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Abstract

This dissertation investigates theoretically electric control of the magnetic properties

of molecular magnets. Two classes of magnetic molecules are considered. The first class

consists of molecules that are spin frustrated. As a consequence of the frustration, the

ground-state manifold of these molecules is characterized by states of different spin chi-

rality, which can be coupled by an external electric field. Electric control of these spin

states can be used to encode and manipulate quantum information. The second class com-

prises molecules known as single-molecule magnets, which are characterized by a high

spin and a large magnetic anisotropy. Here the main goal is to control and manipulate the

magnetic properties, such as the anisotropy barriers, by adding and subtracting individual

electrons, as achieved in tunneling transport.

Papers I, II and III deal with spin-electric coupling in spin frustrated molecules. Spin

density functional theory is used to evaluate the parameters that control the strength of

this coupling. Paper I reports the electronic and magnetic properties of the triangular

antiferromagnet {Cu3}. It is found that an external electric field couples to the spin

chirality of the system. The strength of this coupling is large enough to allow efficient

spin-electric manipulation with fields generated by a scanning tunneling microscope.

Paper II investigates the zero-field splitting in the ground-state manifold of the trian-

gular {Cu3} molecular magnet caused by the Dzyaloshinskii-Moriya (DM) interaction.

It employs a Hubbard model approach to elucidate the connection between the spin-orbit

and the DM interaction. It is shown that the DM interaction constant D can be expressed

in terms of the microscopic Hubbard-model parameters, which are calculated by first-

principles methods.

Paper III investigates systematically the spin-electric coupling in several triangular

molecular magnets, such as {V3} and {Cu3O}, and its dependence on different types of

magnetic atoms, distances between magnetic centers and exchange paths between mag-

netic atoms. A generalization of the spin-electric coupling for a {V15} molecular magnet,

v
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comprising fifteen magnetic centers, is also reported in this paper.

In Paper IV first-principles methods are employed to study theoretically the proper-

ties of an individual {Fe4} single-molecule magnet attached to metallic leads in a single-

electron transistor geometry. It is demonstrated that an external electric potential, model-

ing a gate electrode, can be used to manipulate the magnetic properties of the system by

adding or subtracting electrons to the molecule.

In Paper V quantum transport via a triangular molecular magnet such as {C3} is in-

vestigated. It is proposed that Coulomb-blockade transport experiments can be used to

determine the spin-electric coupling strength in triangular molecular magnets. The theo-

retical analysis, based on a Hubbard model, is supported by master-equation calculations

of quantum transport in the cotunneling regime.

Keywords: Molecular magnets, spin exchange, spin-orbit interaction, magnetic anisotropy, spin

frustration, spin chirality, spin-electric control, quantum transport, Coulomb blockade, density func-

tional theory, quantum master equation.



Populärvetenskaplig Sammanfattning

I denna avhandling undersöker vi hur man med hjälp av externa elektriska fält kan ma-

nipulera de magnetiska egenskaper som finns hos molekylära magneter. Denna manip-

ulation förmedlas av antingen spinn-elektrisk koppling eller den magnetiska anisotropin

hos den molekylära magneten. För att förstå vad detta betyder så ska vi först förklara

vissa grundläggande begrepp om magnetism. Vi kommer att börja med att förklara vad

en molekylär magnet är. Tänk dig att du har ett antal atomer av övergångsmetaller, såsom

järn, kobolt, nickel eller mangan, arrangerade på ett sådant sätt att samspelet mellan dem

får dem att hålla ihop och ge magnetiska egenskaper till molekylen. Vi kommer att kalla

detta arrangemang den magnetiska kärnan av den molekylära magneten. Tänk dig nu att

denna kärna är omgiven av andra atomer (oorganiska ligander) som kan vara utformade

för att säkerställa att molekylen binder på ytor eller i knutpunkter. Vi kommer att kalla

denna sköld det oorganiska skalet.

Men varför kan en molekyl kallas för molekylär magnet? Till att börja med är en

molekyl en samling av atomer. Varje atom har elektroner. Elektroner i universum in-

nehar magnetiska egenskaper, närmare bestämt en inneboende rörelsemängdsmoment

som genererar ett magnetiskt moment. I stort sett skulle man kunna se dem som my-

cket små stavmagneter, det vill säga att de har nord- och sydpoler. Denna inneboende

egenskap kallas spinn. I verkligheten är spinn ett rent kvantmekaniskt objekt som kom-

mer från losningen av den relativistiska Dirac ekvationen inom kvantmekaniken. Ofta

representeras det av en pil som pekar antingen upp eller ner vilket illustrerar riktningen

på det magnetiska flätet (Fig. 1 a). Då en elektron är placerad i ett magnetfält, anpassas

dess spinn till det magnetfältet. En välbekant effekt kan ses när en kompassnål faller in i

linje med det magnetiska fältet på jorden (se Fig. 1. c)).

Detta tankesätt kan användas för att fröstå både magnetiska material och magnetiska

molekyler. Ett magnetiskt material skapas när elektronernas spinn i huvuddelen av mate-

rialet är i linje med varandra. Samma effekt syns på molekylr̈ nivå dr̈ magnetiska moment

ix
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Figure 1: Tecknad av spinn av en elektron. a) Den spin kan klassiskt ses som en tumme

upp eller ner. En annan representation är att tänka det som en pil som pekar mot nummer

tolv i en klocka (spinn upp) eller antalet sex (spinn ner). Det är också ofta kallas som 0

eller 1 i binära siffror. b) Snurra linjer upp med orienteringen av en stavmagnet. c) De spin

ställer upp med ett magnetfält precis som en linjer kompassnålen upp med jordmagnetiska

fältet.
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skapas genom att elektronernas spinn i en samling av atomer blir parallella. En magnetisk

molekyl egenskaperna likt en klassik magnet, men uppvisar även kvantmekaniska egen-

skaper på grund av sin minimala storlek, uppvisar den också kvantmekaniska egenskaper.

Notera att så här långt har vi inte använt något yttre magnetfält för att ordna molekylens

spinn, denna uppställning har ett rent kvantmekaniskt ursprung. I en molekylär magnet

styrs spinnens riktning av interaktionen mellan elektronens spinn och elektronens om-

loppsbana i den molekylära strukturen. Denna egenskap kallas magnetisk anisotropi och

det beror på den komplicerade bindning av de magnetiska atomerna i kärnan med de icke-

magnetiska atomerna i strukturen. Numera kan denna bindning till viss del vara utfor-

mad i laboratoriet vilket ger oss möjlighet att skapa molekyler med specifika egenskaper.

Mängden parallella spinn i en molekylär magnet bestämmer hur robust det magnetiska

beteendet är: Ju fler parallella spinn, desto mer magnetisk är molekylen.

Hittills har vi definierat vad molekylära magneter är. Låt oss nu tala om hur vi kan ma-

nipulera deras magnetiska egenskaper. Man skulle kunna se en molekylär magnet som en

samling parallella spinns eller som ett gigantiskt spinn som representerar alla spinn på en

gång. Det magnetiska beteendet hos en molekylär magnet styrs av detta gigantiska spinn.

Genom att manipulera molekylernas spinn kan man styra dess magnetiska egenskaper.

