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Impulsive Predictive Control of TLDM glycemia: an in-silico study

Marzia Cescon, Meike Stemmann and Rolf Johansson

Abstract— The most widespread approach for glycemic con- [11] model predictive control (MPC) [12] [13] andHe.
trol in diabetic patients is the so-called basal-bolus insulin control [14]. Most of this research targets continuous linsu
regimen, comprising insulin injections at meal times, correction  4qministration via a subcutaneous pump, resulting in klgita

doses in hyperglycemia and compensatory carbohydrate in case L . .
of insulin-induced hypoglycemia. The present contribution rep- therapy only for a minority and without taking into account

resents an attempt at implementing such a strategy on a virtual, the risks connected with insulin-induced hypoglycemigl [15
i.e.,in-silico, TLDM patient. A low order physiologically sound Against this background, the availability of an ‘advisory

transfer function model was estimated from simulated data system’ recommending the user to take appropriate insulin

and exploited using an optimization-based control algorithm, - jniactions and eventually compensatory snacks, to maintai
the objective being sustainment of glycemia in the near-normal | | | ithin th defined t t id b
range (70— 180 [mg/dL]). glucose levels within the predefined target range, would be

desirable. Within this scenario the controller is expected
. INTRODUCTION to determine impulse-like control inputs, namely insulin

. . . L . injections and amount of additional carbohydrates, whieh a
Diabetes Mellitus is a chronic disease of disordered gluﬁot automatically applied but rather suggested to the patie
cose metabolism due to defects in either insulin secretjon l? y app 99

. X . X . hereby assuring safety. When an advice is suggested by the

the pancreati@-cells or insulin action [1]. In particular, Type . . Lo T

! ; : - algorithm, the patient can accept or reject it, remaininglir
1 Diabetes Mellitus (T1LDM), being caused by no production - ) .

. : . . ._in the loop. This is the focus of the major European project
of insulin whatsoever, is characterized by abnormally hig Y

; IAdvisor [16].

blood glucose levels (hyperglycemia, blood glucosd.80

. 4 The present contribution aims at proposing on h
[mg/dL]) leading to serious health damages. In order tg € present cont bUtO. ams at proposing one such a
o : Scheme. The controller is optimization-based, similar to
prevent the long term complications associated to the su

tained hyperglycemia it becomes critical, then, for diabet I'\S/IPC-type controliers [17] [18] and the control variables ar

atients to requlate their blood alucose tightly. mairitain doses of insulin to be injected and number of grams of car-
b 9 9 gnty, & bohydrate to be administered, while the measured output is

its level within the near-normal range (#0180 [mg/dL]) :
. g . . . the subcutaneous glucose concentration measured by a sub-
[2]. Because insulin deficiency defines the disease, exoge- . L
: : - . . " “Cutaneous continuous glucose monitoring sensor (CGMS).
nous insulin replacement administered with either mutipl

ST . . L . ""The algorithm solves an optimization problem either when a
daily injections (MDI) or with an external insulin infusion meal is taken, to determine the insulin dose needed to cover
pump (CSIl) is the hallmark of the treatments. The ide '

. . . : . . '0C%he meal, or when the blood glucose concentration leaves the
behind conventional therapy insulin regimens is to mimic

the physiological insulin secretion pattern of the norbdiic éuglycemic range, to brmg it back to near ”O”T‘a' by taking
. ) : . ._recovery carbohydrates in case of hypoglycemia, or an extra
subjects using delayed-acting (basal) doses to provide.a. . . : .
|5|sulln dose in case of hyperglycemia. To fit the controller a

background insulin concentration throughout the day and rder. phvsiologicallv sound. individualized modehsy
short-acting (bolus) doses to simulate the normal prandiaﬂ » Py gically '

) . . . . estimated from in-silico patient data obtained with a state
insulin levels, this strategy being called basal-bolusmeg.

