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Abstract

This article gives a short tutorial on the MUSIC algorithm [2, 10] and the
linear sampling method of [3], and explains how the latter is an extension of
the former. In particular, for the case of scattering from a �nite number of
weakly scattering targets, the two algorithms are identical.

Section 1 outlines the MUSIC algorithm and its use in signal processing and
imaging. Section 2 outlines the linear sampling method and discusses its similarity
with the MUSIC algorithm. The paper ends with Section 3, a discussion and listing
of open questions.

1 MUSIC

MUSIC is an abbreviation for MUltiple SIgnal Classi�cation [10]. Section 1.1 out-
lines the general MUSIC algorithm; section 1.2 explains how it is applied in signal
processing (in order to explain the name); section 1.3 explains how it applies to
imaging [2].

1.1 The basics of MUSIC

MUSIC is essentially a method of characterizing the range of a self-adjoint oper-
ator. Suppose A is a self-adjoint operator with eigenvalues λ1 ≥ λ2 ≥ . . ., and
corresponding eigenvectors v1, v2, . . .. Suppose the eigenvalues λM+1, λM+2, . . . are
all zero, so that the vectors vM+1, vM+2, . . . span the null space of A. Alternatively,
λM+1, λM+2, . . . could merely be very small, below the noise level of the system rep-
resented by A; in this case we say that the vectors vM+1, vM+2, . . . span the noise

subspace of A. We can form the projection onto the noise subspace; this projection
is given explicitly by

Pnoise =
∑
j>M

vjvj
T (1.1)

where the superscript T denotes transpose, the bar denotes complex conjugate, and
vj

T is the linear functional that maps a vector f to the inner product 〈vj, f〉.
The (essential) range of A, meanwhile, is spanned by the vectors v1, v2, . . . , vM .
The key idea of MUSIC is this: because A is self-adjoint, we know that the noise

subspace is orthogonal to the (essential) range. Therefore, a vector f is in the range
if and only if its projection onto the noise subspace is zero, i.e., if ‖Pnoisef‖ = 0.
And this, in turn, happens only if

1

‖Pnoisef‖
=∞ (1.2)

Equation (1.2) is the MUSIC characterization of the range of A.
We note that for an operator that is not self-adjoint, MUSIC can be used with

the singular value decomposition instead of the eigenvalue decomposition.
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1.2 The use of MUSIC in signal processing

MUSIC is generally used in signal processing problems. In this case, we make
measurements of some signal x(t) at discrete times tn = n. The resulting samples
xn = x(tn) are considered random variables. We form the correlation matrix An,m =
E(xnxm), where E denotes the expected value.

We consider the special case when the signal is composed of two time-harmonic
signals of di�erent frequencies, plus noise. Thus xn = a1e

iω1n + a2e
iω2n + wn. We

assume that the random variables wn are identically distributed. The goal is to
estimate the frequencies of the signals.

Because the di�erent terms of xn are mutually independent, the self-adjoint
matrix A can be written [10]

A = E(|a1|2)s1s1
T
+ E(|a2|2)s2s2

T
+ σ2

0I (1.3)

where the nth component of the vector sj is given by sjn = eiωjn, I denotes the
identity operator, and σ2

0 = E(|wn|2). Thus we see that the the range is spanned by
s1 and s2; The orthogonal complement is the noise subspace.

The MUSIC algorithm for estimating the frequencies ω1 and ω2 is to plot, as a
function of ω, the quotient

1

‖Pnoisesω‖
(1.4)

were sω is the vector whose nth component is eiωn. The resulting plot, which has
large peaks at the frequencies ω1 and ω2, is called the MUSIC pseudospectrum.

We note that the MUSIC algorithm involves applying a test to a large number
of trial signals sω.

The appropriateness of the name MUSIC is now clear: MUSIC is a method for
estimating the individual frequencies of multiple time-harmonic signals.

1.3 The use of MUSIC in imaging

Devaney [2] has recently applied the MUSIC algorithm to the problem of estimating
the locations of a number of point-like scatterers. The following is an outline of his
approach.

We consider the mathematical model in which wave propagation is governed in
free space by the Helmholtz equation

(∇2 + k2)ψ = 0 (1.5)

where k corresponds to the frequency of the propagating wave. We imagine that we
have N antennas or transducers, positioned at the points R1, R2, . . . , RN , that trans-
mit spherically spreading waves. If the jth antenna is excited by an input voltage
ej, the �eld produced at the point x by the jth antenna is ψin

j (x) = G(x,Rj)ej.
We assume that the scatterers, positioned at the points X1, X2, . . . , XM , are

small, weak, and well-separated, so that they scatter according to the Born approx-
imation. Thus if the �eld ψin is incident on the mth scatterer, it produces at x the
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scattered �eld G(x,Xm)τmψ
in(Xm), where τm is the strength of the mth scatterer

and G(x, y) denotes the outgoing Green's function. The scattered �eld from the
whole cloud of scatterers is

∑
mG(x,Xm)τmψ

in(Xm). Thus the total scattered �eld
due to the �eld emanating from the jth antenna is

ψsc
j (x) =

∑
m

G(x,Xm)τmG(Xm, Rj)ej

If this �eld is measured at the lth antenna, the result is

ψsc
j (Rl) =

∑
m

G(Rl, Xm)τmG(Xm, Rj)ej

This expression gives rise to the multi-static response matrix K, whose (l, j)th ele-
ment is