Traditionellt så manipuleras spinn med hjälp av externa magnetfält vilket emellertid är

problematiskt på molekylär nivå. Den typiska storleken på en molekylär magnet är några

nanometer, en nanometer är en miljard gånger mindre än en meter och det är därför my-

cket svårt att tillämpa magnetfält lokalt på den nivån. Magnetfält ger långsam växling,

dessutom är det svårt att uppbåda ett tillräckligt kraftfullt magnetfält. Åandra sidan, starka

elektriska fält kan enkelt åstadkommas och kan utan vidare tillämpas lokalt på nanoskala.

De kan också slås på och av mycket snabbt. Därför är manipulation av de magnetiska

egenskaperna hos molekylära magneter med hjälp av ett elektriskt fält en intressant och

lovande tutveckling.

I denna avhandling studeras två metoder för hur man med hjälp av elektriska fält kan

manipulera magnetiska egenskaper hos molekylära magneter. I den första metoden under-

söker vi kopplingen av spinn hos en molekylär magnet med det externa elektriska fältet.

Vi beaktar en särskild klass av molekylär magnet med intressanta och specifika egen-

skaper i sitt lägsta energitillstånd (grundtillstånd). På grund av den molekylära magnetens

speciella geometri, kan ett elektriskt fält kopplas ihop med spinnet i systemet. Genom att

manipulera riktningen och styrkan hos det elektriska fältet kan man därför manipulera

den molekylära magnetens spinn. I den andra metoden manipulerar vi den magnetiska
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anisotropin hos den molekylära magneten. I detta fall kan vi använda en annan typ av

molekylär magnet som kännetecknas av sin stora magnetiskt anisotropiska energi, vilket

är den energi det krävs för att n̈dra molekylens spinns. Genom att manipulera denna en-

ergibarriär kan man styra de magnetiska egenskaperna hos systemet. Vi undersöker den

molekylära magnets anisotropin genom att addera eller subtrahera en elektron till sys-

temet. Ett yttre elektriskt fält kan driva elektroner in eller ut ur den molekylära magneten.

Det är relevant att understryka varför att vi studerar manipulation av magnetiska egen-

skaperna hos molekylära magneter: Dagens teknik måste hitta effektivare sätt att lagra och

bearbeta digital information. Detta kan uppnås genom att använda kvantdatorer istället för

konventionella datorer. Kvantdatorer skulle kunna lagra och bearbeta data med hjälp av

kvantmekaniska tillstånd som kallas kvantum bitar eller kvantbitar vilket i sin tur skulle

kunna öka beräkningskraften drastiskt. Konventionella datorer byggs av kiselkretsar, som

innehåller miljontals transistorer, där var och en av dem representerar en bit av informatio-

nen som antingen kan vara noll eller ett (binära siffror). En bit skulle kunna representeras

av ett spinn som pekar uppåt eller nedåt så som visas i Fig. 1 a) eller som timvisaren på

kl 12 och kl 6 på en klocka i Fig. 1 b).

För att förmedla en tydligare innebörd tar vi en blick på den grundläggande skillnaden

mellan konventionella datorer och kvantdatorer. Tänk att du har en klocka framför dig (se

Fig. 1 b)) och timvisaren pekar mot tolvan, som i detta fall motsvarar ett i digital in-

formation. Tänk dig nu att timvisaren pekar mot sexan, i detta fall motsvarar det noll i

digital information. I konventionella datorer kan timvisaren bara peka mot antingen 12

(ett) eller 6 (noll), det vill säga utföra operationer med klassiska bitar. Till skillnad från

detta kan timvisaren i en kvantdator peka mot ett annat nummer. Den skulle kunna peka

mot siffrorna 3, 5, 11 eller någon punkt mellan dem, på detta vis uppnås överlagring av

informationen. En kvantdator utför dessutom operationer som använder kvantum (kvant-

bitar), som magiskt nog kan vara noll och ett samtidigt. De är i ett tillstånd av kvantum

superposition, detta är vad som ger en kvantdator dess överlägsna beräkningskraft.

En molekyls spinn är allts5̊ ett kvantum objekt som kan användas som en kvantbit,

det kan vara upp (ett), nedåt (noll) eller båda på en gång. Om en molekylär magnet kan

fungera som en pytteliten magnet, kan man därför använda den för att lagra information.

Man skulle kunna föreställa sig att ha antingen en bit eller kvantbit per molekyl. Man

skulle också kunna föreställa sig en molekylär magnet som en strömbrytare, precis som en

transistor; en molekylär transistor, där elektricitet antingen kan vara av eller på. Eftersom

molekylära magneter är ungefär tio gånger mindre än de nuvarande minsta transistorerna,
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skulle det avsevärt öka mängden transistorer i en krets. Dessutom kan de två spinntill-

stånden i en molekylär magnet användas för att koda en kvantbit. Det har sagts att varje

gång en kvantum bit sätts till en kvantdator, fördubblas datorns beräkningskraft. Man

har förutspått att en kvantdator på 300-kvantbitar skulle vara mer kraftfull än dagens alla

datorer sammantaget vilket illustrerar kraften i kvantmekaniska beräkningar. Elektrisk

kontroll av dessa magnetiska molekyler kan följaktligen vara ett steg mot utvecklandet av

en helt ny och mycket kraftfull typ av datorer.
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Popular Scientific Summary

In this thesis we investigate the manipulation of the magnetic properties of molecular

magnets by means of external electric fields. This manipulation is mediated by either

the spin-electric coupling or the magnetic anisotropy of the molecular magnet. In order to

understand what this means, let us first explain some basic concepts about magnetism. We

will start explaining what a molecular magnet is. Imagine you have a bunch of transition

metal atoms, such as iron, cobalt, nickel or manganese, arranged in such a way that the

interaction between them makes them stick together and provide magnetic features to

the molecule. We will call this arrangement the magnetic core of the molecular magnet.

Now imagine this core to be surrounded by other atoms (inorganic ligands) that can be

designed to ensure the molecule binds on surfaces or into junctions. We will call this

shield inorganic shell.

But why a molecule can be called a molecular magnet? First of all, a molecule is

a collection of atoms. Each atom has electrons. Electrons in the universe have internal

magnetic properties, more precisely an intrinsic angular momentum that generates a mag-

netic moment. One could think that they are basically like little tiny bar magnets, one of

those with north and south poles. This intrinsic property is called the spin. Although in

reality the spin is purely a quantum mechanical object that comes from the solution of

the relativistic Dirac’s equation in quantum mechanics, it is commonly represented by an

arrow pointing either up or down. A representation of the spin orientation is shown in

Fig. 2 a). The up or down illustrates the orientation of the tiny little magnet (see Fig 2 b)).

When an electron is placed in a magnetic field, its spin lines up with that field. A familiar

effect can be viewed when a compass needle lines up with the magnetic field of the earth

(see Fig. 2 c)).

From magnetic materials to molecular magnets one can follow this trend of thoughts.

