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Abstract

The all spectrum absorption e�ciency appears in the physical bounds on an-

tennas expressed in the polarizability dyadics. Here, it is shown that this

generalized absorption e�ciency is close to 1/2 for small idealized dipole an-

tennas and for antennas with a dominant resonance in their absorption. Also,

the usefulness of this parameter is analyzed for estimation of antenna perfor-

mance. The results are illustrated with numerical data for several antennas.

1 Introduction

A new set of physical bounds on antennas was introduced in [4�7, 16]. These bounds
relate the performance of the antenna to the electro- and magneto-static polarizabil-
ity dyadics of a circumscribing geometry. This generalizes the classical bounds by
Chu [3] for spherical geometries to geometries of arbitrary shape. The new bounds
are valid for lossless and linearly polarized [4, 6, 7, 16] and elliptically polarized [5]
antennas. Moreover, the approach can be used to estimate the performances of
many small antennas if the polarizabilities of the antennas are used instead of the
circumscribing geometries [4, 7, 16].

The only parameter in the bound that depends on the dynamic properties of
the antenna is the generalized (or all spectrum) absorption e�ciency, η. This is the
generalization of the frequency dependent absorption e�ciency analyzed in [1] given
by integration of the absorbed and total power, independently, over all wavelengths.

In [4, 6, 7, 16], it is demonstrated that η is close to 1/2 for many small antennas
that are connected to a frequency independent resistive load and matched at their
�rst resonance. This is motivated by the minimum scattering property that small
matched antennas often possess, i.e., they scatter as much power as they absorb
at the resonance frequency giving an absorption e�ciency of 1/2 at the resonance
frequency [1, 12]. Here, it is shown that small idealized dipole antennas with a
dominant �rst single resonance have an all spectrum absorption e�ciency η > 1/2.
The region around the resonance is minimum scattering but the contributions from
regions away from the resonance scatter slightly more power than is absorbed giving
a generalized (all spectrum) absorption e�ciency close to but less than 1/2.

Minimum scattering is a property that many non electrically small resonant
antennas also possess. Numerical simulation results of common antennas, both
electrically small and not small, verify the theoretical results.

2 Absorption e�ciency

The physical bounds analyzed in [4, 6, 7, 16] are derived for single port, linearly po-
larized, reciprocal, and lossless antennas with the re�ection coe�cient Γ (k) and the
directivity D(k; k̂, ê), where k denotes the free-space wavenumber, k̂ the direction,
and ê the electric polarization. The forward scattering sum rule [6] gives the antenna
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identity∫ ∞
0

(1− |Γ (k)|2)D(k; k̂, ê)

k4
dk =

η

2

(
ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

)
, (2.1)

where γe and γm are the electro- and magneto-static polarizability dyadics, respec-
tively. The integral (2.1) is bounded in various ways to produce bounds for di�erent
applications, e.g., resonant and constant partial-realized gain in [4, 6, 7] and ultra-
wide band cases in [16]. The resonant case is applicable for antennas with a dominant
�rst single resonance [7]. It is given by

D(k; k̂, ê)

Q
≤ ηk3

0

2π

(
ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

)
, (2.2)

where k0 is the resonance wavenumber and Q denotes the Q-factor at the resonance,
i.e., it has the half-power fractional bandwidth B ≈ 2/Q.

The polarizability dyadics in the right-hand sides of (2.1) and (2.2) are easily
determined for the antenna or, as an upper bound, for an arbitrary circumscribing
geometry1 by the solution of the corresponding electro- and magneto-static equa-
tions [4, 6, 7, 16]. This leaves the generalized absorption e�ciency, η, as the only
quantity in the right-hand sides of (2.1) and (2.2) that depends on the dynamic
properties of the antenna. It is an all spectrum measure of the absorption and
scattering properties of the object, that is de�ned by

