
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Feedback Scheduling of Control Tasks

Cervin, Anton; Eker, Johan

Published in:
Proceedings of the 39th IEEE Conference on Decision and Control, 2000.

DOI:
10.1109/CDC.2001.914702

2000

Link to publication

Citation for published version (APA):
Cervin, A., & Eker, J. (2000). Feedback Scheduling of Control Tasks. In Proceedings of the 39th IEEE
Conference on Decision and Control, 2000. (Vol. 5, pp. 4871-4876). IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/CDC.2001.914702

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/CDC.2001.914702
https://portal.research.lu.se/en/publications/6f4f6761-958c-4240-8c29-703ba45fa6e3
https://doi.org/10.1109/CDC.2001.914702


Proceedings of the 39" IEEE 
Conference on Decision and Control 
Sydney, Australia December, 2000 

Feedback Scheduling of Control Tasks 

Anton Cervin Johan  Eker 

Department of Automatic Control 
Lund Institute of Technology 

Box 118, SE-221 00 Lund 
Sweden 

{anton,johane)@control.lth.se 

Abstract 

The paper presents a feedback scheduling mecha- 
nism in the context of co-design of the scheduler 
and the control tasks. We are particularly interested 
in controllers where the execution time may change 
abruptly between different modes, such as in hy- 
brid controllers. The proposed solution attempts to 
keep the CPU utilization at a high level, avoid over- 
load, and distribute the computing resources evenly 
among the tasks. The feedback scheduler is im- 
plemented as a periodic or sporadic task that as- 
signs sampling periods to the controllers based on 
execution-time measurements. The controllers may 
also communicate feedforward mode-change infor- 
mation to the scheduler. As an example, we con- 
sider hybrid control of a set of double-tank processes. 
The system is evaluated, from both scheduling and 
control performance perspectives, by co-simulation of 
controllers, scheduler, and tanks. 

1. Introduction 

There is currently a trend towards more flexible real- 
time control systems. By combining scheduling the- 
ory and control theory, it is possible to achieve higher 
resource utilization and better control performance. 
To achieve the best results, co-design of the sched- 
uler and the controllers is necessary. This research 
area is only beginning to emerge, and there is still 
a lot of theoretical and practical work to be done, 
both in the control community and in the real-time 
community. 
Control tasks are generally viewed by the schedul- 
ing community as hard real-time tasks with fixed 
sampling periods and known WCETs. Upon closer 
inspection, neither of these assumptions need neces- 
sarily be true. For instance, many control algorithms 
are quite robust against variations in sampling pe- 
riod and response time. Controllers can be designed 
to switch between different modes with different exe- 
cution times and perhaps also different sampling in- 

tervals. It is also possible to consider control systems 
that are able to do a trade-off between the available 
computation time and the control loop performance. 
As an example throughout this paper, we study the 
problem of scheduling a set of hybrid-control tasks. 
Such tasks are good examples of tasks that do not 
really meet the assumptions commonly made in the 
scheduling theory. A hybrid controller switches be- 
tween different modes, which may have very dif- 
ferent execution-time characteristics. Utilizing only 
worst-case execution-time (WCET) estimates in the 
scheduling design can result in very low resource 
utilization, slow sampling, and low control perfor- 
mance. On the other hand, if instead, average-case 
execution-time estimates are used in the scheduling 
design, the CPU may experience transient overloads 
during run-time. This, again, can result in low con- 
trol performance, and even temporary shut-down of 
the controllers. 
In this work, we present a feedback scheduler for 
control tasks that attempts to keep the CPU utiliza- 
tion at a high level, avoid overload, and distribute 
the computing resources evenly among the tasks. 
While we want to keep the number of missed dead- 
lines as low as possible, control performance is our 
primary objective. Thus, control tasks, in our view, 
fall in a category somewhere between hard and soft 
real-time tasks. The known-WCET assumption is re- 
laxed by the use of feedback from execution-time 
measurements. We also introduce feedforward to fur- 
ther improve the regulation of the utilization. 
The structure of the feedback scheduler is shown in 
Figure 1. A set of control tasks generate jobs that 
are fed to the run-time dispatcher. The scheduler 
gets feedback information about the actual execu- 
tion time, Ci, of the jobs (it is assumed that this 
information can be provided by the real-time oper- 
ating system). It also gets feedforward information 
from control tasks that are about to  switch mode. 
This way, the scheduler can proact rather than react 
to sudden changes in the workload. The scheduler 
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mode changes 

