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Impulsive Predictive Control of T1DM glycemia: an in-silico study

Marzia Cescon, Meike Stemmann and Rolf Johansson

Abstract— The most widespread approach for glycemic con-
trol in diabetic patients is the so-called basal-bolus insulin
regimen, comprising insulin injections at meal times, correction
doses in hyperglycemia and compensatory carbohydrate in case
of insulin-induced hypoglycemia. The present contribution rep-
resents an attempt at implementing such a strategy on a virtual,
i.e., in-silico, T1DM patient. A low order physiologically sound
transfer function model was estimated from simulated data
and exploited using an optimization-based control algorithm,
the objective being sustainment of glycemia in the near-normal
range (70−180 [mg/dL ]).

I. I NTRODUCTION

Diabetes Mellitus is a chronic disease of disordered glu-
cose metabolism due to defects in either insulin secretion by
the pancreaticβ -cells or insulin action [1]. In particular, Type
1 Diabetes Mellitus (T1DM), being caused by no production
of insulin whatsoever, is characterized by abnormally high
blood glucose levels (hyperglycemia, blood glucose> 180
[mg/dL]) leading to serious health damages. In order to
prevent the long term complications associated to the sus-
tained hyperglycemia it becomes critical, then, for diabetic
patients to regulate their blood glucose tightly, maintaining
its level within the near-normal range (70− 180 [mg/dL])
[2]. Because insulin deficiency defines the disease, exoge-
nous insulin replacement administered with either multiple
daily injections (MDI) or with an external insulin infusion
pump (CSII) is the hallmark of the treatments. The idea
behind conventional therapy insulin regimens is to mimic
the physiological insulin secretion pattern of the non-diabetic
subjects using delayed-acting (basal) doses to provide a
background insulin concentration throughout the day and
short-acting (bolus) doses to simulate the normal prandial
insulin levels, this strategy being called basal-bolus regimen.
Until today sustained improvement of diabetes control by
using insulin has in many cases been associated with a
reduced safety, i.e., increase in hypoglycemic events and
reduced quality of life [3], [4]. Despite advances in diabetes
care over the past decades, insulin therapy still remains one
of the most difficult to manage, as it depends on patient’s
daily decisions about insulin delivery adaptations in relation
to various factors, the most important being food intake,
physical exercise and stress. As a matter of fact, the problem
of maintaining glucose levels within a predefined range is
a control problem which has been and still is focus of
extensive studies, the control schemes proposed reaching
from classical control strategy such as PID control [5] [6]
[7] and cascade control [8], to adaptive [9], run-to-run [10]
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[11] model predictive control (MPC) [12] [13] andH∞
control [14]. Most of this research targets continuous insulin
administration via a subcutaneous pump, resulting in suitable
therapy only for a minority and without taking into account
the risks connected with insulin-induced hypoglycemia [15].
Against this background, the availability of an ‘advisory
system’ recommending the user to take appropriate insulin
injections and eventually compensatory snacks, to maintain
glucose levels within the predefined target range, would be
desirable. Within this scenario the controller is expected
to determine impulse-like control inputs, namely insulin
injections and amount of additional carbohydrates, which are
not automatically applied but rather suggested to the patient,
thereby assuring safety. When an advice is suggested by the
algorithm, the patient can accept or reject it, remaining firmly
in the loop. This is the focus of the major European project
DIAdvisor TM [16].

The present contribution aims at proposing one such a
scheme. The controller is optimization-based, similar to
MPC-type controllers [17] [18] and the control variables are
doses of insulin to be injected and number of grams of car-
bohydrate to be administered, while the measured output is
the subcutaneous glucose concentration measured by a sub-
cutaneous continuous glucose monitoring sensor (CGMS).
The algorithm solves an optimization problem either when a
meal is taken, to determine the insulin dose needed to cover
the meal, or when the blood glucose concentration leaves the
euglycemic range, to bring it back to near-normal by taking
recovery carbohydrates in case of hypoglycemia, or an extra
insulin dose in case of hyperglycemia. To fit the controller a
low-order, physiologically sound, individualized model was
estimated from in-silico patient data obtained with a state-
of-the-art simulation model [19].