η =

∫∞
0
σa(k)/k2 dk∫∞

0
σext(k)/k2 dk

=

∫∞
0
σa(2π/λ) dλ∫∞

0
σext(2π/λ) dλ

, (2.3)

where σext = σa + σs, σa, and σs denote the extinction, absorption, and scattering
cross sections, respectively and λ = 2π/k is the wavelength. It is clear that 0 ≤ η < 1
for all objects as σa ≥ 0 and σs ≥ 0. In [4, 7], it is observed that η ≈ 1/2 for
many small antennas that are matched at a dominant �rst resonance k0. This is
partly explained by the fact that the absorption e�ciency σa(k0)/σext(k0) = 1/2 for
minimum scattering antennas, i.e., small single mode antennas absorb and scatter
the same amount of power at the resonance frequency [1, 12]. The weighting factor,
k−2, in (2.3) emphasizes the dynamics of the antenna for low wavenumbers. Thus,
the lower the resonance frequency, the closer η is to 1/2 as the resonance region will
dominate the integrals. As a consequence, the theory derived here is useful if the
analyzed resonance has the lowest frequency. The contributions to η in (2.3) away
from the resonance are small due to the fact that scattering dominates the behavior
of the antenna in the regions where the mismatch is high.

Here, the case with an idealized lossless antenna that radiates an electric dipole
mode is considered to explicitly determine η and illustrate how σext(k) and σa(k)
depend on the wavenumber around the resonance. A spherical dipole mode at the
radius a has the impedance [3] ZTM = 1/(jωC) + jωL/(1 + jωL/η0), where L = µ0a,
C = ε0a, ω = kc0, the time convention ejωt is used, and ε0, µ0, c0, and η0 denote the

1http://www.mathworks.fr/matlabcentral/�leexchange/26806-antennaq
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Figure 1: The re�ection coe�cient of the idealized dipole antenna (2.4) for k0a =
1/2 and k0a = 1/4 with C = ε0a, L = µ0a and R1 = η0 as function of the normalized
wavelength λ/a = 2πc0/(ωa).

free space permittivity, permeability, speed of light, and impedance, respectively.
The impedance is modi�ed by the antenna. We consider an antenna with the input
impedance obtained from the impedance of the dipole mode, ZTM, tuned to be
resonant at ω = ω0 with a lumped inductance L1, i.e.,

Z(ω) = jωL1 +
1

jωC
+

jωL

1 + jωL/R1

. (2.4)

The inductance L1 is given by L1 = 1/(ω2
0C)− L/(1 + ω2

0L
2/η2

0), and the radiation
resistance at the resonance frequency is R0 = Z(ω0) = ω2

0L
2R1/(R

2
1 + ω2

0L
2), and

R1 = η0, L = µ0a, and C = ε0a in the idealized dipole case. The corresponding Q-
factor at ω = ω0 is determined to Q = 1/(C2LR1ω

3
0) + R1/(Lω0) and the re�ection

coe�cient, Γ (ω) = (Z(ω)−R0)/(Z(ω)+R0), has a single resonance with Γ (ω0) = 0,
see Fig. 1. The absorption cross section (or e�ective antenna aperture) for lossless
antennas is given by [15]

σa(k) = D(k)(1− |Γ (kc0)|2)π/k2, (2.5)

where D(k) = 3/2 in the horizontal plane for the considered dipole mode.
Evaluation of η in (2.3) requires a model of the extinction cross section, σext(k),

that is consistent with (2.4). Consider a single port antenna with incoming signal
u and outgoing signal v. The electromagnetic �eld is expanded in incoming and
outgoing spherical modes with coe�cients a and b, respectively. This gives the
scattering matrix [11] (

