand E Kexpand(n,N)UKcand(n,N) a n d a  2 0 

a = m={A I (SK,,, - Q N )  2 A(~K,,, - Q N ) }  { Cprune - ccmd - (1 - a) (%in + R - ccand) 2 0 

then K,,,, is pruned, i.e. 

- Move K,,,, from the set Kewand( n, N )  to 
the set Kprune(nrN). 

- Let Kcand(n,N) = Kcand(%N) U {Kcand). 
- Let M (n, N )  =M (n,  N )  U { (cprune, a, ccmd) 1. 
- Go to  step 2. 

Else move Kpme from the set Irewand (n ,  N )  to 
Kc,d(n,N). & to step 2. 

Lower bound on cost passing these 

', - ,I Pruned sequence 

0 Candidate sequence 
'. I - \  .. I 

.. I I . .  

In English, the algorithm removes a sequence that 
has a higher fixed cost c and has a cost matrix S 
which is close to the cost matrix of some other se- 
quence (i.e. has a high a). If a 2 1, then the pruned 
sequence is worse than the candidate sequence for all 
states and therefore not optimal. The normal case 
though,. is a 5 1, which means that the pruned se- 
quence cost can be underestimated using the candi- 
date sequence cost -the exact procedure is explained 
in the next section. The parameter R has the role of 
overestimating V(0, N )  - (V(0, n )  + V(0, N -  n ) ) ,  i.e. 
the cost gain from adding the optimal costs of two 
shorter problems to solving the whole problem. 

By using this tree pruning, the number of sequences 
in Kc,d(n,N) can be kept reasonably low when re- 
cursing backwards if R is chosen small enough. After 
N iteration stages, the final proposed sequence is 

Kcand(0,N) = argmin (E(x(o)~~KX(O)) + C K )  = 
KEJL,~ (0.") 

with cost 

3.3 Optimality of the Candidate Sequence 
The candidate sequence.found by the algorithm above 
may or may not be optimal, depending on the choice 
of R. A method is now presented which can prove 
optimality of the proposed sequence if R is large 
enough. The idea of the proof is to show that a 
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Figure 3: An example of a part of a sequence tree. 
The pruned sequences all have a remaining 
sequence to which they are compared. The 
proof of optimality of a sequence is based on 
underestimating the possible costs passing the 
pruned sequences. 

lower bound on the obtainable cost by using one of 
the pruned sequences is still higher than the cost of 
the found sequence. If this holds for every pruned 
sequence, the found candidate is optimal. We start 
with a lemma: 

Lemma 1 Let M ( n , N )  = { ( C p r u n e , a , C c a n d ) i ,  i E 
[I,.]} be the motivation set from the candidate find- 
ing algorithm above. Given Vlowb(O, N ,  Kcand(n, N ) )  
such that 

min V(PZ(O), L, K(O, n) @ a n ,  NI) 2 
K(O&)+K(n&)E$,d (n&),L 

Vlowb(0, N ,  Kcand(% NI) ,  (9) 

i.e. such that vowb(O,N,Kcmd(n,N)) is a lower 
bound on the optimal cost using one of the sequences 
in Kcand(n, N )  for steps from n to N (from now on 
passing KCmd(n, N)) .  We also have vowb(0, n )  (a 
lower bound on the optimal cost in the length-n- 
problem) given. Then 

vowb(O,N,Kcand(n,N) U Kprune(n,N))  

min (1 - a)Vlowb(O, n )  + 
(cpr,,a,ccd )EM'(n,N) 

a( KOwb(0, N ,  Kcand(& N ) )  - c c m d )  + cprune (lo) 

where M ' ( n , N )  = M(n ,N)U{(O, l ,O)}  to include the 
current lower bound. Now Kowb(O, N ,  Kcand (n,  N )  U 



Kprune(n,N)) is a lower bound for the cost achieved 
if no sequences were pruned at step n. If 
Vcand = Vlowb(O,N, Kcand(n,N) U Kprune(%N)) then 
Vcmd is also the optimal cost passing Kcand(n,N) U 
Kpmne(n, N ) .  