Kl,j =
∑
m

G(Rl, Xm)τmG(Xm, Rj) (1.6)

The multi-static response matrix maps the vector of input amplitudes (e1, e2, . . . , eN)
T

to the vector of measured amplitudes on the N antennas. This matrix can be written

K =
∑
m

τmgmg
T
m (1.7)

where we have used the notation

gm = (G(R1, Xm), G(R2, Xm), . . . , G(RN , Xm)
T . (1.8)

For simplicity we consider only the case N > M , i.e., more antennas than scatterers.
Because the Green's function is symmetric, K is symmetric, but it is not self-

adjoint. We form a self-adjoint matrix A = K∗K = KK, where the star denotes
the adjoint and the bar denotes the complex conjugate (which is the same as the
adjoint, since K is symmetric). We note that K is the frequency-domain version of
a time-reversed multi-static response matrix; thus KK corresponds to performing a
scattering experiment, time-reversing the received signals, and using them as input
for a second scattering experiment [8], [5], [1].

The matrix A can be written

A =
∑
m

τm gm gm
T
∑
l

τlglg
T
l (1.9)

from which we see immediately that the eigenvectors of A are the gm. This means
that the range of A is spanned by the M vectors gm.

Devaney's insight is that the MUSIC algorithm can now be used as follows to
determine the location of the scatterers. Given any point p, form the vector gp =
(G(R1, p), G(R2, p), . . . , G(RN , p))

T . The point p coincides with the location of a
scatterer if and only if

Pnoiseg
p = 0. (1.10)

Thus we can form an image of the scatterers by plotting, at each point p, the
quantity 1/‖Pnoiseg

p‖. The resulting plot will have large peaks at the locations of
the scatterers. We note that the condition (1.10) depends only on the operator Pnoise

and not on the particular basis {gm}.
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2 The linear sampling method

The linear sampling method is a linear method for �nding the boundary of one or
more impenetrable objects from scattering data.

2.1 The basics of the linear sampling method

Kirsch [3] considers the scattering problem in which incident plane waves scatter o�
one or more impenetrable objects. He considers the far-�eld operator F , which is
an integral operator whose kernel is the far-�eld scattering amplitude. The operator
F satis�es a reciprocity condition but is not self-adjoint. Kirsch forms the self-
adjoint operator A = F ∗F = FF , and considers the eigenvalues λ1 ≥ λ2 ≥ . . . and
corresponding eigenfunctions v1, v2, . . ..

The linear sampling method is based on the theorem [3] that the range of A1/4

coincides with the range of the operator H, which is de�ned as follows. Suppose ψ is
equal to h on the boundary of the object, satis�es (1.5) in the region exterior to the
object, and satis�es an outgoing radiation condition. Then H maps the Dirichlet
data h to the far-�eld pattern of ψ.

In the linear sampling method, one determines the boundary of the object by
testing points p as follows. We denote by gp the far-�eld amplitude corresponding
to the Green's function G(x, p). If p is inside one of the objects, then in the region
exterior to the object, G(x, p) satis�es (1.5), so gp is in the range of H. But if p is
exterior to the object, then because G(x, p) has a singularity at p, it cannot satisfy
(1.5) there, so gp cannot be in the range of H.

The range of H, which Kirsch showed is identical to the range of A1/4, can be
determined from the eigenvalues and eigenfunctions of A. In particular, the range
of A1/4 is given by

RanA1/4 = {f :
∑
j

|〈vj, f〉|2

|λj|1/2
<∞} (2.1)

The algorithm of the linear sampling method is to plot, at each point p, the

quantity 1/
(∑

j |λj|−1/2|〈vj, gp〉|2
)
. The plot will be identically zero whenever p

is outside all the scattering objects, and nonzero whenever p is inside one of the
scatterers.

2.2 Linear sampling for M point scatterers

To see the connection between MUSIC and linear sampling, let us consider the lin-
ear sampling algorithm for the same case considered in section 1.3, namely when
the scattering object is composed of M weakly scattering point-like scatterers.
Then, from the arguments of section 1.3, we �nd that the operator A has a �nite-
dimensional range, so that the eigenvalues λM+1, λM+2, . . . are all zero. In that case,
the condition (2.1) for gp to be in the range of H becomes

〈vj, gp〉 = 0, j =M + 1,M + 2, . . . (2.2)
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which can also be written Pnoiseg
p = 0. This is precisely the MUSIC condition (1.10).

Plotting 1/‖Pnoiseg
p‖ will give an image with very large values at the locations of

the scatterers.

3 Discussion and open questions

It appears that the linear sampling method is an extension of the MUSIC imaging
algorithm of [2] to the case of extended objects and in�nite-dimensional scattering
operators.

Many questions arise in connection with these algorithms. First, the MUSIC
algorithm uses only the null space of the operator K. But we know that the eigen-
vectors of K contain information about the scatterers. In particular, the eigenvec-
tor corresponding to the largest eigenvalue corresponds to a wave focusing on the
strongest scatterer, and the eigenvalue contains information about the strength of
the scatterer [8], [1]. How can MUSIC be modi�ed to make use of this information?

The linear sampling method, on the other hand, uses all the eigenvalues and
eigenfunctions but produces only the location of the boundary of the scattering
object. Yet we know that the eigenvalues and eigenfunctions contain all the infor-
mation about the scatterer [9], [4]. How can the eigenvalues and eigenfunctions be
used to recover more information?
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