Scheduler ispatche 

Figure 1 The feedback scheduling structure. 

tries to keep the utilization, U, as close as possible 
to the utilization setpoint, U,. This is done by ma- 
nipulating the sampling periods, { Ti}. The choice of 
utilization setpoint depends on the scheduling pol- 
icy of the dispatcher, and on the sensitivity of the 
controllers to missed deadlines. Notice that the well- 
known, guaranteed utilization bounds of 100% for 
earliest-deadline-first (EDF) scheduling and 69% for 
fixed-priority scheduling [Liu and Layland, 19731 are 
not valid in this context, since the assumptions about 
known, fked WCETs and fixed periods are violated. 
The calculated task periods should reflect the rela- 
tive importance of the different control tasks. One 
possibility is to assign nominal sampling periods to 
the controllers off-line. The feedback scheduler can 
then do linear rescaling of the task periods to  achieve 
the desired utilization. The controllers are informed 
of the new sampling periods and may adjust their 
parameters if necessary. Other possibilities could in- 
clude on-line optimization of a control performance 
criterion over the task periods, subject to the uti- 
lization constraint. The feedback scheduler is in the 
end also implemented as a periodic or sporadic task 
that consumes computing resources. There is a fun- 
damental trade-off between the time that should be 
spent doing scheduling, and the time left over for 
control computations. 

1.1 Related Work 
A survey of related work in the area of control and 
CPU scheduling is found in [ k z h  et al., 20001. Fur- 
ther references can be found in the theses (Cervin, 
20001 and [Eker, 19991. 
Closely related to our work, [Stankovic et al., 19991 
presents a general scheduling algorithm that explic- 
itly uses feedback. A PID controller regulates the 
deadline miss-ratio for a set of soft real-time tasks 
with varying execution times by adjusting their re- 
quested CPU utilization. It is assumed that the tasks 
can change their CPU consumption by executing dif- 
ferent versions of the same algorithm. An admission 
controller is used to accommodate large changes in 
the workload. 

2. A Hybrid Controller 

A hybrid controller for the double-tank process, see 

Figure 2 "he double-tank process. 

Figure 2, is described. The controller was designed 
and implemented in [Eker and Malmborg, 19993. The 
goal is to control the level of the lower tank to a 
desired setpoint. The measurement signals are the 
levels of both tanks, and the control signal is the 
inflow to the upper tank. Choosing state variables 
xl ( t )  for the upper tank level and xz(t) for the 
lower tank level, we get the nonlinear state-space 
description 

The process constants a and p depend on the cross- 
sections of the tanks, the outlet areas, and the 
capacity of the pump. The control signal u ( t )  is 
limited to the interval [0,1]. 
Traditionally there is a trade-off in design objectives 
when choosing controller parameters. It is usually 
hard to achieve the desired step-change response 
and at the same time get the wanted steady-state 
behavior. An example of contradictory design crite- 
ria is tuning a PID controller to  achieve both fast 
response to setpoint changes, fast disturbance rejec- 
tion, and no or little overshoot. In process control it 
is common practice to use PI control for steady state 
regulation and to use manual control for large set- 
point changes. One solution to this problem is to use 
a hybrid controller consisting of two sub-controllers; 
one PID controller and one time-optimal controller, 
together with a switching scheme. The time-optimal 
controller is used when the states are far away from 
the reference point. Coming close, the PID controller 
will automatically be switched in to replace the time 
optimal controller. 
The sub-controller designs are based on a lineariza- 
tion of Equation (1): 

d"c dt = [ -," 3 x ( t )  + [i] u( t ) .  (2) 

The new process parameters a and b are functions 
of a, p and the current linearization level. 
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2.1 PID Controller 
The PID parameters ( K ,  Ti, Td) are calculated to give 
the closed-loop characteristic polynomial 

(s + W 0 ) ( S 2  + 26WOS + m i ) ,  (3) 

where (WO,  c )  = (6,0.7) are chosen to give good rejec- 
tion of load disturbances. The following discrete-time 
implementation, which includes low-pass filtering of 
the derivative part ( N  = l o ) ,  is used: 

P(t )  = K(YSP(t1 - Y ( t ) ) .  (4) 

(5) 

(6)  

(7) 

I ( t> = I ( t - h )  + ?(YSP(t) -At>>, 
Wt) = & W - h )  + $&(Y(t-h) - Y(t)),  
u( t )  = P(t )  + I ( t )  + D ( t ) .  

