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Abstract

We consider the problem of admission control to an M/M/1 queue under pe-
riodic observations with average cost criterion. The admission controller receives
the system state information every τ :th second and can accordingly adjust the
acceptance probability for customers who arrive before the next state information
update instance. For a period of τ seconds, the cost is a linear function of the
time average of customer populations and the total number of served customers
in that period. The objective is to find a stationary deterministic control policy
that minimizes the long run average cost. The problem is formulated as a discrete
time Markov decision process whose states are fully observable. By taking the
control period τ to 0 or to ∞, the model in question generalizes two classical
queueing control problems: the open and the closed loop admission control to an
M/M/1 queue. We show that the optimal policy is to admit customers with a
non-increasing probability with respect to the observed number of customers in
the system. Numerical examples are also given.

1 Introduction

We consider the problem of admission control to an M/M/1 queue under periodic
observations with average cost criterion. The admission controller receives the system
state information every τ :the second and can accordingly adjust the control policy
which is the probability that an arrival will be accepted into the system. For a period
of τ seconds, the cost for making a particular decision is a linear function of the
time average of customer populations waiting in queue and the total number of served
customers in that period. The objective is to find a stationary deterministic control
policy that minimizes long run average cost.

Our objective function definition which rewards departures and penalizes a long
queue resembles to that of Naor (1969) and many others, see Stidham Jr. (1985);
Stidham Jr. (1988, 2002) and references therein. Along this line of objective function
definition, the optimal admission control in the cases of complete observable and non-
observable queueing system are well understood see, e.g., Hassin and Haviv (2003). In



a brief summary, when the queue length is completely observable, the optimal policy
is of threshold type and when the queue length is not observable, the optimal policy
accepts customers with a fixed probability.

Many models of queueing system admission control, including ours, are based on
Markov decision theory, see(Stidham Jr. and Weber, 1993, Section 4) and references
therein. One ramification to the existing admission control problems is reducing the
amount of information used for decision. Much work has been done along this direction.
Fukuda (1986) also considered a queueing system under periodic observations. There
are two types of customers in his system with the same service time distribution and
different arrivals processes. The control policy considered is call gapping control where
the low priority customers are blocked for the next period whenever the observed
queueing system state exceeds a predetermined limit. Kuri and Kumar (1995) studied
the discrete time admission control and routing to a queueing system consisting of two
parallel queues with delayed queue length information. Their objective is to minimize
the total expected discounted cost in which a fixed reward is received for each admitted
customers and linear holding cost is incurred for customers waiting in queue. The
optimal policy in case of one period information delay is of threshold type. Lin and
Ross (2003) considered a multiple-server loss model where the admission controller
is informed when an admitted customer finds all servers are busy but not informed
when customers depart. In this system a cost is incurred if a new arrival is blocked
and an even larger cost induced if an admitted customer is blocked by servers. They
proved that the threshold type policy that blocks for a certain amount of time after an
admitted arrival is optimal in case of single servers.

In this paper we establish that the average cost optimal policy is nonincreasing. This
is an important property that can be exploited to accelerate numerical computations.

This paper is organized as follows: In Section 2 we define the Markov decision
process model for our problem. We show that the average optimal solution is nonin-
creasing in Section 3. Numerical examples are give in Section 4. Finally, we conclude
with some remarks.

2 The Markov Decision Process Model

2.1 Classes of Control Policies and Induced Markov Chains

We control the arrival rate to an M/M/1 queue using percentage blocking. For conve-
nience, we assume that the service rate is 1 in the rest of this paper. The arrival rate
to the system is λ which can be less or greater than 1. There is an admission controller
that rejects arrivals in order to maintain a reasonable response time for admitted cus-
tomers. The controller is characterized by the admission probability a, 0 ≤ a ≤ 1. We
are allowed to adjust the admission probability every τ :th seconds when the updated
system state information becomes available. Fig. 1 illustrates the model.

Let S := {0, 1, 2, · · · } be the set of system states. In our problem, the system state
is the number of customers in the queue. A stationary deterministic control policy is
an infinite sequence (π (0) , π (1) , · · · ) =: π, with 0 ≤ π (i) ≤ 1,∀i ∈ S. It specifies
that whenever the observed number of customers in the system is i ∈ S, the admission
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Figure 1: Arrival rate control to an M/M/1 queue with periodic observations.

probability should be adjusted to π (i) and remain the same for the next τ seconds.
Let Π be the set of stationary deterministic control policies. A more generic control
class is, e.g., {πk (i, t) ∈ [0, 1] | t ∈ [0, τ) , k ∈ N, i ∈ S}, where πk (i, t) is the admission
probability at time kτ + t when the observed number of customers at time kτ is i .
We shall, however, content ourselves with the class of stationary deterministic control
policies in this paper.