A magnetic material is created when the spins (intrinsic magnetic fields) of the electrons

in the bulk of material are all aligned. The same happens in a finite system, a magnetic

xvii
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Figure 2: Cartoon of the spin of an electron. a) The spin can be classically viewed as a

thumb up or down. Another representation is to think it as an arrow pointing towards the

number twelve in a clock (spin up) or the number six (spin down). It is also commonly

referred as 0 or 1 in binary digits. b) Spin lines up with the orientation of a bar magnet. c)

The spin lines up with a magnetic field just like a compass needle lines up with the earth

magnetic field.
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domain is created when the spins of a number of electrons in a collection of atoms be-

come parallel. Now, down to the molecular size, when the spins of two or more electrons

in the atoms of a molecule line up with each other, a magnetic molecule is created. It ex-

hibits the classical properties of a magnet, but because of its little tiny size, it also exhibits

quantum properties. Note that, so far, we have not used any external magnetic field to

line up the spins of the molecule. This alignment has purely quantum mechanical origin.

In a molecular magnet the orientation of this aligned spin along a particular direction is

determined by the interaction of the electron spin and the electron orbital motion in the

molecular structure. This property is called magnetic anisotropy and it depends on the

complicated bonding of the magnetic atoms of the core with the non-magnetic atoms of

the structure. Nowadays this bonding can be, to a certain extent, designed in the labo-

ratory. It gives us the opportunity of create molecules with particular properties. The

amount of parallel spins in a molecular magnet determines the robustness of its magnetic

behavior: the larger the number of parallel spins, the more magnetic the molecule is.

So far, we have defined what molecular magnets are. Now, let us talk about how

we can manipulate their magnetic properties. One could think a molecular magnet as a

collection of parallel spins or as a giant spin representing all the spins at once. In the

latter case, the magnetic behavior of a molecular magnet comes from its (giant) spin.

One could control the magnetic properties of the molecular magnets by means of the

manipulations of its spin. Traditionally the spin is manipulated by means of magnetic

fields. This manipulation has, however, some challenges when it comes to the molecular

size. The typical size of a molecular magnet is about few nanometers. A nanometer is one

billion times smaller than one meter. Therefore, it is very difficult to apply magnetic fields

locally at this nanoscale regime. Magnetic fields present slow switching. In addition, it

is hard to obtain a very strong magnetic field. On the other hand, strong electric fields

are easy to obtain and can readily be applied locally on the nanoscale. They can also be

turned on and off very fast. Therefore, the manipulation of the magnetic properties of

molecular magnets by means of an electric field is an interesting and promising field of

study.

In this thesis we study two methods of manipulating the magnetic properties of molec-

ular magnets by means of an external electric field. In the first method we investigate the

coupling of the spin of a molecular magnet with the external electric field. We consider a

special class of molecular magnet with interesting and particular properties of its ground

state. The ground state tells us how the molecule is when it is in its lowest energetic
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state. Due to the special molecular magnet geometry, an electric field can couple with the

spin of the system. Therefore, manipulating the orientation and strength of the electric

field, one could manipulate the spin of the molecular magnet. In the second method, we

manipulate the magnetic anisotropy of the molecular magnet. In this case we use another

type of molecular magnet characterized for its large magnetic anisotropy energy, which is

the energy that it takes to rotate the total spin of the molecule away from its preferential

direction. By manipulating this energy barrier one could control the magnetic properties

of the system. We investigate the control of the molecular magnet anisotropy by means of

adding or subtracting an electron to the system. An external electric field is able to drive

electrons in or out of the molecular magnet.

We consider relevant to underline the reasons we study the manipulation of the mag-

netic properties of molecular magnets. Today’s technology needs to find more efficient

ways to store and process digital information. This can be achieved using quantum com-

puters instead of conventional computers. Quantum computers store and process data

using quantum mechanical states called quantum bits or qubits that might increase mas-

sively computer power. Conventional computers are built from silicon chips, which con-

tain millions of transistors. Each one of them represents a bit of information, which can

either be zero or one (binary digits). A bit could be represented by a spin pointing up or

down as shown in Fig. 2 a) or as the hour hand at 12 and at 6 in a clock in Fig. 2 b).

In order to convey a more clear meaning we take a glance at the basic difference be-

tween conventional and quantum computers. Imagine you are in front of a clock (see Fig.

2 b)) and the hour hand points towards the 12. That is the one in digital information. Now

imagine it pointing towards the 6. That is the zero of digital information. In a classical

computer the hour hand can only point towards either 12 or 6. Conventional computers

perform operations using classical bits. On the other hand, in a quantum computer the

hour hand can point towards any other number. It could point towards the numbers 3, 5,

11 or any point between them. It can be in a superposition of both bits of information. A

quantum computer performs operations using quantum bits or qubits. They can be magi-

cally zero and one at the same time. They are in a quantum superposition of states. This

is what gives a quantum computer its superior computing power.

As a final remark, the spin of a molecular magnet is a quantum object that can be

used as a qubit. It can be up (one), down (zero) or both at once. If a molecular magnet

can function as a little tiny magnet, then one could use it to store information. One could

think to have either one bit or qubit per molecule. One could think a molecular magnet
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as a switching device, just like a transistor: a molecular transistor, where electricity can

either flow or stop. Since molecular magnets are about ten times smaller than the present

smallest transistors, it could increase considerably the amount of transistors in a chip.

Additionally, the two spin states in a molecular magnet can be used to encode a qubit. It

has been said that every time a quantum bit is added to a quantum computer, it doubles its

computational power. It has been predicted that by having a 300-qubit quantum computer

it would be more powerful than all the world computers connected together. That is

the power of quantum computation. Therefore, controlling the magnetic properties of

molecular magnets electrically could take us to the next computer generation.
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Introduction

Today most technological gadgets are based on taking electrons and moving them all

around small electronic devices made of circuits, transistors, diodes, resistors, etc. The

main role in such devices is played by the electron charge. On the other hand, the spin of

the electron does not play a role in such devices. The spin of the electron, as an individual

intrinsic property of the electron, has been ignored in microelectronics for more than 60

years. It is, however, effectively used in information storage by magnetic materials in the

form of regions that contain many spins all aligned.

Twenty years ago it was realized that one could use the spin, still in the form of

magnetized regions, to control the current in a circuit. This was the first example of a

spin-electronics device. The first discovery of this new area is the giant magneto resistance

(GRM), in which the change in electrical resistance of magnetic metallic multi-layers in

response to an applied magnetic field can be observed. The GMR is a result of spin-

dependent scattering by defects and interfaces. In a GMR device the spin is used to

control information processes rather than storing information. It has been used to control

the functionality of microelectronic devices, namely the resistance.

GRM was discovered by Albert Fert [1] and Peter Grünberg [2] who were awarded

the Nobel Prize in Physics in 2007. Ever since, GMR has generated a lot of interest due

to the deep fundamental physics that governs this phenomenon and the broad applications

to information technology such as magnetic recording, storage and sensor industries [3].

The field that studies the manipulation of the electron spin in contrast to its charge

is called spin-electronics or spintronics. It is an emerging new area of technology that

could revolutionize the way conventional electronic devices work. In spintronics the spin

of a particle is taken into account as a quantum variable that can exist in a superposition

of states of spin up and spin down. One goal in this new area is to understand how to

control such a superposition in different kinds of materials. Spintronics is a wide field of

research and technology which goes from the control of single localized spins regarded as
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spin qubits to spin transport and spin dynamics in macroscale systems [4]. In addition to

the enormous technological applications, the spin of the electron is essentially a quantum-

mechanical object and its interaction with the electron charge or the environment gives us

a unique opportunity to understand more in depth the quantum nature of matter.