The remainder of the paper is organized as follows.
Section II deals with the simulation set-up, the explanation
of the modeling work and the presentation of the control
algorithm. Section III shows modeling results as well as the
control performances in closed-loop achieved exploiting the
in-silico patient. The discussion on the achievements is left
to Sec. IV. Finally, Sec. V concludes the paper with final
remarks and considerations for future work.

II. M ATERIAL AND METHODS

A. Experimental conditions

This in-silico study considers a fine-grain nonlinear meal
simulation model first proposed in [19]. Model parameters
were obtained from the authors in order to reproduce as faith-
fully as possible a virtual T1DM patient glucose metabolism.
The virtual patient underwent a 3-daysin-silico visit, starting



TgTi ÿ+(Tg+Ti)ẏ+y(t) = Kgug1(t − tg)+KgugTiδ (t − tg)+Kiui1(t − ti)+KiuiTgδ (t − ti) (1)

TABLE I

IN-SILICO PROTOCOL

Day Meal time CHO [g] Injection time Insulin [IU]

1 8:00 40 8:00 4
13:00 70 13:00 7
19:00 70 19:00 7

2 8:00 40 8:00 4
13:00 100 13:00 10
19:00 70 19:00 7

3 8:00 40 8:00 4
13:00 70 13:00 7
19:00 70 19:00 7
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Fig. 1. Simulated patient data.Top Blood glucose concentration [mg/dL];
Center Carbohydrate intake [g];Bottom Insulin bolus [IU]. All the mea-
surements vs. Time [h]

from steady-state fasting conditions corresponding to a basal
plasma glucose concentrationGb = 129.1278 [mg/dL] and a
basal plasma insulin concentrationIb = 90.0357 [pmol/L] at
4:00 of day 1. Meals and corresponding insulin doses cal-
culated according to an insulin-to-carbohydrate ratio (ICR)
1 : 10 were administered complying with the scheme in
Table I. In particular, a big lunch on day 2, the amount of
carbohydrate served being 100 [g], and a time-split bewteen
carbohydrate ingestion and insulin intake at breakfast on
day 3, the time interval between the two being 2 [h], were
realized to excite the system properly. We mention in passing
that the same experiments were carried out on real diabetic
patients within the project DIAdvisorTM [16], highlighting
the clinical feasibility of the proposed trial. Figure 1 shows
the simulated data.

B. Control-relevant modeling

The first step in our methodology consisted in analyzing
the simulated data for breakfast on day 3. From steady-
state conditions and almost constant blood glucose levels,at
8.00 am an input is applied, namely 40 [g] of carbohydrate
intake, which causes the controlled variable to rise with a
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Fig. 2. Simulated patient data. Meal test on breakfast in day 3. Top Blood
glucose concentration [mg/dL];Center Carbohydrate intake [g];Bottom
Insulin bolus [IU]. All the measurements vs. Time [h]

double integrator like behavior (Fig. 2). In absence of any
action taken, plasma glucose concentration doesn’t fall (time
interval 8.00 am to 10.00 am). Then, an insulin dose of
4 [IU] was administered, making glucose concentration to
fall piece-wise linearly. Assuming noise-free conditions, as
plasma glucose is directly available, we can formulate the
model structure in Eq. (1), wheret is the time index,tg
is the time of carbohydrate ingestion,ti is the time when
insulin is injected,y(t) ∈ R+ is the output plasma glucose ,
ug,ui ∈ Z+ are the inputs carbohydrate amount and insulin
doses, respectively,1t is the Heaviside step function centered
in the origin,δt is the Dirac function centered in the origin,
Kg,Ki ∈ R are static gains whileTg,Ti ∈ R time constants
governing rise and fall ofy(t) related to glucose and insulin
intakes, respectively. In the Laplace domain, the impact of
carbohydrate and insulin, respectively, on blood glucose,is
given by the following transfer functions:

Yg(s) =
Kg

s(1+sTg)
Ug(s) (2)

Yi(s) =
Ki

s(1+sTi)
Ui(s) (3)

so that the total effect on blood glucose is expressed by the
following:

YBG(s) =Yg(s)+Yi(s) (4)

Our objective is to estimate the unknown parameter vector
θ = [Kg Ki Tg Ti ] so that the estimation error between
the actual blood glucose datay(t) and the simulated data
ŷθ (t) is minimized in a least-squares sense:

argmin
θ

∫ T

0
(y(t)− ŷθ (t))

2dt (5)

whereT = 5 [h], subject to some constraints onθ , namely
Kg > 0, Ki < 0 to guarantee qualitatively correct responses



to inputs (blood glucose increases after a meal intake and
decreases after an insulin shot) andTg,Ti > 0 to guarantee
stability. The problem is difficult, as it is non-convex. We
therefore start off by empirically fitting the data to the model
with initial guesses for the parameters dictated by intuition.