Let t0, t1, t2, · · · be the time instances when the admission probability is adjusted
and t0 = 0,tk+1 − tk = τ,∀k ∈ N. Let X(t) ∈ S be the system state at time t. Clearly
{X (tk)}

∞

k=0
can be regarded as a discrete time Markov chain. For convenience denote

Xk := X (tk).
The transition probability between states i and j is denoted as P (j | i, π (i)). It is

actually the probability that at time τ there are j customers in an M/M/1 queue with
arrival rate π (i) λ when there are i customers in the system initially. Once a control
policy π ∈ Π and the initial state are given, the associated Markov chain {Xk} is fully
specified. Notice that the transition probability P (· | ·, a) is continuous in a.

2.2 One Step Cost

Given a fixed arrival rate, one would like to accept as few customers as possible in
order maintain a short mean response time. But, on the other hand, to have a high
throughput, the arrival rate ought to be close to the service rate. Hence one has to
balance low response time and high throughput. One way to resolve this dilemma is to
formulate an constrained optimization problem where the throughput is the objective
to be maximized while the response time is subject to a given constraint. Another way
is to consider an unconstrained optimization problem whose objective is to minimize



a cost which is a function of response time and throughput. This paper discusses the
second approach.

To make the definition of cost more precise, we introduce some auxiliary notation.
Let N̄ (t, i, a), N̄ : [0, τ)×S × [0, 1] 7→ [0,∞), be the expected number of customers

in an M/M/1 queue at time t when initially there are i customers and the admission
probability is a.

The time average number of customers in the system between time 0 and τ is

1

τ

∫ τ

0

N̄ (t, i, a) dt.

The average number of severed customers(not including the rejected customers)
between time 0 and τ is

1

τ

(

i + aλτ − N̄ (τ, i, a)
)

.

Let C be the cost to maintain one customer in the system per time unit and R
be the reward for a departure. To avoid the trivial case, we assume that 0 < C < R.
The one-step cost, i.e. the time average of net cost incurred in a period of τ seconds
between two adjacent control parameter adjustment instances, is denoted as c (i, a),
and is defined as follows,

c (i, a) :=
C

τ

∫ τ

0

N̄ (t, i, a) dt −
R

τ

(

i + aλτ − N̄ (τ, i, a)
)

. (1)

It is easy to convince oneself that the step cost c (i, a) is not necessarily monotonic
in i or a.

2.3 Average Cost and β-Discount Cost

The expected long-run average cost or average cost incurred by a policy π ∈ Π is
defined as

J (i, π) := lim sup
N→∞

Eπ
i

[

1

N

N−1
∑

k=0

c (Xk, π (Xk))

]

,

where i is the initial number of customers in the system .
The optimal average cost for any initial state i ∈ S is defined as

J∗ (i) := inf
π∈Π

{J (i, π)} .

A policy π is average cost optimal, or average optimal, if J (i, π) = J∗ (i) for all
i ∈ S.

While the average cost is of primal interest of this paper, β-discounted cost is helpful
in the proof of the existence of the average optimal policy.

Given some β ∈ (0, 1), the β-discount cost incurred by a policy π ∈ Π is defined as

Jβ (i, π) := Eπ
i

[

∞
∑

k=0

βkc (Xk, π (Xk))

]

.



For any initial state i ∈ S, the optimal β-discount cost is defined as

J∗
β (i) := inf

π∈Π
{Jβ (i, π)}

A policy π is β-discount cost optimal, or β-discount optimal, if Jβ (i, π) = J∗
β (i)

for all i ∈ S.

2.4 The Existence of Average Cost Optimal Policy

There are at least three well developed methods to prove the existence of the average
optimal policy when the state space is enumerable infinite and step cost is unbounded
see Arapostathis et al. (1993, Section 5.2 and Section 5.3) for review. The first one
is Hordijk’s Lyapunov stability condition (Hordijk, 1974). Sennott’s three necessary
conditions (Sennott, 1989, 1998, 2000) can be counted as the second. The third one
is Borkar’s convex analytic approach (Borkar, 1988, 2000). Sennott’s conditions are
particularly well suited for queueing problems (Sennott, 1998) where the step cost
often, if not always, grows as more customers accumulate in the queue. Our proof
of the existence of the average optimal policy for our particular model is based on
Sennott’s conditions.