The success of spintronics devices has been mostly limited to inorganic metals and

semiconductors. Nevertheless, a new spintronics sub-area has emerged in the last years,

namely molecular spintronics [5–11]. It deals with the overlap between spintronics,

molecular electronics and molecular magnetism. Therefore it combines the classical

macroscale properties of a magnet with the quantum properties of a nanoscale object [12].

Chemists and physicists collaborate very closely with the goal of designing, synthesizing,

characterizing and manipulating magnetic and electrical properties (spins and charges) of

molecular-based materials. This collaboration has generated advances in chemical design

and synthesis, which allow the realization of interesting magnetic molecules with desired

electronic and magnetic properties. A second essential feature of ongoing research is

the improved ability of integrating individual magnetic molecules into solid state nano-

electronic devices.

Molecular magnets (MMs) consist of a magnetic core surrounded by organic ligands

that allow the molecule to bind to surfaces or junctions [13]. Unlike traditional bulk

magnetic materials, molecular magnetic materials can be magnetized in a magnetic field

without any interaction between the individual molecules. This magnetization is a prop-

erty of the molecules themselves. Typically magnetic molecules have long spin-relaxation

times, which can be utilized in high-density information storage. They are also usually

characterized by a weak hyperfine interaction with the environment, resulting in long spin

coherence times, which is an essential property for applications in quantum information

processing. MMs display a variety of non-trivial quantum effects such as quantum tun-

neling of the magnetization [14, 15], Berry phase interference [16] and quantum spin

coherence [8, 10, 17]. Due to their double nature, classic macroscale properties of a mag-

net and quantum properties of a nanoscale entity, MMs are ideal systems to investigate

decoherence and the interplay between classical and quantum behavior [17].

The miniaturization of spintronics devices down to molecular spintronics, namely the

use of molecular magnets, allows us to have more devices in a smaller space. The ma-

nipulation of the magnetic properties of molecular magnets by magnetic fields is straight-

forward but, in practice, cannot be realized easily with molecular-size spatial resolution,

and at fast temporal scales. Unlike magnetic fields, electric fields are easily produced,
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Figure 3: Schematic representation of a triangular molecular magnet in a scanning tun-

neling microscope tip device.
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Figure 4: Schematic representation of a {Fe4} single-molecule magnet in a single-

electron transistor device.

quickly switched, and can be applied locally at the nanoscale and molecular scale. There-

fore, manipulation of the properties of molecular magnets by external electric fields is

an attractive and promising alternative. In the last ten years theoretical and experimen-

tal efforts towards this goal have considered different classes of magnetic molecules and

strategies to incorporate them into electric nano-circuits [18–23].

In this thesis we investigate the electric control of the magnetic properties of nanospin-

tronics devices such as molecular magnets. The magnetic properties of such systems can

be indirectly modified by an electric field by simply modifying the spin-orbit interaction.

This manipulation, however, may not be efficient since the spin-orbit effects scale with

the size of the system. Thus, additional mechanisms must be found to efficiently couple

the spin of the system and applied electric fields.

Throughout this thesis we study two classes of magnetic molecules and the manipu-

lation of their magnetic properties by an external electric field. We consider molecules

that are spin frustrated systems and, consequently, have special ground state manifold

properties. The other class of molecules investigated in this thesis are molecules that are

known as single-molecule magnets (SMMs) and they are characterized by a large mag-

netic anisotropy. But why are we interested in these molecules? In principle, all molecules

are “magnetic” because they do respond to a magnetic field. Then what is important here

is what kind of response is found in the molecule or what kind of zero-field properties

are present in these molecules. In the case of frustrated molecules there is an interesting

8
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(a) {Cu3} (b) {V3}

(c) {Cu3O} (d) {V15}

Figure 5: Ball-stick view of the spin frustrated molecular magnets studied in this thesis.
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Figure 6: Ball-stick top view of an isolated {Fe4} single-molecule magnet (SMM).

double degeneracy in the spin ground state that is characterized by the chirality of the

system. The manipulation of the quantum spin states can be used to encode a qubit. In

the case of SMMs there is a zero field splitting called anisotropy. Because of this large

barrier, separating the spin up and spin down states, the molecule could be used to store

information classically.

Now, how do we manipulate the magnetic properties of these molecules electrically?

In the case of spin frustrated molecular magnets, we study an efficient spin-electric cou-

pling mechanism. It is based on an interplay of spin exchange, spin-orbit interaction, and

lack of inversion symmetry. This is shown in Chapter 1. The ground state of a spin frus-

trated molecular magnet is characterized by two two-fold degenerate states of opposite

chirality but same spin. An external electric field can couple these states through the spin

induced dipole moment of the molecule. We investigate spin frustrated molecules such

as {Cu3}, {V3}, {Cu3O} and {V15} (see Fig. 5). A schematic representation of such

system is shown in Fig. 3. In Chapter 3 we address a Coulomb blockade methodology

based on a master equation to calculate experimentally this induced dipole moment in a

cotunneling measurement.

In the case of SMMs we control the magnetic anisotropy of the molecule by charging it

positively and negatively in a single-electron transistor device. A schematic representation

10
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Mol NA D (Å) S CC

{Cu3} 110 4.88 D3h Na12[Cu3(AsW9O33)2· 3H2O]·32H2O [24]

{V3} 104 5.70 D3h K12[(VO)3(BiW9O33)2·29H2O [25]

{Cu3O} 31 3.29 D3h Cu3Cl3N6C9H9O [26]

{V15} 70 7.00 D3 K6[V15As6O42(H2O)]8H2O [27]

{Fe4} 122 3.18,5.5 (*) D3 Fe4C76H132O18. [28]

Table 1: Number of atoms (NA), distance between magnetic centers (D) in angstroms,

point group symmetry (S) and chemical composition (CC) of the molecular magnets study

in this thesis. (*) central-vertex and vertex-vertex Fe-Fe distances.

of such device is shown in Fig. 4. In Chapter 2 we study how the magnetic anisotropy

is calculated. For this kind of molecule we investigate a {Fe4} SMM (see Fig. 6). In

Table 1 we show the number of atoms, the distance between magnetic centers, point group

symmetry and the chemical composition of the molecular magnets that are investigated in

this thesis.

In the final chapter of the theory part of this thesis, we present an outlook where

we show several prospects for ideas to be developed and implemented both in ab-initio

calculations and quantum transport in molecular magnets.

In the development of this thesis we found it useful to write three appendices. These

are important since they present essential concepts and tools used to conduct our research.

In Appendix A we study basic concepts of group theory that are necessary to understand

the spin-electric coupling in frustrated molecular magnets. In Appendix B we explicitly

derive cotunneling transition rates using a regularization scheme that are used in Chapter

3. Finally, but not less important, in Appendix C we introduce the computational tool that

we have used in most of this thesis: NRLMOL (the Naval Research Laboratory Molecular

Orbital Library). It is a massively parallel code for electronic structure calculations on

large molecules and clusters based on spin density functional theory.

As a final remark we would like to emphasize that this thesis has been divided in four

parts, namely, the introduction, the theory, the appendices and the papers. The theory

and appendices are meant to provide the reader with the necessary concepts and tools to

understand the main procedures and findings of the papers.
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1
Spin-Electric Coupling in Molecular

Magnets

In this chapter we present a detailed description of the spin-electric coupling in a molec-

ular magnet (MM), more specifically, a spin frustrated triangular {Cu3} MM. This is

motivated by the original work published in 2008 by Trif et al. [18]. Here we follow the

procedures carried out in Ref. [19].