Γ R
T S

)(
u
a

)
=

(
v
b

)
, (2.6)

where Γ is the re�ection coe�cient, R is an 1 ×∞ matrix with elements Rn, T is
an ∞× 1 matrix with elements Tn, and S is an ∞×∞ matrix with elements Smn.
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For simplicity, order the modes such that the idealized dipole antenna radiates
the �rst mode, i.e., Rn = Tn = 0 for n > 1. Conservation of energy shows that
the amplitudes of the re�ection coe�cient and the scattering coe�cient, S11, are
identical in this case, i.e.,

|Γ (kc0)| = |S11(k)| (2.7)

for k ∈ R. Moreover, the scattering matrix is non-causal, i.e., it increases as e2jka as
k →∞ with | arg(jk)| < π/2− α, for some α > 0 where a denotes the radius of the
smallest circumscribing sphere, see [9, 14]. As the amplitude of S11 is determined
by the re�ection coe�cient (2.7) they can only di�er by a function that has unit
magnitude for k ∈ R. Using rational functions, i.e., Blaschke products [14], gives
the model

S11(k) = e2jkaZ(kc0)−R0

Z(kc0) +R0

∏
n

kn − k
k∗n − k

, (2.8)

where kn denote the zeros of S11 in Re{jk} > 0.
The extinction cross section is often expressed in the transition matrix. It is

related to the S-matrix in (2.6), S, via Tmn = (Smn − 1)/2. Consider an idealized
dipole antenna that is resonant for k0a� 1. The scattering from higher order modes
is negligible for k0a � 1 so the extinction cross section is well approximated with
the dipole mode in this region. The extinction cross section from the dipole mode
is hence approximated by

σext(k) ≈ −6πRe {T11(k)}
k2

and σs(k) ≈ 6π|T11(k)|2

k2
, (2.9)

where T11 denotes the diagonal dipole element of the transition matrix [14]. Consider
the simplest possible case with a single zero k1. The value of k1 is determined
by (2.8) and (2.9) inserted into the low-frequency expansions [13] σext(k) = O(k2)
and σs(k) = O(k4) as k → 0. This shows that k1 = j/(a−CR0c0), giving the model

S11(k) = e2jka Z(kc0)−R0

Z(kc0) +R0

1− jk(a− CR0c0)

1 + jk(a− CR0c0)
. (2.10)

The cross sections σext, σa, and σs are depicted in Fig. 2 for the same cases as
in Fig. 1. It is observed that the areas under the curves are concentrated to
the resonances and that σa(k) ≈ σs(k) around the resonances for k0a = 0.25.
For minimum scattering, Re {T11(k)} = −1/2 in (2.9), we obtain the envelope
σext(k)/a2 ≈ 3π/k2a2 = 3λ2/4πa2, also plotted in Fig. 2. The more dominant a
resonance, the closer the obtained value of the extinction cross section is to this
envelope at the resonance frequency.

The generalized (all-spectrum) absorption e�ciency (2.3) for the idealized dipole
is �nally determined by

η =

∫∞
0

(1−|Γ (k)|2)Dπ
k4 dk∫∞

0
σext(k)
k2 dk

≈
∫∞

0
1−|Γ (k)|2

k4 dk

−4
∫∞

0
Re{T11(k)}

k4 dk
. (2.11)

In Fig. 3, the generalized absorption e�ciency η is evaluated for the idealized dipole
model (2.4) and (2.10) as well as various other parameter values on C, L, and R1.
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Figure 2: The extinction, σext, absorption, σa, and scattering, σs, cross sections for
the idealized dipole antenna (2.4), depicted in Fig. 1, and (2.10) as function of the
normalized wavelength λ/a = 2π/(ka).

It is observed that η > 1/2 for k0a� 1. The deviation from 1/2 is due to the region
with small σs but negligible σa for λ/a < 8 as seen in Fig. 2.