2.2 Time-Optimal Controller 
The time-optimal control signal is of bang-bang type. 
For the linearized process it is possible to derive the 
switching curve 

0.15 

0.1 

2.4 Red-Time Properties 
The execution-time properties of the hybrid con- 
troller were investigated in [Persson et al., 20001. 
It was found that the optimal-control mode had con- 
siderable longer execution time than the PID mode. 
In each mode, the execution time was close to the 
best case most of the time, but it also exhibited ran- 
dom bursts. For purposes of illustration, assume that 
the execution-time characteristics in the different 
modes can be described by CPID = 1.8 + 0.2.5; ms and 
Copt = 9.5 + 0 . 5 ~ ;  ms, where { E i }  is unit-variance 
Gaussian white noise. 
The nominal sampling interval is chosen to be one 
tenth of the rise time, T,, of the closed-loop system. 
Our first example process has T p 1  = 210 ms which 
gives hmml = 21 ms. A simulation of the computer- 
controlled system is found in Figure 3. The controller 

-- 
- , 

I 
- 

1 ax: - bii 
x2(x1) = - ( (ax1 - bii ) ( l  +In( -)) + b s ) ,  a ax1 - bu 

I -  

(8)  

where ii takes values in (0,  l}, and x; is the target 
state for XI. The control signal is U = 0 above 
the switching curve and U = 1 below. A closeness 
criterion on the form 

where P( 8, y )  is positive definite matrix, is evaluated 
at  each sample, to determine whether the controller 
should switch to PID mode. 

2.3 Implementation 
The controller implementation is outlined below. 

y = analogIn(yChan); 
ysp = getsetpoint 0 ; 
if (getMode0 == PID) c 
if (ysp != ysp-old) C 
setMode (OPT) ; 
signal(FBS-sed; /* feedforward, see Sec 3.3 */ 
U = calculateOPT0; 

U = calculatePID0; 
1 else .C 

3 

Vclose = computeVclose0; 
if (Vclose < Vregion) .C 
setMode(PID1; 
U = calculatePID0; 

U = calculateOPT0; 

1 else C /* OPT */ 

1 else C 

1 
1 
analogOut (uChan,u) ; 

Control signal 1 

Figure 3 Performance of Controller 1 when running 
in isolation. The controller displays very good set-point 
response and steady-state regulation. (The undershoot at 
t = 2.9 s is due to a load disturbance.) The CPU never 
becomes overloaded. 

displays very good set-point response and steady- 
state regulation. It is seen that the requested CPU 
utilization is very low in PID mode, on average = 
CpID/hmml = 9%. In Optimal mode, it is significantly 
higher, on average 

- 

= cOpt/hmml = 45%. 

3. Feedback Scheduling Example 

Now assume that two additional hybrid double-tank 
controllers should execute on the same CPU as the 
first one. The tanks have slightly different process 
parameters. Based on the rise-times, (Tr2,Tr3) = 
(180,150) ms, they are assigned the nominal sam- 
pling intervals (hnom2,hmm8) = (18,15) ms. To con- 
sider scheduling, some assumptions about the real- 
time operating system must be made. Throughout 
this example, we assume a fixed-priority real-time 
kernel with the possibility to measure task execution 
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time. The tasks are assigned rate-monotonic priori- 
ties, i.e., the task with the shortest period gets the 
highest priority. 
First, open-loop scheduling is attempted. Then, a 
feedback scheduler is added to the system. Finally, 
feedforward is introduced in the scheduler. The sys- 
tems are evaluated by co-simulation of the real-time 
kernel and the plant dynamics [Eker and Cervin, 
19991. A 4-second simulation cycle is constructed as 
follows. At time t = 0, all controllers start in the PID 
mode. At t = 0.5 s, the worst-case scenario occurs: all 
controllers receive new setpoints and should switch 
to Optimal mode. Following this, the controllers get 
new setpoints pairwise, and then one by one. For 
each simulation, the behavior of Controller 1, now 
having the lowest priority, is plotted. Also plotted is 
the total requested utilization, xi cilhi, where ci is 
the current actual execution time of task i, and hi is 
the current period of task i. Notice that the total re- 
quested utilization cannot be directly measured and 
used for feedback, but must be estimated. 