The lower energy regime of a spin frustrated triangular magnet (see Fig. 1.1) is com-

posed of two two-fold degenerate chiral states. Based on a spin model and symmetry

properties (see Appendix A) of the triangular molecule, one can demonstrate that electric

fields can couple states of opposite chirality through the spin induced dipole moment.

The strength of this spin-electric dipole coupling constant, d, determines the effective-

ness of the manipulation of the spin states by electric fields. A precise estimate of this

strength constant cannot be obtained analytically and has to be determined by ab-initio

calculations or through experiments.

In our first paper (see Sec. 5) we calculate this parameter using NRLMOL (see Ap-

15



16 CHAPTER 1. SPIN-ELECTRIC COUPLING IN MOLECULAR MAGNETS

pendix C) in a {Cu3} MM. The spin-electric strength, d, is found to be 3.38× 10−33C·m
(=0.001 Debye, three orders of magnitude lower than the dipole moment of the water

molecule, 1.85 Debye), where e is the electron charge and a the Cu-Cu separation. The

molecule response to an applied electric field shows that this spin-electric coupling mech-

anism is of potential interest for the use of MMs in quantum information processing as

fast switching devices.

In the second paper (see Sec. 6) we include the effect of the spin-orbit interaction

(SOI). It introduces a splitting in the ground-state manifold of the {Cu3} MM via the

Dzyaloshinskii-Moriya interaction (DMI). We employ a Hubbard-model approach to elu-

cidate the connection between the SOI and the DMI. This allows us to express the DMI

constant, D, in terms of the microscopic Hubbard-model parameters, such as the effec-

tive hopping integral between magnetic sites t, the on-site repulsion energy U , and the

strength of the spin orbit interaction λSOI. The small splitting that we find for the {Cu3}
MM is consistent with experimental results.

In a third paper (see Sec. 7) we study the spin-electric coupling in other triangular

MMs and discuss the underlying mechanism leading to an enhanced coupling, which can

be used as a convenient guide to synthesize MMs that can respond more efficiently to an

external electric field. We investigate the dependence of spin-electric coupling on types of

magnetic atoms, the distance between magnetic centers and the role of the exchange path

between magnetic atoms. We choose three different MMs: {V3} and {Cu3O} triangular

MMs which have three magnetic centers and {V15} which has fifteen magnetic atoms.

Unlike {V3} and {Cu3O} MMs, the construction of the ground state for the {V15} MM

requires some generalization as it involves fifteen magnetic centers. We describe a method

for constructing the degenerate ground state of the {V15} molecule and calculation of the

spin-electric coupling in this generalized ground state.

1.1 Spin-Electric Coupling

Recently, a mechanism of spin-electric coupling in antiferromagnetic (AFM) molecular

magnets (MMs), characterized by a lack of inversion symmetry and spin frustration, has

been proposed [18]. An example of such a system is a triangular spin s = 1/2 ring with

AFM coupling, realized for example in the {Cu3} and {V3} MMs [25, 29]. The low

energy physics of this system can be described by a three-site spin s = 1/2 Heisenberg

16
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Figure 1.1: Schematic representation of a triangular molecule.

Hamiltonian:

H0 =
3∑

i=1

Ji,i+1si · si+1 +
3∑

i=1

Di,i+1 · si × si+1 , (1.1)

where Ji,i+1 is the exchange parameter between the spins si and si,i+1, D is the Dzyaloshin-

skii vector, si are three 1/2-spins located at the Cu sites, and s4 ≡ s1. The first term in

the Hamiltonian, Eq. (1.1), represents the isotropic Heisenberg exchange Hamiltonian,

and the second term is the anisotropic Dzyaloshinskii-Moriya (DM) exchange interaction

originated from the presence of spin-orbit interaction (SOI). The point group symmetry

of this molecule isD3h, which imposes the following restrictions on the spin Hamiltonian

parameters: Ji,i+1 ≡ J and Dx
i,i+1 = Dy

i,i+1 = 0, and Dz
i,i+1 ≡ Dz . The strength of the

DM vector |Di,i+1| is at least one-order of magnitude smaller than the isotropic exchange

constant Ji,i+1, and we will disregard it for the moment.

The ground state of the Hamiltonian Eq. (1.1) is a total spin S = 1/2 manifold, which

is composed of two degenerate (total) spin S = 1/2 doublets spanned by the symmetry-

adapted states |χ±, Sz〉 that can be written as a linear combination of three different spin

configurations (see Fig. 1.2):

| ± 1,+
1

2
〉 = 1√

3

(
| ↓↑↑〉+ ǫ±| ↑↓↑〉+ ǫ∓| ↑↑↓〉

)
, (1.2)

| ± 1,−1

2
〉 = 1√

3

(
| ↑↓↓〉+ ǫ±| ↓↑↓〉+ ǫ∓| ↓↓↑〉

)
, (1.3)
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18 CHAPTER 1. SPIN-ELECTRIC COUPLING IN MOLECULAR MAGNETS

Figure 1.2: Linear combination of spin configurations associated with total spin projection

Sz = 1/2.

where the quantum numbers χ = ±1 specify the so-called handness or chirality of the

state, Sz is the total z spin projection and ǫ± = exp (±2πi/3). The many-body states

|α1α2α3〉 are products of spin-orbital states αi =↑, ↓ (i = 1, 2, 3) localized on the three

magnetic ions of the molecules. Eqs. (1.2) and (1.3) are eigenstates of the chirality

operator

Cz =
4√
3
s1 · s2 × s3 , (1.4)

where si (i =1,2,3) is the spin of the ith atom. It is useful to introduce also the other two

components of the chiral vector operator

Cx = −2

3
(s1 · s2 − 2s2 · s3 + s3 · s1) , (1.5)

Cy =
2√
3
(s1 · s2 − s3 · s1) , (1.6)

and the ladder operatorsC± ≡ Cx±iCy . Note that [Cl, Cm] = i2ǫlmnCn and [Cl, Sm] =

0. Here ǫlmn is the Levi-Civita symbol. The ladder operators reverse the chirality of the

states: C±|χ∓, Sz〉 = |χ±, Sz〉. They also have the property that C±|χ±, Sz〉 = 0. Thus

C behaves exactly like the operator S (for S = 1/2) in chiral space.

A triangular spin-1/2 antiferromagnet such a the {Cu3} MM belongs to the class

of antiferromagnetic rings with an odd number of half-integer spins [30, 31]. In these

systems, the lack of inversion symmetry of the molecule as a whole implies that the

ground-state is a four-dimensional manifold, whose basis states |χ = ±1, Sz = ±1/2〉
are characterized by the spin projection Sz = ±1/2 and by the chirality Cz = ±1.

In contrast, antiferromagnetic rings with an even number of spins have non-degenerate

18
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S = 0 singlet ground state. In odd-spin triangular rings, the two states of opposite chiral-

ity |χ = ±1, Sz = M〉 can be coupled linearly by an external electric field, even in the

absence of spin-orbit interaction.