The particular impedance (2.4) is not crucial for this result. It is su�cient that
the contributions to the integrals in (2.3) are dominated by the region around the
resonance k0 and that σa and σext have similar bandwidths and shapes. It is common
to assume antennas with a single resonance structure [8] to relate the bandwidth
with the antenna Q. Similarly, assume that the transition matrix element T11(k)
has a single resonance at k0 and is minimum scattering, i.e., S11(k0) = 0 implying
T11(k0) = −1/2. The resonance model has complex valued poles at k ≈ ±k0 and
the shape of the classical Lorentz or resonance circuit [8, 14] around the resonance,
i.e.,

T11(k) =
−1/2

1 + j
ν

(
k
k0
− k0

k

) =
−jνk/(2k0)

1− k2/k2
0 + jνk/k0

(2.12)

with 0 < ν � 1. It satis�es

−Re {T11(k)} =
1/2

1 + 1
ν2

(
k
k0
− k0

k

)2 = 2|T11(k)|2 (2.13)

for all k ∈ R showing that σext(k) = 2σs(k) = 2σa(k) around the resonance wavenum-
ber, see the k0a = 1/4 case in Fig. 2. For antennas with negligible σa away from
the resonance, e.g., the dipole model (2.4), the σext ≈ σs contribution to the inte-
gral (2.3) away from the resonance gives η > 1/2.
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Figure 4: Geometry of the two arm spherical helix with circumscribing sphere
radius a = 62 mm and wire radius Rw = 2 mm.
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Figure 5: Input impedance of the spherical helix depicted in Fig. 4.

3 Numerical Examples

The above theoretical results have been analyzed for a number of geometries by
numerical simulations; the numerical results show very good agreement with the
theory. For each of the examples the approach was the same; �rst we started with
the design and simulation of a radiating structure using the Method of Moments
(MoM) simulator in E�eld2. Then the radiation resistance at the �rst resonance was
used as a load at the feeding point in a forward scattering simulation, performed
using the same software. The results of the antenna and scattering simulations have
been used to numerically compute the theoretical parameters using Matlab. Note
that not all the available digits are presented in the text as the numerical accuracy
does not justify them. However the formulas are computed without truncation.

3.1 Folded Spherical Helix � D = 1.5, k0a = 0.38

We �rst describe the results for the folded spherical helix [2] depicted in Fig. 4. It
comprises a closed loop of perfectly electric conducting wire of radius Rw = 2 mm
that is folded on the surface of a sphere of radius 58 mm thus obtaining a structure
with the radius of the smallest circumscribing sphere a = 62 mm. The structure has
two arms of equal length (approximately la = 646 mm) symmetric with respect to
the z axis.

The �rst step in the analysis is to simulate this structure with E�eld. The an-
tenna parameters are determined with an ideal voltage source connected at point F
(see Fig. 4). The resulting input impedance is plotted in Fig. 5. The �rst interesting
resonance from a practical point of view appears around 294 MHz with a radiation
resistance of 17 Ω. It is this resonance that is used to illustrate the physical bounds

2www.e�eldsolutions.com
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Figure 6: Extinction, absorption and scattering cross sections of the spherical helix
depicted in Fig. 4.

in [4, 6, 7, 16]. At this frequency the antenna radiates a z dipole type pattern.
First we compute the D/(Qk3

0a
3) value using the simulation data from E�eld and

the method proposed in [8, 18] to approximate the Q factor. The computed values
D = 1.5, Q = 43 and k0a = 0.38 result in the quotient D/(Qk3

0a
3) = 0.63.

The second step is to evaluate the right hand side in (2.2). Here, the polarizabil-
ity dyadics reduce to the high contrast polarizability dyadic of the perfect electric
conductor which is computed using a MoM algorithm (see e.g., [4]) that solves the
electrostatic problem associated with the wire geometry. With ê = ẑ and only high
contrast electric material present ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê) evaluates to:

ẑ · γ∞ · ẑ = 2 · 10−3 m3.

The generalized absorption e�ciency is computed from the E�eld simulation data
with (2.3) and the de�nitions of absorption and extinction cross sections from [7, 17].
After an integration of 5999 absorption and extinction cross sections samples taken
equidistantly between 1 MHz and 3 GHz (see Fig. 6) we obtain η ≈ 0.51 and write:

D

Qk3
0a

3
≈ 0.63 ≤ 0.67 ≈ η

2πa3
(ẑ · γ∞ · ẑ) .

This is a true relation showing that the antenna performs close to the D/Q bound
of the wire structure.