Until today sustained improvement of diabetes control bgf—_'lt_r;:z—arr;s;;r;x(ljﬁorgfm&ielp[;ﬁ(]a.r is organized as follows

using insulin ha_s N many cases been assqmated W'thsaction Il deals with the simulation set-up, the explamatio
reduced safety, i.e., increase in hypoglycemic events an

. . . T h li k h i f th I
reduced quality of life [3], [4]. Despite advances in diaset OI t ghmode|ng wor r?nd the g)rﬁsentatloln of t e”contrrcl)
care over the past decades, insulin therapy still remaies of gorithm. Section I shows modeling results as well as the
of the most difficult to man:';lge as it depends on patient’goerI performances in closed-loop achieved exploitimg t

dailv decisions about insulin delivery adaptations in tiela ih-silico patient. The discussion on the achievementsfis le
ya ) y pte ) to Sec. IV. Finally, Sec. V concludes the paper with final

to various factors, the most important being food intake . ;

. : remarks and considerations for future work.

physical exercise and stress. As a matter of fact, the pmoble

of maintaining glucose levels within a predefined range is Il. MATERIAL AND METHODS

a control problem which has been and still is focus ofy. Experimental conditions

extensive studies, the control schemes proposed reachin

from classical control strategy such as PID control [5] [6]Si

[7] and cascade control [8], to adaptive [9], run-to-run][10

Srhis in-silico study considers a fine-grain nonlinear meal
mulation model first proposed in [19]. Model parameters
were obtained from the authors in order to reproduce as-faith
Dept. Automatic Control, Lund University, SE-221 00 Lund, &len;  TUlly as possible a virtual TIDM patient glucose metabolism
Email Marzia.Cescon@control.lth.se The virtual patient underwent a 3-dayssilico visit, starting



TgTiy+ (Tg+ Ty +Y(t) = KgugL(t —tg) + KgugTi o (t —tg) + Kiti L (t —ti) + Kiui Tgd(t —ti) 1)

TABLE | Simulated patient data
IN-SILICO PROTOCOL ‘ ‘
[ Day [[ Meal time [ CHO[g] [ Injection time [ Insulin [IU] ]
1 8:00 40 8:00 4
13:00 70 13:00 7 ‘ ‘ ‘ ‘
19:00 70 19:00 7 7:00 8:00 9:00 10:00 11:00 12:00
2 8:00 40 8:00 4 %0 * * * *
13:00 100 13:00 10 =)
19:00 70 19:00 7 0 ‘ ‘ ‘
3 300 720 500 7 7:00 8:00 9:00 10:00 11:00 12:00
13:00 70 13:00 7 5 ;
19:00 70 19:00 7 5
?:00 8:60 9:‘00 T h 10:00 11‘:00 12:00
200 Simulated patient data ime}h]
8001 7 Fig. 2. Simulated patient data. Meal test on breakfast in dayppBlood
%m, N A /\ N [\ N i glucqse concentration [mg/dL]Center Carbohy_drate intake [g]Bottom
£ VAN \/ \] \/ Insulin bolus [IU]. All the measurements vs. Time [h]
=100 : ; 1
4?:00 10‘:00 16‘:00 22:‘00 4:60 10‘:00 16‘:00 22‘:00 4:‘00 10:‘00 16‘:00 22‘:00 4:00 . . . .
100 —_— double integrator like behavior (Fig. 2). In absence of any
S 5o | | ~ I | I , | I | 1 action taken, plasma glucose concentration doesn't fadie(t
A?:OD 10‘:00 16‘:00 22:‘00 4:;)0 10‘:00 16‘:00 22‘:00 4:‘00 10:‘00 16‘:00 22‘:00 4:00 Interval 800 a'm to 1000 am) Then’ an Insu“n dose Of
o 4 [IU] was administered, making glucose concentration to
=yl | | | | | | fall piece-wise linearly. Assuming noise-free conditipas
= | | plasma glucose is directly available, we can formulate the
4