We focus now on the spin-electric coupling of states with different chirality but the

same total spin projection, Eq. (1.2). In the presence of an external electric field εεε, the

Hamiltonian acquires the additional electric-dipole termHε =
∑

i eri·εεε = eR·εεε, where e

is the electron charge, ri is the coordinate of the ith electron and R =
∑3

i=1 ri. In theD3h

point group symmetry the z-component of R transforms as A′′
2 irreducible representation

(IR), while (x, y) transform as the two-dimensional E′ IR. The chiral states, Eq. (1.2),

spanE′ IR. For a transition to be allowed, the direct product of two wavefunctions and the

dipole operator sandwiched between them must contain theA′
1 irreducible representation.

Transition selection rules for D3h (see Appendix A) establish that the product of chiral

states and (x, y) components of the dipole moment is different from zero1

E′
︸︷︷︸

〈χ±Sz|

⊗ E′
︸︷︷︸

(x,y)

⊗ E′
︸︷︷︸

|χ±Sz〉

6= 0, (1.7)

while the product of chiral states and the z-component of the dipole moment is zero2

E′
︸︷︷︸

〈χ±Sz|

⊗ A′′
2

︸︷︷︸

z

⊗ E′
︸︷︷︸

|χ±Sz〉

= 0. (1.8)

Therefore, general group theory arguments guarantee dipole matrix elements of the form

−〈E′
+, Sz|ex|E′

−, Sz〉 = −i〈E′
−, Sz|ey|E′

+, Sz〉 ≡ d 6= 0. (1.9)

Here d is a real number that is referred to as spin electric-dipole coupling. Therefore

an external electric field causes transitions between chiral states of opposite chirality, but

with the same spin projection Sz . The value of d cannot be determined by symmetry

properties and has been determined by ab-initio calculations in {Cu3} molecular mag-

nets [32].

In the subspace of spin projection Sz = 1/2 of the ground-state manifold, which is

invariant under the application of the operator Hε, the perturbed Hamiltonian H0 + Hε

1E′ ⊗E′ ⊗E′ spans 3E′ +A′

2
+A′

1
. It does span A′

1
. Therefore, the product may be different from zero.

2E′ ⊗A′′

2
⊗ E′ spans E′′ +A′′

2
+A′′

1
. It does not span A′

1
. Therefore the product is zero by symmetry.

19
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can be expressed in the basis of the chiral states as

H = H0 +Hε

=

∣
∣
∣
∣
∣
∣
∣

〈χ+,+
1
2 |H0|χ+,+

1
2 〉 〈χ+,+

1
2 |Hε|χ−,+

1
2 〉

〈χ−,+
1
2 |Hε|χ+,+

1
2 〉 〈χ−,+

1
2 |H0|χ−,+

1
2 〉

∣
∣
∣
∣
∣
∣
∣

. (1.10)

A similar expression holds for the Sz = −1/2 subspace. The eigenvalues of H are

E±
1
2

(εεε) = E±
1
2

(0)± |d · εεε| , (1.11)

with E±
1
2

(0) = 〈χ±,+
1
2 |H0|χ±,+

1
2 〉, and the corresponding eigenstates

∣
∣
∣χ±

1
2

(εεε)
〉

=
1√
2

(

|χ+,+
1

2
〉 ± |d · εεε|

d · εεε |χ−,+
1

2
〉
)

. (1.12)

Here we have introduced the electric dipole matrix element d, which couples states of

opposite chirality (but with the same spin projection, see Eq. (1.9))

d = 〈χ+,+
1

2
|eR|χ−,+

1

2
〉 (1.13)

with d ≡ |d|.
The matrix element in Eq. (1.13) is the key quantity in the spin-electric coupling

mechanism, and we have calculated its value in Paper I (see Sec. 5). Substituting the

expressions for the chiral states from Eq. (1.2 ) and using the orthogonality of spin states,

we obtain

d =
1

3
(〈↓↑↑ |eR| ↓↑↑〉+ ǫ+〈↑↓↑ |eR| ↑↓↑〉+ ǫ−〈↑↑↓ |eR| ↑↑↓〉). (1.14)

Thus, evaluating the dipole matrix element between two states of opposite chirality is

equivalent to calculating the dipole moment of each of the three spin configurations.

Now, the effect of the electric field on the low-energy spectrum of a triangular MM can

be recast in the form of the effective spin model. The electric dipole operator has nonzero

matrix elements only in the ground-state manifold, where it couples states with equal

spin components and opposite chirality. In the excited S = 3/2 subspace all the matrix

elements of the electric dipole operator, eR, are identically zero. This is straightforward

since 〈↑↑↑ |eR| ↑↑↑〉 and 1
3 (〈↓↑↑ |eR| ↓↑↑〉 + 〈↑↓↑ |eR| ↑↓↑〉 + 〈↑↑↓ |eR| ↑↑↓〉) are

both zero by symmetry. Therefore, we expect that the spin-electric Hamiltonian, Hε, can

be rewritten as a linear combination of the ladder operators, C±. By comparing the matrix
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elements of Hε given in Eqs. (1.9) and (1.13) with the action of C± on the chiral states,

one can show that [19]

Heff
ε = dεεε′ ·C‖ , (1.15)

where εεε′ = Rz(φ)(7π/6 − 2θ)εεε, with R(φ) being the matrix representing a rotation by

an angle φ around the z-axis, and θ being the angle between the in-plane component εεε‖ of

the electric field and the bond s1-s2. Here we can write the C‖ components of the chiral

operator in the form of projection operators as

Cx =
∑

m

(|χ+, Sz〉 〈χ−, Sz|+ |χ−, Sz〉 〈χ+, Sz|) (1.16)

and

Cy = i
∑

m

(|χ+, Sz〉 〈χ−, Sz| − |χ−, Sz〉 〈χ+, Sz|) , (1.17)

where Sz = 1/2,−1/2.

By using Eqs. (1.5) and (1.6) we can now rewrite C‖ = (Cx, Cy) in terms of spin-

operators si [19]. Thus, Eq. (1.15) becomes

Heff
ε =

3∑

i

δJii+1(εεε)si · sj , (1.18)

where the modified exchange parameters take the form [19]

δJii+1(εεε) =
4d

3
√
2
|εεε‖| cos

(
2π

3
i+ θ

)

. (1.19)

This expression of the effective electric-dipole Hamiltonian suggests a transparent

physical interpretation of the spin-electric couping mechanism [18, 19]. An external elec-

tric field changes the charge distribution of the {Cu3} molecule which, in turn, changes

the exchange interaction between neighboring atoms. Since the modified exchange inter-

action does not commute with H0, it can cause transitions between chiral states within

the ground-state manifold.

Here we, now, turn to the spin-orbit interaction (SOI) in the ground state as an effective

Hamiltonian. In the D3h point group, the SOI in the low-energy regime reads [33]

HSOI = λ
‖
SOITA2

Sz + λ⊥SOI

(

TE′′
+
S− + TE′′

−
S+

)

(1.20)

where λ‖SOI and the λ⊥SOI are the SOI parameters for the A′′
2 and E′′

± irreducible represen-

tation, respectively. Here TA′′
2

and TE′′
±

are the corresponding irreducible representation
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tensor operators in the orbital space. Because of group theory properties for D3h symme-

try, the only possible nonzero matrix elements of this SOI Hamiltonian in the low-energy

regime, namely S = 1/2 subspace (chiral states subspace), can be written as

〈χ±SZ |HSOI|χ±S
′
z〉 = ±λ‖SOISzδSzS′

z
. (1.21)

Consequently, the effective SOI Hamiltonian is written as

Heff
SOI = ∆SOICzSz (1.22)

where ∆SOI = λ
‖
SOI, Sz = s1z+s

2
z+s

3
z is the total spin defined as the sum of the individual

spins si, and Cz transfortms as TA2 IR. Using the definition of the z-component of the

chiral operator in Eq. (1.4), one can see that Heff
SOI is reduced to the Dzyaloshinskii-

Moriya Hamiltonian given in the second term of the RHS Eq. (1.1). Experimentally the

DM-induced splitting in {Cu3} is estimated to be small (approximately 0.5 K [29]) and

is calculated by ab-initio methods in Paper II (see Sec. 6).