A complete proof of the existence of average optimal policy for a Markov decision
process satisfies Sennott’s three conditions relies on the vanishing discounted approach.
The general idea is that one treats the average cost case as the limit of the discounted
cost problem. The vanishing discounted approach was also used by Blackwell (1962)
to prove the existence of average optimal policy for a model with finite state space and
action set, and Derman (1966) for countable state space, finite action set and bounded
costs.

The existence β-discount optimal policy of our problem is easy to check, see Ara-
postathis et al. (1993, Lemma 2.1). We shall verify Sennott’s three conditions in our
particular problem in Lemma 1 which guarantees existence of average optimal policy
using vanishing discount approach see e.g. Arapostathis et al. (1993, Theorem 5.9)

Lemma 1. (a) For every i ∈ S and every β ∈ (0, 1), J∗
β (i) < ∞.

(b) There exists a nonnegative integer L such that

hβ (i) := J∗
β (i) − J∗

β (0) ≥ −L

(c) There exists a function M : S 7→ R such that hβ (i) ≤ M (i) for all i ∈ S and
β ∈ (0, 1) and for every i ∈ S and a ∈ [0, 1] such that

∑

j P (j | i, a) M (j) < ∞.

Proof. (a). Clearly there exists a stationary deterministic policy, e.g π := (0, 0, · · · )
such that the induced MC is ergodic and J (i, π) = 0 for all i ∈ S. By the Tauberian
Theorem, we have

lim inf
β↑1

(1 − β) J∗
β (i) ≤ lim sup

β↑1

(1 − β) J∗
β (i) ≤ J (i, π)

Hence J∗
β (i) is finite for all i ∈ S and β ∈ (0, 1).

(b) Consider a queuing system with two M/M/1 queues, one queue with i customers
initially but no arrivals, another queue starts empty and the β-discount optimal policy



is employed. The discounted cost for the whole system is therefore J ∗
β (0) + Jβ (i,0),

where 0 = (0, 0, · · · ) is a policy that rejects all arrivals. Clearly J∗
β (0) + Jβ (i,0) ≤

J∗
β (i), hence we have

J∗
β (i) − J∗

β (0) ≥ Jβ (i,0)

Let n := bR/Cc. For all i ∈ S, Jβ (i,0) ≥ Jβ (n,0) ≥ −nR. Therefore hβ (i) ≥
−bR/CcR.

(c) Let Π∗ be the class of policies inducing irreducible, ergodic MC and ci,0 (π)
the expected total cost of a first passage from i to 0. Clearly Π∗ is not empty. Let
M (0) = 0 and for i ≥ 1, M (i) = infπ∈Π∗ ci,0 (π). We then have J∗

β (i) ≤M (i) + J∗
β (0)

and for all i ∈ S and a ∈ [0, 1], and some π ∈ Π∗,

∑

j∈S

P (j | i, a) M (j) ≤
∑

j

P (j | i, a) ci,0 (π) = ci,0 (π) < ∞.

3 The Monotonic Property of the Average Cost Op-

timal Policy

Intuitively when more customers are observed in one control instance, less should be
admitted into the system in the next control period of τ seconds. Hence it is reasonable
to conjecture that the average optimal policy ϕ is nonincreasing in i, i.e. ϕ (i) ≥
ϕ (i + 1) ,∀i ∈ S. This fact can be easily verified in the cases of closed loop and open
loop admission control. In this section we shall prove that this is true in general when
0 ≤ τ < ∞. Let N (t, i, a) be the number of customers in a queue (with arrival rate
aλ and service rate 1) at time t with initial condition N (0, i, a) = i. Notice that given
t, i, a, N (t, i, a) is a random variable.

A function f : N → R is discrete convex if f (i + 2) − f (i + 1) ≥ f (i + 1) − f (i)
for all i ∈ N. Let F be the space of discrete convex functions that map from S to R.
The following lemma follows.

Lemma 2. Given t > 0, for all f ∈ F, E [f (N (t, i, a))] is supermodular in (i, a).