00 10:00 16:00 22:00 4:00 10:09|_ir1761:g)[h12:00 4:00 10:00 16:00 22:00 4:00 mOdel Structure in Eq (1)’ Where iS the t|me indeX,tg

is the time of carbohydrate ingestiof,is the time when
Fig. 1. Simulated patient datdop Blood glucose concentration [mg/dL]; insulin is injeCted'Y(t) € R, is the output plasma glucose ,
Center Carbohydrate intake [g]Bottom Insulin bolus [IU]. All the mea- Ug,U;i € Z are the inputs carbohydrate amount and insulin
surements vs. Time [h] doses, respectively is the Heaviside step function centered
in the origin, & is the Dirac function centered in the origin,
Kg,Ki € R are static gains whildy, Ti € R time constants

from steady-state fasting conditions corresponding tosalba governing rise and fall of(t) related to glucose and insulin

plasma glucose concentrati@® = 1291278 [mg/dL] and @ jnaues; respectively. In the Laplace domain, the impact of
basal plasma insulin concentratign= 90.0357 [pmoliL] at .5 hohydrate and insulin, respectively, on blood glucise,

4:00 of day 1. Meals and corresponding insulin doses Caﬂﬂven by the following transfer functions:
culated according to an insulin-to-carbohydrate ratioR)JC

1:10 were administered complying with the scheme in Yo(s) = Ky Ug(s) 2)
Table 1. In particular, a big lunch on day 2, the amount of S(1+sTy)

carbohydrate served being 100 [g], and a time-split bewteen Ki

carbohydrate ingestion and insulin intake at breakfast on Yi(s) = 75(1 +S-|i—)Ui(S) ®)

day 3, the time interval between the two being 2 [h], were hat th | off | | i h
realized to excite the system properly. We mention in pag;ssinsolt at the total effect on blood glucose is expressed by the
that the same experiments were carried out on real diabefflIOWiNg:

patients within the project DIAdvisof™ [16], highlighting Ye(S) = Yg(S) +¥i(9) )
the clinical feasibility of the proposed trial. Figure 1 8% Our objective is to estimate the unknown parameter vector
the simulated data. 0=[Kg Ki Ty T so thatthe estimation error between

. the actual blood glucose datdt) and the simulated data
B. Control-relevant modeling Yo (t) is minimized in a least-squares sense:

The first step in our methodology consisted in analyzing T
the simulated data for breakfast on day 3. From steady- argmin/ (y(t) —Yg(t))%dt (5)
state conditions and almost constant blood glucose lestls, 6 0
8.00 am an input is applied, namely 40 [g] of carbohydrateshereT =5 [h], subject to some constraints @&h namely

intake, which causes the controlled variable to rise with &y > 0, Kj < 0 to guarantee qualitatively correct responses



TABLE I

to inputs (blood glucose increases after a meal intake and
PERFORMANCE METRICS ON IDENTIFICATION DATA

decreases after an insulin shot) afRgdT, > 0 to guarantee
stability. The problem is difficult, as it is non-convex. We
therefore start off by empirically fitting the data to the rebd
with initial guesses for the parameters dictated by irtuiti

[ VAF [%] [ FIT [%] | RMSE [(mg/dL}] |
[93.7502 [ 75.0004 9.3121 ]

C. The control algorithm

As mentioned in Sec. I, the control algorithm determine 250
the doses of insulin and glucose to be administered to tIj
subject by solving an optimization problem when a meeg 2w
occurs or the BG concentration leaves the near-normal ran¢2
Hence, the time of the intakes is supposed to be known. TI%150
assumption is realistic, since according to standardaaini §
practice the patients bolus at meal time and take correg
tion insulin injections when the blood glucose rises abovo
yu = 180 [mg/dL]; conversely, compensatory carbohydrateQ =
are administered when the blood glucose concentratios fa™
belowy, =70 [mg/dL]. 800 1000__ 1200

Hence, the optimization problem that needs to be solve.. Time[h]
is the following:

Iden‘tification results

Fig. 4. Identification results. Simulated blood glucose emtiation (solid);