Moreover, the integrated extinction cross section is related to the polarizability
of the structure, as stated in [17] i.e.,

2

π

∫ ∞
0

σext(k)

k2
dk =

1

π2

∫ ∞
0

σext(λ) dλ ≈ 1.99 · 10−3 m3



9

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

/m

/m2 ext

a

s

Figure 7: Extinction, absorption and scattering cross sections of the spherical helix
depicted in Fig. 4 as function of wavelength, λ = 2π/k = c0/f .

which is approximately 1% away from the polarizability determined from the MoM
simulation. This deviation can be attributed to the high frequecies (low wavelengths)
which are missing in Fig. 7. The cross sections should show one dominant resonance
and asymptotically tend to 0 for low frequencies.

The physical bounds in (2.2) create a link between the dynamic properties of the
radiating structure and its static properties described by the electric and magnetic
polarizability dyadics. Because many common antennas have a generalized absorp-
tion e�ciency of approximately 1/2 obtaining the bounds for an antenna reduces to
a static problem of computing the polarizability dyadics for the geometry, which is
easily solved using a Method of Moments algorithm.

It is very important to distinguish the geometry of the radiating structure from
its smallest circumscribing sphere. The antenna can be optimized in the limit given
by its own polarizability, e.g., the smallest circumscribing sphere of the helix in
Fig. 4 has the radius a = 62 mm, which gives ẑ ·γ∞ · ẑ = 4πa3 ≈ 3 ·10−3 m3 thus the
maximum attainable value for the D/Q quotient is: D/(Qk3

0a
3) ≤ 1, whereas the

wire structure simulated here has a maximum attainable value D/(Qk3
0a

3) ≤ 0.67.
The presence of the (k0a)3 term allows radiating structures to be directly compared
even though they do not have the same size. It can be stated that the wire structure
of the helix in Fig. 4 can only reach 67% of the best attainable performance of an
antenna circumscribed by a sphere with equal radius. Hence, it is neccesary to use a
structure with high polarizability to improve the performance, e.g., the polarizability
of the spherical helix increases with the number of arms and with the wire radius.
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3.2 Folded Dipole Array � D = 2.6, k0a = 1.7

The second considered structure is a folded dipole array [10]. The dimensions in
Fig. 8 are the following: l = 492.9 mm, d = 470 mm, h = 40 mm and s = 65.8 mm.
The structure is assumed to be fed at point F with an ideal voltage source. All wires
have a radius of Rw = 4 mm thus simulating one possible realization of a simple and
common array design using the same type of conductor for all the elements. The
smallest circumscribing sphere has the radius a = 347 mm.

First we simulate the structure in transmission in order to obtain the impedance
behavior in the frequency range of interest, see Fig. 9. The �rst resonance with
practical relevance is close to 233 MHz and, at this frequency the antenna has an
input impedance of 59 Ω. We shall illustrate the bounds using the characteristics
of the structure at this frequency. The far �eld radiation pattern at this resonance
consists of two linearly polarized (x̂-direction) pencil beams in the broad sides, with
a maximum directivity D = 2.6. The quality factor of this resonance is Q = 4.2 and
with k0a = 1.7 we obtain the quotient D/(Qk3

0a
3) = 0.13.

The high contrast polarizability for ê = x̂ polarization has the value γ∞,11 =
67.4 · 10−3 m3. We note here that the structure is also highly polarizable on the
ŷ-direction but the ŷ-polarization does not contribute to the radiation because of
the choice of feeding.

We now turn to the analysis of the cross sections and use 5999 absorption and ex-
tinction cross section samples from equidistantly spaced frequencies between 1 MHz
and 3 GHz. The �rst and dominating resonance is shown in Fig. 10. The array
has a two band behavior; in either of the two bands it approximately absorbs as
much energy as it scatters. Besides these two resonances there is another scattering
resonance which contributes to the generalized absorption e�ciency. By comparing
Fig. 6 with Fig. 10 we expect to have di�erences between the two generalized ab-
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Figure 9: Input impedance of the array depicted in Fig. 8.

sorption e�ciencies but in fact η ≈ 0.48. The reason for the small deviation is the
presence of the second resonance very close to the �rst one, and with comparable
values of the radiation resistance.