C. The control algorithm

As mentioned in Sec. I, the control algorithm determines
the doses of insulin and glucose to be administered to the
subject by solving an optimization problem when a meal
occurs or the BG concentration leaves the near-normal range.
Hence, the time of the intakes is supposed to be known. The
assumption is realistic, since according to standard clinical
practice the patients bolus at meal time and take correc-
tion insulin injections when the blood glucose rises above
yU = 180 [mg/dL]; conversely, compensatory carbohydrate
are administered when the blood glucose concentration falls
below yL = 70 [mg/dL].

Hence, the optimization problem that needs to be solved
is the following:

minimize
ug,ui

Hp

∑
t=1

[

ln

(

y(t)
G

)]2

subject to ug < 80

ui < 20

yL ≤ y(t)≤ yU

(6)

wherey(t) = ȳ(t,ug,ui)+yP(t), yP(t) is the predicted blood
glucose assuming no insulin or glucose intakes in the future
horizon and ¯y(t,ug,ui) is the deviation of the blood glucose
concentration after an intake of insulin or glucose, using
the patient model estimated in section II-B. Furthermore,
yL and yU are the lower and upper bounds, respectively,
for the target range,ug and ui are the amount of glucose
and insulin, respectively, to be given to the patient andHp

stands for the prediction horizon. The cost function used in
the minimization is shown in Fig. 3. The idea is to minimize
the risk connected to a certain amount of blood glucose con-
centrationy(t) over the doses of glucose and insulin intakes.
The cost function has an asymmetric shape, emphasizing the
higher risk of hypoglycemia compared to hyperglycemia.
The minimization in the optimization problem (6) is done
using the MatlabR© Optimization Toolbox [20].
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Fig. 3. The Cost function used in the optimization problem.

TABLE II

PERFORMANCE METRICS ON IDENTIFICATION DATA

VAF [%] FIT [%] RMSE [(mg/dL)2]

93.7502 75.0004 9.3121
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Fig. 4. Identification results. Simulated blood glucose concentration (solid);
actual blood glucose concentration (dashed) [mg/dL] vs. time[h]

III. R ESULTS

A. Modeling

The estimated transfer function model is the following:

Y(s) =
0.1

s(s+0.0099)
Ug(s)−

1
s(s+4)

Ui(s) (7)

Figure 4 presents validation results showing the perfor-
mances achieved in simulation using identification data.
As for model evaluation, the metrics considered were the
following:

• Percentage Variance Accounted For (VAF) calculated
as:

VAF =
E[(y(t)− ŷ(t))(y(t)− ŷ(t))⊺]

E[y(t)y⊺(t)]
×100%

whereE[·] denotes mathematical expectation.
• Percentage FIT:

FIT =
(

1−
‖y(t)− ŷ(t)‖
‖y(t)− ȳ(t)‖

)

×100%

where y(t) are the actual measurements, ˆy(t) are the
model predictions, ¯y is the mean value ofy(t) and‖ · ‖
is the Euclidean norm.

• Root Mean Square Error (RMSE) [(mg/dL)2]:

RMSE=

√

(y(t)− ŷ(t))(y(t)− ŷ(t))⊺

n

wheren denotes the number of samples.

Table II presents the results obtained.
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B. Controller

In order to simulate the controller in a closed-loop for
testing and evaluation, the same virtual patient considered in
the modeling phase was used.

The simulation setup is shown in Fig. 5. The virtual patient
takes glucose and insulin as an input and gives out the
measured CGMS signalyBG(t). All these signals are used
by a prediction algorithm to predict the CGMS over a future
horizon. The predictor uses a linear model of the patient,
here a virtual patient, and a Kalman filter to calculate the
predictions. The CGMS predictions and the measured CGMS
are used by the controller to determine the doses of insulin
and glucose to be given to the virtual patient.