3.1 Open-Loop Scheduling 
We first consider open-loop scheduling, where the 
controllers are implemented as tasks with fixed 
periods equal to their nominal sampling intervals. 
The simulation results are shown in Figures 4 and 5.  
The system easily becomes overloaded, since in the 
worst case, = xi copt/hnomi = 170 %. Controller 1 
is for instance temporarily turned off in the intervals 
t = [0.5,0.8] s and t = [1.5,1.8] s because of 
preemption. The result is low control performance. 

3.2 Feedback Scheduling 
Next, a feedback scheduler is introduced. In its 
first version, it is implemented as a high-priority 
task with a period TFBS = 100 ms. The utilization 
setpoint is set to U,, = 80 %. At each invocation, 
the feedback scheduler estimates the current total 
reqyested utilization of tke tasks by computing U = xi Cilhi. The estimate Ci is obtained from filtered 
execution-time measurements, 

ei'i(k) = - 1) + (1 - a)ci, (10) 

where A is a forgetting factor. Setting A close to 
1 results in a smooth, but slow estimate. In this 
case, A = 0, which gives fast detection of overloads, 
was preferred. Finally, new task periods are assigned 
according to the linear rescaling 

The execution time of the feedback scheduler is 
assumed to  be 2 ms. The simulation results are 
shown in Figures 6 and 7. The scheduler tries to  
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Lower tank level 1 

~ ~~ ~ ~ ~~ 

Total requested utilization 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Time [SI 

Figure 4 Performance of Controller 1 under open-loop 
scheduling. The CPU is overloaded during long intervals, 
and the controller cannot update its control signal very 
often. The result is low control performance. 

Schedule (high=running, medium=preempted, low=sleeping) 

FBS I 
Task 3 

Task 2 

Task 1 

0.4 0.5 0.6 0.7 0.8 0.9 
Time [SI 

Figure 5 Close-up of the schedule under open-loop 
scheduling. At t = 0.5 s, Task 2 and 3 switch to Optimal 
mode, and the CPU gets overloaded. As a result, Task 1 
is preempted in a long interval. 

keep the workload close to 80 %. However, there is 
a delay from a change in the requested utilization 
until it is detected by the feedback scheduler. This 
results in overload peaks at some of the mode change 
instants. For instance, Controller 1 is preempted in 
the interval t = [0.5,0.6] s. The result is slightly 
degraded control performance. 

3.3 Feedback and Feedforward Scheduling 
A feedforward mechanism is added to the sched- 
uler. The basic period of the scheduler is kept at 
TFSS = 100 ms. However, when a task in PID mode 
detects a new setpoint, it notifies the feedback sched- 
uler, which is released immediately. The task periods 
gre adjusted before the notifying, task can continue 
to  execute in the Optimal mode. The execution-time 



Control signal 1 

I I 

Lower tank level 1 
I 1 

0.15 

0.1 

- , I 
I I 

O d  0:5 1:5 2 2:5 3 3:5 A 
Time [SI 

Figure 6 Performance of Controller 1 under feedback 
scheduling. The CPU is overloaded in shorter intervals 
and the performance is better than under open-loop 
scheduling, cf. Figure 4. 

Schedule (high=running. medium=preempted, low=sleeping) 

Task 3 

Task 2 

Task 1 

0.4 0.5 0.6 0.7 0.8 0.9 
Time [SI 

Figure 7 Close-up of the schedule under feedback 
scheduling. At t = 0.5, Task 3 switches to Optimal mode, 
and the CPU gets overloaded. At t = 0.55, the feedback 
scheduler rescales the task periods. But this allows Task 2 
to switch to Optimal mode, and the CPU gets overloaded 
again. 

estimation can also benefit from the mode-change 
information, by running separate estimators in the 
different modes. A forgetting factor of d = 0.9 was 
chosen to  give smooth estimates in both modes. The 
result is a more responsive and accurate feedback 
scheduler. The simulation results are shown in Fig- 
ures 8 and 9. It is seen that the delay for Controller 1 
at t = 0.5 s has been reduced, and that the control 
performance is slightly better. 