Gathering the results, we rewrite (2.2) in numbers as: 0.13 ≤ 0.13 thus making
this array a structure that is close to the optimal D/Q performance of the wire
structure. The perfect matching is explained by the deviation of the structure from
the assumed models for the Q-factor (Q� 1) and the �rst single and dominant reso-
nance. Compared with a smallest circumscribing sphere, the array only reaches 13%
of its D/Q performance. For evaluating the reliability of the generalized absorption
e�ciency we integrate the extinction cross section over the wavelength and obtain
the value 66.8·10−3 m3 which is less than 1% from the previous γ∞,11 = 67.4·10−3 m3;
so the frequency interval is well chosen as to not signi�cantly deviate the resulted η
from its correct value.

3.3 Meanderline � D = 1.6, k0a = 1.14

We now analyze a planar meander line antenna depicted in Fig. 11. The notations
follow [7]: l1 is the �long� and l2 is the �short� dimension of the antenna, w is the
metal width and h is the base meander height. We only analyze situations where
the E �eld is polarized along l1.

First we simulate the antenna in transmission and use for this purpose an ideal
voltage source distributed along line F . The impedance behavior is shown in Fig. 12.
At low frequencies the antenna is a resonating structure with the �rst resonance
approximately at frequency 322 MHz; at high frequencies the input impedance shows
very little variations both in the real and imaginary parts � ultra wide band behavior.
The radiated pattern shows an almost dipole mode radiation at 322 MHz polarized
along y with a directivity D = 1.6 and a radiation resistance of approximately 45 Ω.
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Small variations in the directivity a�ect the omnidirectionality with the maximum
directivity obtained on a direction slightly deviated from z (θ ≈ 10 ◦, φ = 0 ◦).
The other parameters that characterize radiation at 322 MHz are: Q = 4.4 and
k0a = 1.14 and the quotient D/(Qk3

0a
3) = 0.247.

Next, we use a MoM code to compute the static high contrast electric polarizabil-
ity dyadic of the structure and obtain: γ∞,22 = 14.667 ·10−3 m3. This value serves as
a reference for the integrated extinction cross section and thus as a reliability �gure
for the generalized absorption e�ciency.

The last step in the analysis consists of a forward scattering simulation that
provides data for the cross sections of the structure. We use the same value for the
feed load as the radiation resistance (approximately 45 Ω). The structure is excited
with a plane wave impinging the structure from the direction of the maximum
directivity (here θ = 10 ◦, φ = 0 ◦). In total 4000 frequency samples were simulated
between 1 MHz and 5 GHz, equally spaced at 1 MHz up to 3 GHz and at 2 MHz
above. Fig. 13 shows that this antenna does not have a single dominant resonance
behavior; this fact is re�ected in the following �gures. The generalized absorption
e�ciency is 0.52 and the integrated extinction cross section has a value of 14.204 ·
10−3 m3 which deviates less than 3.3% from γ∞,22 = 14.667 · 10−3 m3.

We rewrite (2.2) in numbers as: 0.247 ≤ 0.248. This structure performs close
to the optimal performance of the planar antenna. Compared to the smallest cir-
cumscribing sphere, this meanderline antenna achieves approximately 25% of the
performance of the optimal sphere structure.

The bounds (2.2) do not depend on the choice of direction of radiation and
polarization i.e., k̂ and ê. The previous results considered the situation where k̂ was
the direction of the maximum radiation and η was computed based on a scattering
simulation data with a plane wave impinging from the same direction (see [7]). The
polarization of the wave was the polarization most favored by the structure.