Figure 6 presents the simulation results. We assume the
simulation starting at midnight, with the virtual patient in
steady-state condition and meals of carbohydrate content 30
[g], 70 [g] and 40 [g], respectively, administered at 8 : 00,
13 : 00 and 19 : 00.

IV. D ISCUSSION

We have proposed a model-based controller for glycemia
regulation that uses continuous-time transfer function models
of second order identified fromin-silico simulated T1DM
patient data. The set-up is that of a basal-bolus therapy,
involving impulsive control variables, namely insulin shots
and meal carbohydrates, administered several times over the
course of the day at irregularly spaced time instants. We
remind the reader in passing that this framework differs from
most of the proposed strategies to manage diabetes in an
automated fashion [9], [12], [13], [21], [22], [23] in which
glycemia is regulated only with a continuous insulin infusion
pump, neverthless, it is the most widespread approach among
the diabetics to cure their disease. Previous attempts at
producing impulsive control signals include approximation
of the continuous insulin signal from a model predictive
controller ([24], [25]). Opposed to this, the controller weare
concerned with explicitly considers the amounts for insulin
and glucose administration as optimization variables, rather
than a discrete approximation of their continuous signal
counterparts. The algorithm determines the advices of insulin
and glucose only from predictions and measurements of the
blood glucose concentrations, giving freedom to the diabetic
patient in the management of the disease. An asymmetric
cost function, which penalizes blood glucose concentrations
falling under 70[mg/dL] more than blood glucose concentra-
tion rising over 180[mg/dL], is used by the control algorithm.
In this way, the higher risk connected to hypoglycemia
compared to hyperglycemia is accounted for. A simple, low-
order, physiologically sound model tailored to the intended
controller was estimated from simulated breakfast data. The
parameters in the models are linked to clinical variables.
In particular, K1, T1 can be related to glucose tolerance,
i.e., how the body metabolizes glucose, whereasK2, T2

are connected to insulin sensitivity or resistance, i.e., how
effective is insulin in lowering blood glucose. Actually, prior
information could be incorporated in the tuning procedure,
taking into account the patient personal history of the disease
and the experience gained in its regulation. The approach
resembles standard clinical practice being personalized due
to the high inter-subject variability and particularly appealing
as it amounts to estimating only 4 parameters in the plausi-
ble range. Time delays accounting for food transportation
along the gastro-intestinal tract and insulin kinetics from
the subcutaneous tissues to plasma has not been considered
but could be easily incorporated in the model structure.
In the actual setting the controller performances will be
assessed by subcutaneous continuous glucose monitoring
sensor (CGMS) or self-monitoring finger-stick glucose meter
(SMBG) measurements, introducing issues such as sensor
noise, device recalibration, time delays just to mention a few.
This contrasts our assumption of noise-free set-up and would
require additional components to the control system, i.e.,a
sensor model.

For the virtual patient used as an example here, the control
algorithm can bring the blood glucose concentration back



into the normal range between 70 [mg/dL] and 180 [mg/dL]
after meals by suggesting additional insulin bolus intakes.
After the first and second meal intake, the BG concentration
leaves the near-normal range before brought back into it.
However, after the third meal the controller gives insulin
and glucose advices that keep the patient inside the near-
normal range. The virtual patient used for the simulations
does not include the effect of, for example, exercise on
the blood glucose concentration or other factors like stress
that also influence the blood glucose concentration. Hence,
the reaction of the control algorithm to lowering blood
glucose could not be tested here. To determine the doses of
insulin and glucose advices, the controller uses blood glucose
predictions calculated by a predictor that is not part of the
control algorithm. If this predictor delivers unreliable BG
predictions to the controller, for example, due to bad quality
of measured data, the controller will not be able to produce
a reliable advice.

V. CONCLUSIONS ANDFUTURE WORK

Low order continuous-time transfer function models have
been identified from simulated T1DM patient data, exploiting
the meal simulation model in [19]. The estimated model pa-
rameters have intuitive meaning that can be linked to clinical
practice. Moreover, the structure appears to be suitable for
controller design mimicking a basal-bolus type of therapy
for insulin treated subjects.