3.4 Performance Evaluation and Summary 
The performance of the controllers under different 

Control signal 1 

, I 

Lower lank level 1 

- 
I 
I 

Total requested utilization 2 

-0 0.5 1 1.5 2 2.5 3 3.5 4 
Time [SI 

Figure 8 Performance of Controller 1 under feedback 
and feedforward scheduling. The CPU is almost never 
overloaded, which results in better control performance, 
cf. Figures 4 and 6. The performance is not as good as 
in Figure 3 though, since the controller must sometimes 
execute at a lower rate. 

Schedule (high=running, medium=preempted, low=sleeping) 
I 

FBS - I I I I 
Task 3 

Task 2 

Task I 

0.4 0.5 0.6 0.7 0.8 
Time [SI 

Figure 9 Close-up of the schedule under feedback and 
feedforward scheduling. The periods are rescaled by the 
feedback scheduler as each controller switches to Optimal 
mode. As a result, the CPU is almost never overloaded. 

9 

scheduling policies are evaluated using the criterion 

where ynomi is the process output when Controller i 
is running unpreempted at its nominal sampling in- 
terval, and ymti is the actual process output when 
Controller i is running in the multitasking real-time 
system. The function V is referred to  as the addi- 
tional loss due to scheduling. Twenty-five simulation 
cycles (100 s) are simulated and the final losses for 
the controllers are summarized below: 

4875 



Scheduling Vl(l00) Vz(100) V3(100) 
Open-loop 42.4. 2.0. 0 

Feedback and 1.5.10-~ 1.1. 1.0.10-~ 
feedforward 

Feedback 5.0.10-~ 3.2.10-~ 1.0.10-~ 

Under open-loop scheduling, Controller 3 has zero 
additional loss. This is because Task 3 has the 
highest priority and thus executes unpreempted at 
its nominal sampling period. Controller 2 suffers 
from some preemption from Task 3 which gives a 
small loss, while Controller 1 is preempted during 
long intervals which gives a very large loss. 
Under feedback scheduling, the loss is much smaller 
for Controller 1, due to the drastically reduced 
amount of preemption from Task 2 and 3. Because 
of the period rescaling, however, Controller 2 and 3 
increase their losses. 
Under feedback and feedforward scheduling, Con- 
troller 1 and 2 decrease their losses, since the CPU 
overloads are almost completely avoided. The total 
loss is small, and it is evenly distributed among the 
controllers. 
The evolution of the additional loss for Controller 1 is 
shown in Figure 10. There is a very large improve- 
ment when introducing feedback, and the addition 
of the feedforward mechanism gives even further re- 
duction of the loss. 

Accumulated loss due to scheduling V1 0.02 

0.015 - 

0.01 - 

“0 20 40 60 80 100 
Time Is1 

Figure 10 The accumulated additional loss due to 
scheduling for Controller 1, Vl( t ) .  The introduction of 
feedback scheduling gives a large reduction in the loss. 
Adding the feedforward mechanism reduces the loss even 
further. 

4. Conclusions 

The presented feedback scheduler improves the con- 
trol performance and relaxes the requirement on 
known execution times for multitasking control sys- 
tems. The controllers are allowed to miss an occa- 

4876 

sional deadline, and are hence not treated as hard 
real-time tasks. In the case of an overload, the sched- 
uler calculates new sampling periods for all control 
tasks. The estimate of the current workload is based 
on execution-time measurements. The new sampling 
periods are given by simple linear rescaling of the 
nominal sampling periods, i.e., the relative impor- 
tance order of the controllers is preserved. A more 
elaborate rescaling procedure would most likely give 
better control performance but also require more 
computational power. The feedback scheduler itself 
is implemented as a task, and its period is an impor- 
tant design parameter. 
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