Hp 2 k
minimize Z [In (y(t)ﬂ actual blood glucose concentration (dashed) [mg/dL] vs. {imhe
Ug, Ui & G
subject to ug < 80 (6)
I1l. RESULTS
u < 20
YL <yt <y A. Modeling

wherey(t) = y(t, ug, Ui) +Yp(t), yr(t) is the predicted blood  The estimated transfer function model is the following:
glucose assuming no insulin or glucose intakes in the future

horizon andy(t, ug, U;) is the deviation of the blood glucose (s) = 0.1 (s — 1 Ui(s) 7
concentration after an intake of insulin or glucose, using s(s+0.0099 ¢ S(s+4)

the patient model estimated in section II-B. Furthermore,

yL andyy are the lower and upper bounds, respectively;igure 4 presents validation results showing the perfor-
for the target rangeyy and u; are the amount of glucose Mances achieved |n_3|mulat|on using |dgnt|f|cat|on data.
and insulin, respectively, to be given to the patient &hd As for model evaluation, the metrics considered were the
stands for the prediction horizon. The cost function used ifpllowing:

the minimization is shown in Fig. 3. The idea is to minimize . Percentage Variance Accounted For (VAF) calculated
the risk connected to a certain amount of blood glucose con- as:

centrationy(t) over the doses of glucose and insulin intakes.

The cost function has an asymmetric shape, emphasizing the VAF = El® =YO)YO) =YO)T] 4550,
higher risk of hypoglycemia compared to hyperglycemia. Ely(t)yT(t)]

The minimization in the optimization problem (6) is done . .
using the Matlaf® Optimization Toolbox [20]. whereE[] denotes mathematical expectation.

« Percentage FIT:

Cost Function .
i = (1 DO=IOI o0

300

250 [ly(t) = ()|l
N
" where y(t) are the actual measurementgt) “are the
Eilsof 1 model predictionsy is the mean value of(t) and|| ||
£ 0 is the Euclidean norm.

/ « Root Mean Square Error (RMSE) [(mg/dl)
0 ‘ T (y(t) —y(t)) (y(t) —y(t))T

0 50 100 150 200 50 300 350 400 RMSE= \/
Y mg/dL] n
Fig. 3. The Cost function used in the optimization problem. wheren denotes the number of samples.

Table Il presents the results obtained.



meal [g]
—¢ % Virtual yea(t)

Patient

IV. DISCUSSION

We have proposed a model-based controller for glycemia
regulation that uses continuous-time transfer functionlef®
of second order identified frorm-silico simulated T1DM
Predictor y(t) patient data. The set-up is that of a basal-bolus therapy,
involving impulsive control variables, namely insulin $&o
and meal carbohydrates, administered several times oger th
course of the day at irregularly spaced time instants. We
remind the reader in passing that this framework differanfro
ug(t) | Controller most of the proposed strategies to manage diabetes in an
automated fashion [9], [12], [13], [21], [22], [23] in which
glycemia is regulated only with a continuous insulin intusi
pump, neverthless, it is the most widespread approach among
the diabetics to cure their disease. Previous attempts at

Fig. 5. The simulation set-up.

0 Closed-loop Controller Simulation producing impulsive control signals include approximatio
- [\ of the continuous insulin signal from a model predictive
52001 N\ . q .

S / \/ \,\/\, controller ([24], [25]). Opposed to this, the controller we
£ 1 concerned with explicitly considers the amounts for insuli
‘ ‘ and glucose administration as optimization variabledenat

I I
0:00 06:00 10:00 18:00 0:00

than a discrete approximation of their continuous signal

— 10 T T T
) 5% | | | { counterparts. The algorithm determines the advices ofimsu
800 %60 1000 1500 500 and glucose only from predictions and measurements of the
o ‘ ‘ blood glucose concentrations, giving freedom to the diabet
EsF ‘ ‘ | M | ‘ 4 patient in the management of the disease. An asymmetric
000 05:00 1000 1800 000 cost function, which penalizes blood glucose concentnatio
‘ falling under 70[mg/dL] more than blood glucose concentra-
= 1 e | -
=, tion rising over 180mg/dL], is used by the control algorithm.