A optimization-based controller using the estimated model
was implemented, where the control variables are insulin
doses and amount of carbohydrate to be suggested to the
subject. By using an asymmetric cost function, the opti-
mization minimizes the risk connected to a certain blood
glucose concentration. After a meal and for increased BG
concentration, the controller suggests insulin doses thatbring
the patient’s blood glucose back into the near-normal range.

As for the control-oriented models,in-silico breakfast data
only were considered. Thus, future work will be devoted to
performing the same type of modeling for other meals or
snacks and subsequently apply them in the controller design
step. Further, future work will be carried out to extend the
study on a larger population.

VI. A CKNOWLEDGMENTS

This research was supported by the European project
DIAdvisor TM , FP7 IST-216592. [16].

REFERENCES

[1] G. Williams and J. C. Pickup,Handbook of Diabetes, Blackwell
Science, Ed. MSD, 1999.

[2] The American Diabetes Association, “Standards of medicalcare in
diabetes 2010,”Diabetes Care, vol. 33, no. Supplement 1, pp. S11–
S61, 2010.

[3] The Diabetes Control and Complications Trial Research Group, “The
effect of intensive treatment of diabetes on the development and
progression of long-term complications in insulin-dependent diabetes
mellitus,” N Eng J Med, vol. 329, no. 14, pp. 977–986, September
1993.

[4] The Diabetes Control and Complications Trial/Epidemiology of Dia-
betes Interventions and Complications Study Research Group, “Inten-
sive diabetes treatment and cardiovascular disease in patients with type
1 diabetes,”N Eng J Med, vol. 353, no. 25, pp. 2643–2653, December
2005.

[5] F. Chee, T. Fernando, A. Savkin, and V. van Heeden, “Expert PID
control system for blood glucose control in critically ill patients,”IEEE
Transactions on Information Technology in Biomedicine, vol. 7, no. 4,
pp. 419–425, December 2003.

[6] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser, and D. Seborg,
“A feedforward-feedback glucose control strategy for type1 diabetes
mellitus,” Journal of Process Control, vol. 18, pp. 149–162, 2008.

[7] ——, “An improved PID switching control strategy for type 1dia-
betes,”IEEE Transactions on Biomedical Engineering, vol. 55, no. 3,
pp. 857–865, March 2008.

[8] M. Ortiz-Vargas and H. Puebla, “A cascade control approach for a
class of biomedical systems,” inProc. of the 28th IEEE-EMBS Ann.
Int. Conference, New York, USA, 2006, pp. 4420–4423.

[9] R. Hovorka, “Management of diabetes using adaptive control,” vol. 19,
pp. 309–325, 2005, int. J. Adapt. Control Signal Process.

[10] C. Palerm, H. Zisser, L. Jovanovic, and F. Doyle, “A run-to-run
framework for prandial insulin doses: handling real-life uncertainty,”
Int. J. Robust Nonlinear Control, vol. 17, pp. 1194–1213, 2007.

[11] ——, “A run-to-run control strategy to adjust basal insulin infusion
rates in type 1 diabetes,”Journal of Process Control, vol. 18, pp.
258–265, 2008.

[12] L. Magni, D. Raimondo, L. Bossi, C. Dalla Man, G. De Nicolao,
B. Kovatchev, and C. Cobelli, “Model predictive control of type 1
diabetes: An in silico trial,” vol. 1, no. 6, pp. 804–812, 2007, journal
of Diabetes Science and Technology.

[13] W. Youqing, H. Zisser, E. Dassau, L. Jovanovic, and F. Doyle J. III,
“Model predictive control with learning-type set-point: Application to
artificial pancreatic beta-cell,” vol. 56, no. 6, pp. 1510–1518, 2010,
AIChE Journal.

[14] E. Ruiz-Velazquez, R. Femat, and D. Campos-Delgado, “Blood glu-
cose control for type 1 diabetes mellitus: A robust tracking h∞
problem,” Control Engineering Practice, vol. 12, pp. 1179–1195,
2004.

[15] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao,
and B. Kovatchev, “Diabetes: Models, signals and control,”vol. 2, pp.
54–96, 2009, IEEE Reviews in Biomedical Engineering.