Table 1 illustrates the bounds (2.2) for di�erent radiation/incidence directions.
There aren't so many choices for these directions because the structure radiates
almost omnidirectionally. The di�erence from the previous approach is that scat-
tering simulation uses a plane wave impinging from the directions given by (θ, φ).
Two things can be checked in Table 1: �rst D

Qk3
0a

3 ≤ ηγ
2πa3 , in agreement with (2.2),

and second, the integrated extinction cross section (IECS) is less than or equal to
γ where γ = ê · γ∞ · ê is the electric polarizability corresponding to the chosen
incidence. The �gures are in good agreement, showing, as before, that the antenna
performs close to the optimal performance of the planar antenna. The di�erences
in the integrated extinction cross section come from a limited number of samples,
only 3000, 1 MHz apart, from 1 MHz to 3 GHz.

3.4 Meanderline � D = 1.6, k0a = 0.73

This meanderline structure is a modi�ed version of the previous design that improves
radiation resistance. To achieve this, the antenna is featured with a loop in the
feeding area, see Fig. 14.
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Figure 14: Planar meanderline antenna: l1 = 300 mm, l2 = 150 mm, w = 20 mm,
h = 37.5 mm.
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Figure 15: Input impedance of the antenna depicted in Fig. 14.
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θ[ ◦] φ[ ◦] D Q k0a
D

Qk3
0a

3
ηγ

2πa3 η γ
a3

IECS
a3

0 90 1.6 4.4 1.14 0.247 0.260 0.53 3.09 2.95

20 90 1.4 4.4 1.14 0.211 0.222 0.51 2.72 2.60

40 90 0.8 4.4 1.14 0.129 0.139 0.48 1.81 1.71

60 90 0.3 4.4 1.14 0.050 0.057 0.47 0.77 0.72

Table 1: Numerical results for the antenna depicted in Fig. 11.
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Figure 16: Extinction, absorption and scattering cross sections of the antenna
depicted in Fig. 14.

We start by analyzing the most interesting and useful radiation/scattering situ-
ation where the directivity is analyzed on the direction of maximum radiation. We
simulate the structure in transmission exciting it with a voltage source distributed
along line F . The impedance behavior is shown in Fig. 15. The structure is strongly
resonating in the low frequencies and shows some irregular behavior in the high
frequencies. The �rst resonance is at a frequency of approximately 208 MHz for
which the radiated �eld shows an almost omnidirectional pattern with small varia-
tions in the directivity. Maximum directivity D = 1.58 is obtained for a direction
with θ ≈ 20 ◦ and φ = 0 ◦. Radiation resistance is approximately 48 Ω, Q = 16,
k0a = 0.73 and the quotient D/(Qk3

0a
3) = 0.258.

The MoM code gives a value for the polarizability in the direction l1, γ∞,22 =
16.357 · 10−3 m3. This �gure is used further in the analysis as a reference for the
integrated extinction cross section and as a reliability factor for the generalized
absorption e�ciency.

In the forward scattering simulation we use a load along the feeding line with
the same value as the radiation resistance and excite the antenna with a plane wave
impinging from the direction θ = 20 ◦ and φ = 0 ◦. Cross sections are computed
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from 3000 frequency samples of the far �eld, uniformly distributed between 1 MHz
and 3 GHz (see Fig. 16). Integrating these variables gives a value η = 0.48. The
integrated extinction cross section has a value of 15.867 · 10−3 m3 which is 3% away
from γ∞,22 = 16.357 · 10−3 m3.

We rewrite the bounds (2.2) with numbers as: 0.258 ≤ 0.267. This structure
performs close to the optimal planar structure (but not as close as the previous an-
tenna). Compared to the smallest circumscribing sphere this structure is comparable
with the previous one achieving, at most, approximately 27% of the performance of
the optimal sphere structure.

The structure is considered in other directions of radiation/scattering and the
results are shown in Table 2. The conditions are the same as in the previous section.