Proof. We have to show that for all f ∈ F, i ∈ S, 0 ≤ b < a ≤ 1 ,

E [f (N (t, i + 1, a))] + E [f (N (t, i, b))] ≥ E [f (N (t, i, a))] + E [f (N (t, i + 1, b))]

The following stochastic order relations can be verified by the normalization tech-
nique: N (t, i + 1, a) ≥st N (t, i, a), N (t, i + 1, a) ≥st N (t, i + 1, b), N (t, i + 1, b) ≥st

N (t, i, b), N (t, i + 1, a) − N (t, i, a) ≥st N (t, i + 1, b) − N (t, i, a). Since f is discrete
convex, we have f (N (t, i + 1, a)) − f (N (t, i, a)) ≥st f (N (t, i + 1, b)) − f (N (t, i, a))
which leads to the claim after taking expectation on both sides.

Lemma 3. Given t > 0, for all f ∈ F. i ∈ S, 0 ≤ b < a ≤ 1,



E [f (N (t, i, a))] + E [f (N (t, i + 2, b))] ≥ 2E

[

f

(

N

(

t, i + 1,
a + b

2

))]

Proof. Since f is discrete convex, it is enough to show that

N (t, i, a) + N (t, i + 2, b) ≥st 2N

(

t, i + 1,
a + b

2

)

. (2)

Consider a system consisting of two identical but independent M/M/1 queues. The
total arrival rate is (a + b) λ and initially there are 2i + 2 customers in total in two
queues. Suppose we are allowed to distribute 2i + 2 customers into to two queues at
time 0 and split the incoming traffic by random routing. Total number of customers
in the whole system at time t can be minimized (in stochastic order sense) by placing
i + 1 customers in each queue and splitting traffic evenly. Thus (2) holds.

Lemma 4. Define g : F×S×[0, 1] 7→ R as follows g(f) (i, a) := c (i, a)+E [f (N (τ, i, a))],
then g (f) (i, a)is supermodular in (i, a) and mina g (f) (i, a) is convex in i.

Proof. (Supermodularity) By Lemma 2, E [N (t, i, a)] is supermodular in (i, a). Recall
the definition of the step cost

c (i, a) =
C

τ

∫ τ

0

E [N (t, i, a)] dt −
R

τ
(i + aλτ − E [N (τ, i, a)]) .

Hence c (i, a) is supermodular in (i, a) too. Also from Lemma 2, E [f (N (τ, i, a))] is
supermodular. Thus g (f) (i, a) is supermodular in (i, a).

(Convexity) We have to show that ∀i ∈ S

min
a

g (f) (i + 2, a) + min
a

g (f) (i, a) ≥ 2min
a

g (f) (i + 1, a) .

We shall show that there exist some w ∈ [0, 1] such that

min
a

g (f) (i + 2, a) + min
a

g (f) (i, a) ≥ 2g (f) (i, w) (3)

Let u := arg mina g (f) (i, a), v := arg mina g (f) (i + 2, a). By the supermodularity of
g, v ≤ u. If u = v, then let w = u = v, the inequality above is evident. If v < u then
let w = u+v

2
. By Lemma 3,

E [N (t, i + 2, v)] + E [N (t, i, u)] ≥ 2E [N (t, i + 1, w)]

and
E [f (N (t, i + 2, v))] + E [f (N (t, i, u))] ≥ 2E [f (N (t, i + 1, w))] .

Therefore (3) is valid.

Theorem 1. If ϕ ∈ Π is average optimal, then ϕ (i) ≥ ϕ (i + 1) for all i ∈ S.



Proof. Consider the value iteration. The value function Vk : S 7→ R at the k:th iteration
is defined as follows

Vk+1 (i) = min
a







c (i, a) +
∑

j

Vk (j) P (j | i, a)







with V0 (j) = 0,∀j ∈ S. The average optimal policy is defined as follows

ϕ (i) = lim
k→∞

arg min
a

c (i, a) +
∑

j

Vk (j) P (j | i, a) ,∀i ∈ S

By induction, we have that for all k, Vk (i) is convex in i and c (i, a)+
∑

j Vk (j) P (j | i, a)
is supermodular in (i, a). Hence ϕ (i) is nonincreasing in i.