To complete the full spectrum of the low-energy regime, an external magnetic field can

be introduced. It couples to the spin via the Zeeman term HMF = B · g̃S. Because of the

D3h symmetry, the g-factor tensor is diagonal, as a result, g̃ = diag{g‖, g‖, g⊥}, where

g‖ = gxx = gyy is parallel to the triangle plane and g⊥ = gzz is normal to it. Finally,

from Eqs. (1.15), (1.22) and HMF, the low-energy effective Hamiltonian is written as

Heff = Heff
ε +HMF +Heff

SOI

Heff = dεεε′ ·C‖ +B · g̃S+∆SOICzSz. (1.23)

An schematic representation of the interplay of the three terms in Eq. (1.23) is shown

in Fig. 1.3. At zero-field, the four-fold degenerate chiral states, |χ±Sz = ±1/2〉, are

split by the SOI in two chiral doublets: |χ−Sz = ±1/2〉 and |χ+Sz = ±1/2〉. Then, an

external magnetic field lifts the degeneracy of each doublet. Finally, and external electric

field couples states of opposite chirality but same spin. The strength of this coupling is

given by the paramenter d (see Eq. (1.13)).

Note that in the absence of the SOI, the chiral and spin operators evolve indipentintly.

However, when SOI is present it couples C and S operators. Also, while the magnetic

field causes transitions between states of opposite spin projection Sz but with the same

spin chirality Cz , the electric field causes transitions between states of opposite chirality

Cz , but with the same spin Sz .
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Figure 1.3: Splitting of the four-fold degenerate chiral states.

1.2 Parameters within the one-band Hubbard model ap-

proach

Spin Hamiltonians such as Eq. (1.1) are effective low-energy descriptions of the system,

focusing only on the spin degrees of freedom. This assumption disregards completely

the orbital degree of freedom. For the spin-electric coupling model, the orbital dynamics

plays a fundamental role and has to be included to investigate the coupling constants. In

this section we use the Hubbard model in order to include the orbital degree of freedom

into the spin-electric coupling. This allows us to study intuitively the spin-electric cou-

pling introduced by electric fields acting on the molecular orbitals. We follow here the

procedure introduced in Ref. [19].

The second quantized one-band Hubbard Hamiltonian reads

HU = −
∑

i,j

∑

α

{

tijc
†
iαcjα + h.c.

}

+
1

2
U

∑

i

ni↑ ni↓ , (1.24)

where c†iα (ciα) creates (destroys) an electron with spin α at site i, niα = c†iαciα is the

particle number operator and tij is a spin-independent hopping parameter. More precisely,

the index i labels a Wannier function localized at site i. The first term represents the

kinetic energy describing electrons hopping between nearest- neighbor sites i and j. For
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D3h symmetry this term is characterized by a hopping parameter tij = t. The second term

is an on-site repulsion energy of strength U , which describes the energy cost associated

with having two electrons of opposite spin on the same site. In this model the interaction

energy between electrons which are not on the same site is completely neglected. The

Hubbard model is the simplest model describing the fundamental competition between

the kinetic energy and the interaction energy of electrons on a lattice.

The spin-orbit interaction in the Hubbard model is described by adding the following

spin-dependent hopping term [19, 34–36]

HSOI =
∑

i,j

∑

α,β

{

c†iα

(

i
Pij

2
· σσσαβ

)

cjβ + h.c.
}

, (1.25)

where σσσ = σxx̂+ σy ŷ + σz ẑ is the vector of the three Pauli matrices. A commonly used

notation for the Pauli matrices is to write the vector index i in the superscript, and the

matrix indices as subscripts, so that the element in row α and column β of the ith Pauli

matrix is σi
αβ , with i = x, y, z. Here the vector Pij is proportional to the matrix element

of∇∇∇V ×p between the orbital parts of the Wannier functions at sites i and j; V is the one-

electron potential and p is the momentum operator. Clearly the spin-orbit term has the

form of a spin-dependent hopping, which is added to the usual spin-independent hopping

proportional to t. In Eq. (1.25), spin-orbit coupling induces a spin precession about Pij

when an electron hops from site i to site j. This form of the spin-orbit interaction is a

special case of Moriya’s hopping terms [37] in the limit that all but one orbital energy is

taken to infinity [35], and it is consistent with our choice of a one-band Hubbard model.

The x and y components of Pij describe processes with different spin, and because of the

σv symmetry, Pij = pez . Therefore, because of the symmetry of the molecule, the free

Hubbard parameters are reduced to three, namely, t, U and p.

The final expression of the Hamiltonian that describes electrons in a triangular molecule,

including the spin-orbit interaction is

HU+SOI =
∑

i,α

{

c†iα
(
− t+ iλSOIα

)
ci+1α + h.c.

}

+
∑

i,α

(

ǫ0niα +
1

2
Uniα niᾱ

)

, (1.26)

where λSOI ≡ p/2 = Pij/2 · ez is the spin-orbit parameter, ǫ0 is the on-site orbital

energy, and ᾱ = −α.

We want to treat the two hopping terms perturbatively on the same footing, by doing

an expansion around the atomic limit t/U , λSOI/U → 0. In many molecular magnets
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t ≫ λSOI. This turns out to be the case also for {Cu3} [38]. In other molecules the two

hopping parameters are of the same order of magnitude.

We are interested in the half-filling regime. From second-order perturbation theory

in t/U , an antiferromagnetic isotropic exchange term emerges and splits the spin degen-

eracy of the low-energy sector of the Hubbard model, which is defined by the singly-

occupied states. This action can be represented with an effective spin Hamiltonian, the

isotropic Heisenberg model, with the exchange constant J = 4t2/|U | [39]. The per-

turbative method requires the definition of the unperturbed states being the one-electron

states

|φαi 〉 = c†iα |0〉 , (1.27)

singly-occupied three-electron states

|ψα
i 〉 =

3∏

j=1

c†jαj
|000〉 =

3∏

j=1

∣
∣φ

αj

j

〉
, (1.28)

with αj = α for j 6= i and αj = ᾱ, for j = i. Finally the doubly-occupied three-electron

states
∣
∣ψα

ij

〉
= c†i↑c

†
i↓c

†
jα |000〉 , (1.29)

with i = 1, 2, 3 and j 6= i. The states in Eqs. (1.27)-(1.29) are eigenstates of the Hamil-

tonian, Eq. (1.26), only in the absence of the hopping and spin-orbit parameter. These

states have the following energies, ǫ0, 3ǫ0 and 3ǫ0 + U , respectively. These states are

not yet symmetry adapted states of the D3h point group. Symmetry adapted states can be

found using the projector operator formalism [19, 33]. One-electron symmetry adapted

states can be written as a linear combination of one-electron states, Eq. (1.27),