For notational convenience we put S:-' = 

~~~~ [ ] Q [ :if; ] in what follows 

Second, for two sequences from n to N ,  Kpmne(n,N) 
and Kcand(n, N), for which 

SKp-(n.N) - QN 2 a(SKcd(n,N) - Q N )  (13) 

and Kcand E Kcand(n,N) it holds that 

A lower bound of all sequences passing Kcand(n, N )  U 
rcpprune(n,N) is obtained by taking the minimum of 
lower bounds for all pruned sequences and the re- 
maining sequences, yielding equation (10). m 

Theorem 1 Given the candidate sequence 
Kcand(O, N )  from equation (7), lower bounds 
V~owb(0,i) for the length-i-problems, i E [O..N - 11, 
and the pruned sequence motivations M ( i ,  N )  
i E [0 ... NI, a lower bound Vlwb(O,N) on the 
optimal cost can be found by iterating equation (lo) 
from n = 1 to n = N .  

I f  vcand = Vlowb(0, N ) ,  Kcand(0,N) is a sequence that 
gives the optimal cost. 

Proof: 
K p m e  (n ,  N )  pass xCCcand (n  + 1, N )  , it holds that 

Since all sequences K ( n , N )  E Kcand(n, N )  U 

which is used in the iteration. Let 
Vlowb(O, N ,  Kcand(o, N ) )  = Vcand.  Equation (16) and 
Lemma 1 gives Vlo~b(O,N,Kc,d(i,N)), i E [O..N]. A 
lower bound on the cost for the length-N-problem is 
then 

Using Theorem 1 iteratively, lower bounds (or op- 
timal costs) for the length-N-problem can be found 
by starting with a length-1-problem and iterating. 
The lower bound on the solution for each problem is 
found and used in the calculation of lower bounds for 
larger problems. The sequence tree can be kept from 
the last problem length and expanded by one step for 
each iteration, keeping complexity low. 

By keeping R small, the number of branches in the 
tree can be kept down to  a reasonable level. .If R 
is chosen too small, the optimal solution will not be 
found, or a t  least not proved using Theorem 1. A 
lower bound on the optimal solution is always found, 
though. 

A special case of the problem can be proven to be 
NP-hard. For many problems, though, the number of 
sequences expanded can be kept low while still being 
able to prove optimality. Some examples are now 
presented to show the performance of the algorithm. 

4 Examples 

To show the feasibility of the method, some exam- 
ples have been constructed. They are all based on 
the select-which-system-to-control problem, with dif- 
ferent properties. 
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?2 optimal wnlroller sequence 

- B  Optimal wntroller sequence, zoomed 

v) 5 10 15 20 
Time step 

Figure 4: The optimal controller sequence for the exam- 
ple. Note that there are no assumptions about 
periodicity, but the optimal solution turns out 
to be periodic with period 5. 

4.1 Example 1 
Consider the following two simple linear systems: 

x z ( n  + 1) = 0.9x2(n) + lu(n) + 1vz(n) 
Q = diag([ 1 1 10 1 I )  
QN = diag([ 1 1 10 I )  

PZ(O) = 0. 

The second order system is unstable, the the first or- 
der system is stable (but more expensive). The prob- 
lem is to find the control access sequence which yields 
the lowest cost. In this problem, the control signal 
will only be held at the actuator for one sample pe- 
riod. If the system is not being controlled during the 
next sample period, the control signal is zero. Run- 
ning the described tree optimization algorithm with 
R = 23 and N = 300 produces candidate sequences 
for all length-i-problems, i E [0 ... 3001, which all 
prove to be optimal. For illustration, the algorithm 
has been run with R = 15, and R = 10 as well. Opti- 
mality could not be shown for these choices of R, but 
for R = 15 the same cost as for R = 23 was achieved. 
See Figure 4 for the optimal sequence, and Figure 5 
for the number of sequences left in each iteration of 
the algorithm. Figure 6 compares found costs and 
guaranteed lower bounds for the different choices of 
R. The choice of R = 23 is motivated in Figure 7. 

4.2 Example 2 
This example is the same as Example 1, except that 
the control signal of each system is held until the 
next control signal arrives. To model this, two extra 
state variables have been added to the augmented 
system, which is now of order 5 (we could make it 4 
by reusing the held-state-variable for both systems). 
It turns out that the solution is easier to  find and 
that the sequence is less complex, see Figure 8. 

Number 01 sequences lefl aner each iterallon 
60 

' 0  50 100 150 200 250 300 
Problem length 

Figure 5: The number of sequences left after pruning 
in each iteration. After about 270 iterations, 
the tree size has "converged". Note that the 
R = 15 case is almost the same as for R = 23 
and therefore not visible. 

5200 

51% 

15 

Figure 6 Found sequence cost and guaranteed lower 
bound when running the tree pruning algo- 
rithm four times with R = 23, R = 15, and 
R = 10, respectively. For the first two,  the 
found sequence is identical (and proved opti- 
mal by R = 23), and for R = 10 the sequence 
found yields a cost which is slightly higher. 

Gain in mol by combining two problems to one 
25r . 

n 

Figure 7: Since the proof is based on underestimating the 
remaining cost of a pruned sequence by using 
the solution of a shorter problem, this plot is 
interesting. It shows the gain from adding two 
shorter problems to one longer. For example, 
at 45 in the plot, the cost of adding a length45 
and a length-255 problem is almost 23 cheaper 
than the full length-300-problem. 
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Optimal controller sequence 

t "  . 
8 1.5. 
E s 

Number of sequences left after each ilerabon 

2507 

% I :  

vc " so loo 150 2w 250 3;o 

- Optimal controller sequence. zoomed 

L: - - - . 1  I/ 
Time step 

Figure 8: The optimal controller sequence for Example 2, 
where the control signal is held when the sys- 
tem is not controlled. 

9 3  I 

82 
E 

1' 20 40 60 80 100 
0 Optimal controller sequence. zoomed 

Figure 9 The optimal controller sequence for Example 3, 
with tree choices in each time step. The con- 
trol signal is held when the system is not con- 
trolled, so the augmented system is of order 
R 

4.3 Example 3 
Finally, we show a larger example consisting of the 
two systems in Example 1 plus another unstable 
second order system. The control signal is held at 
the actuator if the system is not controlled, so ex- 
tra "control-signal" states have been added, making 
the original order five system grow to order eight. 
The optimal controller sequence for the length-100- 
problem can be seen in Figure 9. As can be seen 
in Figure 10, the search tree becomes large, but the 
problem is still solvable. 

5 Conclusions 

A method to  find the optimal switching sequence in 
a linear-quadratic problem has been presented, to- 
gether with a method to prove optimality in each 
case. Empirically, the method works well in that 
it finds the solution in reasonable time. It is inter- 
esting to note that the found scheduling sequences 
have been of low period in all our simulations (ex- 
cept for some initial and final transients). Future 
work could include formulating other problems in 
the same framework, such as for example choosing 
among distributed sensors. The problem of joint ac- 
tuator scheduling and sensor scheduling is open. 

Figure 1 0  The number of sequences left after pruning 
in each iteration in Example 3. The tree be- 
comes rather large, but it is still solvable, and 
a length-100-problem should give us a good 
insight in the steady-state behavior. 
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