[16] DIAdvisor www.diadvisor.eu.
[17] J. Maciejowski, Predictive Control with Constraints, Pearson, Ed.

Pearson Education Limited, 2002.
[18] R. James B. and D. Mayne,Model Predictive Control:Theory and

Design. Nob Hill Publishing, 2009.
[19] C. Dalla Man, R. R. Rizza, and C. Cobelli, “Meal simulation model

of the glucose-insulin system,”IEEE Transactions on Biomedical
Engineering, vol. 54, no. 10, pp. 1740–1749, October 2007.

[20] MATLAB, version 7.10.0 (R2010a). The MathWorks Inc., 2010.
[21] C. Cobelli, E. Renard, and B. Kovatchev, “Artificial pancreas: Past,

present, future,” vol. 60, pp. 2672–2682, 2011, diabetes.
[22] G. De Nicolao, L. Magni, C. Dalla Man, and C. Cobelli, “Modeling

and control of diabetes: Towards the artificial pancreas,” in Proc. of
the 18th IFAC World Congress (IFAC2011), Milano, Italy, September
2011, pp. 7092–7101.

[23] K. van Heudsen, E. Dassau, H. Zisser, D. Seborg, and F. Doyle J.
III, “Control-relevant models for glucose control using a priori patient
characteristics,” 2012, accepted for publication in Trans. Biomedical
Eng.

[24] H. Kirchsteiger and L. del Re, “Reduced hypoglycemia risk in insulin
bolus therapy using asymmetric cost functions,” in7th Asian Control
Conference (ASCC 2009), Hong Kong, China, aug. 2009, pp. 751 –
756.

[25] H. Kirchsteiger, L. del Re, E. Renard, and M. Mayrhofer,“Robustness
properties of optimal insulin bolus administrations for type1 diabetes,”
in American Control Conference (ACC 2009), vol. 47, no. 3, St Louis,
MO, USA, June 2009, pp. 2284 –2289.

[26] H. Kirchsteiger, G. Castillo Estrada, S. Pölzer, L. delRe, and E. Re-
nard, “Estimating interval process models for type 1 diabetesfor robust
control design,” inProc. of the 18th IFAC World Congress (IFAC2011),
Milano, Italy, September 2011, pp. 11 761–11 766.

[27] H. Hjalmarsson, “From experiment design to close-loop control,”
vol. 41, pp. 393–438, 2005, automatica.



[28] M. Gevers, “Identification for control: From the early achievements to
the revival of experiment design,” vol. 11, pp. 1–18, 2005, european
Journal of Control.

[29] M. Gevers and L. Ljung, “Optimal experiment designs with respect
to the intended model application,” vol. 22, no. 5, pp. 543–554, 1986,
automatica.

[30] D. Finan, J. Jorgensen, N. Poulsen, and H. Madsen, “Robust model
identification applied to type 1 diabetes,” inProc. of the 2010
American Control Conference (ACC2010), Baltimore, USA, July 2010,
pp. 2021–2026.

[31] M. Cescon, F. Ståhl, M. Landin-Olsson, and R. Johansson, “Subspace-
based model identification of diabetic blood glucose dynamics,” in
Proc. 15th IFAC Symposium on System Identification (SYSID2009),
Saint Malo, France, July 2009.

[32] F. Ståhl and R. Johansson, “Diabetes mellitus modeling and short-
term prediction based on blood glucose measurements,”Mathematical
Biosciences, vol. 217, pp. 101–117, 2009.

[33] C. Dalla Man, M. Camilleri, and C. Cobelli, “A system modelof oral
glucose absorption: Validation on gold standard data,”IEEE Trans.
Biomedical Eng., vol. 53, no. 12, pp. 2472–2477, December 2006.

[34] B. D. Anderson and J. B. Moore,Optimal Filtering, T. Kailath, Ed.
Englewood Cliffs, NJ: Prentice-Hall, 1979.

[35] K. Åström, “Maximum likelihood and prediction error methods,”
Automatica, vol. 16, pp. 551–574, 1980.

[36] T. Kailath and B. Hassibi,Linear Estimation. Upper Saddle River,
NJ: Prentice Hall, 2000.