θ[ ◦] φ[ ◦] D Q k0a
D

Qk3
0a

3
ηγ

2πa3 η γ
a3

IECS
a3

0 90 1.6 16 0.73 0.256 0.273 0.49 3.47 3.36

20 90 1.4 16 0.73 0.224 0.238 0.49 3.06 2.97

40 90 0.9 16 0.73 0.144 0.154 0.48 2.03 1.97

60 90 0.4 16 0.73 0.059 0.064 0.47 0.87 0.83

Table 2: Numerical results for the antenna depicted in Fig. 14.

3.5 Other Structures

A number of other structures have been analyzed and the results are gathered in
Table 3. The �rst eight rows in the table correspond to planar geometries circum-
scribed by di�erent l1× l2 rectangles with l1/l2 respectively equal to: 500, 100, 25, 9,
3.6, 2, 1 and 0.5. The polarization is always directed along l1, the long dimension of
the antenna in most of the cases. The two meander type antennas on rows �ve and
six are described in 3.3 and 3.4, respectively. The ninth and tenth rows correspond
to the structures described respectively in 3.1 and 3.2.

The eleventh and twelfth rows correspond to four element arrays fed in phase
to obtain two broadside pencil shaped lobes. For the �rst one the elements are
represented by simple dipoles of length l = 500 mm spaced at d = 500 mm and
wire radius Rw = 1 mm and for the second the elements are folded dipoles with
length l = 502 mm and height h = 6 mm spaced at d = 470 mm and wire radius
Rw = 2 mm. Both structures are fed through transmission lines made from the same
wire as the radiating elements.

The last line corresponds to a two element array, each element being a Yagi
antenna with a re�ector (lr = 510 mm), driven element (lf = 500 mm) and director
(ld = 420 mm) spaced at ls = 200 mm. The distance between the elements in the
array is d = 470 mm and the wire radius is Rw = 5 mm. Feeding is realized with a
transmission line made from the same wire as the elements.

It must be noted that the table contains some examples that fail to obey the
resonance model and thus cannot be characterized properly by their static properties.



18

In this category fall loop structures, e.g., folded dipole with aspect ratio of 9 and
the loops with aspect ratio of 1 and 0.5. The quality factor for these structures is
very small due to very close �rst and second resonances. There are two structures
that show a low Q but still obey the bounds, namely the folded dipole arrays. In
these cases the structures are not thoroughly designed yielding lower performances
at their �rst resonances.

D Q k0a
D

Qk3
0a

3
ηγ

2πa3 η γ
a3

IECS
a3

1.64 8 1.51 0.056 0.058 0.51 0.705 0.693

1.64 6 1.49 0.078 0.079 0.52 0.962 0.955

1.63 6 1.43 0.088 0.090 0.52 1.087 1.071

1.64 3 1.44 0.173 0.155 0.50 1.944 1.901

1.55 18 0.72 0.231 0.244 0.52 2.972 2.801

1.54 57 0.48 0.246 0.287 0.54 3.309 3.202

2.23 5 1.31 0.211 0.200 0.52 2.429 2.401

3.04 5 1.92 0.095 0.089 0.51 1.085 1.073

1.50 43 0.38 0.631 0.728 0.51 9.339 8.894

2.63 4 1.69 0.130 0.130 0.48 1.698 1.683

6.15 20 3.84 0.005 0.008 0.42 0.116 0.114

6.30 7 4.08 0.013 0.013 0.41 0.194 0.189

3.21 17 1.72 0.036 0.042 0.14 1.897 1.832

Table 3: Numerical results of the antennas in 3.5.

4 Conclusions

We demonstrate that η > 1/2 for small, k0a� 1, idealized dipole antennas and for
minimum scattering antennas with a dominant �rst single resonance. As observed
in [4, 7] this is also valid for several antennas that are of the order k0a ≈ 1. Here, it
is important to realize that the identity (2.1) is not restricted to electrically small
antennas and that η in general cannot be replaced by 1/2. Many antennas, e.g.,
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Yagi-Uda and re�ector antennas have η � 1/2 and some, e.g., the spiral antenna
in [16], have η > 1/2.
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