4 Numerical Examples

In our model, the state space is countable infinite. For numerical calculations, however,
the state space must be truncated (cutting off the tail). Rigorous analysis of the effects
of state space truncation for dynamic programming in general can be found in Fox
(1971); Whitt (1978, 1979). The approximating sequence method described in Sennott
(1998, Chapter 8) is also very illuminating. In our particular case, we note that the
difference in the optimal cost between the original model and the state space truncated
model decreases as the probability of unexpected blocking diminishes. Once the state
space is truncated, both the value iteration algorithm and the policy iteration algorithm
(Puterman, 1994, Section 8.5 and 8.6) can be used to calculate the optimal policy and
the optimal average cost. The policy iteration algorithm which is used in our numerical
examples is described briefly as follows.
Step 1 Initialization: An arbitrary stationary policy π is chosen.
Step 2 Value determination: For the current policy π, compute the unique solution
{J, hi} for the following system of linear equations

hi = c (i, π (i)) − J +
∑

j∈S
′

hjP (j | i, π (i)) , ∀i ∈ S′

h0 = 0

where S′ is the truncated state space.
Step 3 Policy improvement: The new policy π

′

is obtained as follows

π
′

(i) = arg min
0≤a≤1

c (i, a) − J +
∑

j∈S′

hjP (j | i, a) ∀i ∈ S
′

.

Step 4 Convergence test. Let d (π′, π) be a distance measure of two policies such as

follows d (π′, π) =
∑

i∈S′

∣

∣

∣
π

′

(i) − π (i)
∣

∣

∣
. If the new policy π

′

is within the give distance

ε of the old policy π, i.e. d
(

π
′

, π
)

< ε, the algorithm stops, otherwise goto step 2 with

π replaced by π
′

.
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Figure 2: Average optimal cost versus the control interval τ when C = 50.

Note that due the state space truncation, the expression for the average number
of customers in the system N̄ (i, t, a) and the transition probability P (j | i, a) must be
swapped from the M/M/1 model to the M/M/1/K model where K is the truncated
queue size.

Using the same techniques in proving Lemma 4 and Theorem 1, one can show that
the function to be minimized in the policy improvement step is convex and supermod-
ular if the policy chosen in the initialization step is nonincreasing. As a result many
convex programming techniques can be used to find the minimum in step 3 and further,

the search region for π
′

(i) can be narrowed from [0, 1] to
[

0, π
′

(i − 1)
]

.

In the following discussions, we set the reward coefficient to a constant R = 100.
In Fig. 2, we show how the optimal average cost changes as the control interval

τ increases for different combinations of cost coefficient C = 50 and arrival rates λ =
0.7, 1.0, 1.5, 2.0. Notice that when the offered traffic intensity and the cost of waiting
are high, e.g. C = 50, λ = 2.0, the optimal average cost for models with short control
intervals is sensitive to τ . We also plot the theoretical lower and the upper bound of
the optimal average cost in these figures.

We have shown in Section 3 that the average optimal policy is nonincreasing. In Fig.
3, we give examples of the average optimal control policies in cases of τ = 0.1, 5.0, 10.0
when λ = 1.0 and C = 30. The optimal control policy in the case of open loop
control τ → ∞ is also shown. If the closed loop control is used (i.e. τ = 0.0) when
λ = 1.0, C = 30, the average optimal policy is of threshold type and the optimal
threshold is 1.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

a i

i

τ=0.1
τ=5.0

τ=10.0
τ→∞

Figure 3: The average optimal control policy when λ = 1.0 and C = 30.

5 Conclusions

We have presented an admission control model for an M/M/1 queue under periodic
observations with average cost criterion. This model degenerates into two well known
queueing control problems when the observation interval becomes zero and infinite.
The corresponding discrete time Markov decision process is obtained via embedding
the state transition instances at the state information update epochs. The state tran-
sition probability is related to the transient solution of state probability distribution of
an M/M/1 queue. The step cost is linearly proportional to the time average number
of customers in the queue and the time average number of departures per time unit
between two adjacent control instances. With help of value iteration algorithm and in-
duction, we proved that the average optimal policy is nonincreasing. Several numerical
examples are also provided in a separate section.

Many claims/arguments in the paper are not specific to the M/M/1 queue, e.g.
Lemma 1 used in the proof of the existence of average optimal policy; Lemma 2 and 3
in the proof of the monotonic property of optimal policy. However one must proceed
with caution when the approach in defining the discrete time Markov decision process
for the M/M/1 model in this paper is extended to an M/G/1 or an G/M/1 queue.
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