0:00 06:00 10:00 18:00 0:00

Timelh] In this way, the higher risk connected to hypoglycemia
compared to hyperglycemia is accounted for. A simple, low-
_ _ _ _ order, physiologically sound model tailored to the intethde
Fig. 6. Simulation results of the closed-loop controller leation. Top controller was estimated from simulated breakfast data Th
CGMS at the virtual patient output (blue) and borders of tearmormal . . .. .

range (red) [mg/dLTop Centerinsulin Advices by the controlleflu]; ~Parameters in the models are linked to clinical variables.
Bottom CenteGlucose Advices by the controllég); BottomMeal intakes  In particular, K1, Ty can be related to glucose tolerance,
[g]. All the signals vs. time [h] i.e., how the body metabolizes glucose, wher&as T,
are connected to insulin sensitivity or resistance, i.ew h
effective is insulin in lowering blood glucose. Actuallyjiqr
information could be incorporated in the tuning procedure,
taking into account the patient personal history of thealise

In order to simulate the controller in a closed-loo forand the experience gained in its regulation. The approach
: ) ) . Y0P 10 e sembles standard clinical practice being personalized d
testing and evaluation, the same virtual patient consitigre

X to the high inter-subject variability and particularly aating
the modeling phase was used. as it amounts to estimating only 4 parameters in the plausi-

The simulation setup is shown in Fig. 5. The virtual patienple range. Time delays accounting for food transportation
takes glucose and insulin as an input and gives out th@ong the gastro-intestinal tract and insulin kineticsnfro
measured CGMS signakg(t). All these signals are used the subcutaneous tissues to plasma has not been considered
by a prediction algorithm to predict the CGMS over a futurgyut could be easily incorporated in the model structure.
horizon. The predictor uses a linear model of the patienfp the actual setting the controller performances will be
here a virtual patient, and a Kalman filter to calculate thQSSGSSGd by subcutaneous continuous g|ucose monitoring
predictions. The CGMS predictions and the measured CGMsgnsor (CGMS) or self-monitoring finger-stick glucose mete
are used by the controller to determine the doses of insuliMBG) measurements, introducing issues such as sensor
and glucose to be given to the virtual patient. noise, device recalibration, time delays just to mentioava f

Figure 6 presents the simulation results. We assume tA&is contrasts our assumption of noise-free set-up anddvoul
simulation starting at midnight, with the virtual patiemt i require additional components to the control system, ae.,
steady-state condition and meals of carbohydrate confent Sensor model.

[g], 70 [g] and 40][g], respectively, administered at 8 : 00, For the virtual patient used as an example here, the control
13:00 and 19:00. algorithm can bring the blood glucose concentration back

B. Controller



into the normal range between 70 [mg/dL] and 180 [mg/dL][4]
after meals by suggesting additional insulin bolus intakes
After the first and second meal intake, the BG concentration
leaves the near-normal range before brought back into it.
However, after the third meal the controller gives insulin [3]
and glucose advices that keep the patient inside the near-
normal range. The virtual patient used for the simulations
does not include the effect of, for example, exercise orif]
the blood glucose concentration or other factors like stres
that also influence the blood glucose concentration. Hencgy,
the reaction of the control algorithm to lowering blood
glucose could not be tested here. To determine the doses %5
insulin and glucose advices, the controller uses bloodagleic
predictions calculated by a predictor that is not part of the
control algorithm. If this predictor delivers unreliableGB [9]
predictions to the controller, for example, due to bad dyali
of measured data, the controller will not be able to produce
a reliable advice.

[11]

V. CONCLUSIONS ANDFUTURE WORK
. . . [12]
Low order continuous-time transfer function models have

been identified from simulated T1DM patient data, explaitin
the meal simulation model in [19]. The estimated model P&13
rameters have intuitive meaning that can be linked to dinic
practice. Moreover, the structure appears to be suitalsle fo
controller design mimicking a basal-bolus type of therap¥14]
for insulin treated subjects.

A optimization-based controller using the estimated model
was implemented, where the control variables are insuli
doses and amount of carbohydrate to be suggested to the
subject. By using an asymmetric cost function, the opti-
mization minimizes the risk connected to a certain bloogn
glucose concentration. After a meal and for increased B
concentration, the controller suggests insulin dosedittiagy  [18]
the patient’s blood glucose back into the near-normal range

As for the control-oriented modeli®-silico breakfast data 19]
only were considered. Thus, future work will be devoted to
performing the same type of modeling for other meals 0l
snacks and subsequently apply them in the controller desigﬁ]
step. Further, future work will be carried out to extend theyy
study on a larger population.

6]
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