∣
∣
∣Φα

A′
1

〉

=
1√
3

3∑

i=1

|φαi 〉 , (1.30)

and
∣
∣
∣Φα

E′
±

〉

=
1√
3

3∑

i=1

ǫi−1
1,2 |φαi 〉 , (1.31)

where A′
1 and E′

± are one-dimensional and two-dimensional irreducible representations

in the D3h point group, respectively, and ǫk1,2 = exp
(
(2πi/3)k

)1,2
. The three-electron

symmetry adapted states for singly-occupied magnetic centers can be written as

∣
∣
∣ψ1α

A′
1

〉

=
1√
3

3∑

i=1

|ψα
i 〉 , (1.32)
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and
∣
∣
∣ψ1α

E′
±

〉

=
1√
3

3∑

i=1

ǫi−1
1,2 |ψα

i 〉 . (1.33)

The states |ψ1α
E′

+
〉 and |ψ1α

E′
−

〉 have total spin S = 1/2 and z-spin projection Sz =

±1/2. These states are formally identical to the chiral states given in Eqs. (1.2) and (1.3)

and are eigenstates of the Hubbard Hamiltonian when t = λSOI = 0. The tunneling

and SOI mix the singly-occupied and doubly-occupied states. Symmetry properties of

the D3h point group dictate that the tunneling and SOI terms in the Hubbard Hamiltonian

transform as the irreducible representation A′
1. Therefore, only states transforming ac-

cording to the same irreducible representations could be mixed. The first-order correction

in t/U and λSOI is obtained by mixing in doubly-occupied states

|Φ1α
E′

±
〉 ≡ |ψ1α

E′
±
〉+ (ǫ12 − 1)(t± αλSOI)√

2U
|ψ2α

E
′1
±

〉+ 3ǫ11(t± αλSOI)√
2U

|ψ2α
E

′2
±

〉,(1.34)

where

|ψ2α
E

′1
±

〉 = 1√
6

3∑

i=1

ǫi−1
1,2 (|ψα

i1〉+ |ψα
i2〉) , (1.35)

and

|ψ2α
E

′2
±

〉 = 1√
6

3∑

i=1

ǫi−1
1,2 (|ψα

i1〉 − |ψα
i2〉) , (1.36)

are three-electron symmetry adapted states for doubly-occupied magnetic centers.

In the small t/U , λSOI/U limit, we can resort to a spin-only description of the low-

energy physics of the system. The ground state manifold (corresponding to the states

in Eq. (1.34)) is given by the two chiral spin states Eqs. (1.2), (1.3). In this low-energy

regime the orbital states correspond to the singly-occupied localized atomic orbitals. The

lowest energy states have total spin S = 1/2 and chirality Cz = ±1.

Now, we introduce the effect of the external electric field. An external electric field εεε

can couple to the molecule via two mechanisms. The first mechanism that we will study

is by the modification of the on-site energies ǫ0 via the Hamiltonian

H0
d−ε =

∑

α

3∑

i=1

(−eri · εεε) c†iαciα, (1.37)

where ri is the coordinate vector of the ith magnetic center. From Fig. 1.4, the on-site
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Figure 1.4: Coordinates of magnetic centers in a triangular molecule. ri is the coordinate

of the ith electron.

electric Hamiltonian can be written as

H0
d−ε = −ea

∑

α

[
εy√
3
c†1αc1α − 1

2

(

εx +
εy√
3

)

c†2αc2α

+
1

2

(

εx − εy√
3

)

c†3αc3α

]

, (1.38)

where εx,y are the in-plane coordinates of the electric field, e the electron charge and a

the distance between magnetic centers.

The second mechanism is given by the modification of the hopping parameters tii+1

and it can be written as

H1
d−ε =

∑

α

3∑

i=1

tεii+1,αc
†
iαci+1α + H.c., (1.39)

where tεii+1,α = −
〈
φαi |er · εεε|φαi+1

〉
are the modified hopping parameters due to the ex-

ternal electric field εεε, φi are the Wannier states localized on the ith magnetic center with

spin α. These induced hopping parameters can be written as tεεεii+1,α =
∑

q q
α
ii+1εq , with

qαii+1 = −e
〈
φαi |q|φαi+1

〉
and q = x, y, z. D3h point group symmetry properties given

by the dipole selection rules reduce the number of free parameters induced by the electric

field. Finding these free parameters is not an easy task when the basis set is composed

of localized Wannier orbitals. In order to investigate the effect of the electric field on
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the triangular molecule, we switch from the localized Wannier basis set to the symme-

try adapted basis set Γ = A′
1, E

′
±. Then we apply the transition dipole selection rules

to the new induced hopping parameters. In the symmetry adapted states, the hopping-

Hamiltonian, Eq. (1.39), reads

H1
d−ε =

∑

α

∑

ΓΓ′

tεεεΓ,Γ′,αc
†
ΓαcΓ′α + H.c., (1.40)

where Γ,Γ′ = A′
1, E

′
+, E

′
−, tεεεΓ,Γ′,α =

∑

q q
α
ΓΓ′Eq , with q = x, y, z and qαΓΓ′ = −e 〈φαΓ|q|φαΓ′〉.

Here c†Γα(cΓα) creates (destroys) an electron in the adapted state Γ with spin α. Note

that in Eq. (1.40) all the possible transitions are included, even those between states of

the same symmetry adapted basis set. Dipole transition rules then will select the allowed

transitions and the corresponding states. Although symmetry properties control the dipole

transition rules, they do not allow us to calculate the strength of the transitions. Experi-

ments or accurate ab-initio calculations have to be carried out to determine them. In the

D3h point group, the (x, y) and z-coordinates span as the E′ and the A′′
2 irreducible rep-

resentation, respectively. We have grouped x and y because they form a degenerate pair

within the E′ representation. From character tables of the D3h point group, we have the

only allowed transitions correspond to

〈

φαE′
+

∣
∣
∣x

∣
∣
∣φαE′

−

〉

= −i
〈

φαE′
+

∣
∣
∣ y

∣
∣
∣φαE′

−

〉

≡ −dEE

e
〈

φαA′
1

∣
∣
∣x

∣
∣
∣φαE′

+

〉

= −i
〈

φαA′
1

∣
∣
∣ y

∣
∣
∣φαE′

+

〉

≡ −dAE

e
〈

φαA′
1

∣
∣
∣x

∣
∣
∣φαE′

−

〉

= i
〈

φαA′
1

∣
∣
∣ y

∣
∣
∣φαE′

−

〉

≡ −dAE

e

where dEE and dAE are the only two free parameters to be determined. Here we have

used the symmetry rule that the product f1⊗f2⊗f3 6= 0 if it spans theA′
1 representation.

All the other transitions are not allowed within the D3h symmetry group. Inserting these

allowed transitions into the Hamiltonian, Eq. (1.40), we have

H1
d−ε =

∑

α

[

dAE

(

Ēc†A′
1α
cE′

−
α + Ec†A′

1α
cE′

+α

)

+ dEE Ēc†E′
−
αcE′

+α

]

+ H.c., (1.41)

where E = εx + iεy and Ē = εx − iεy . Note that the parameters dAE and dEE tell us

about the possible dipole-electric transitions between states that span A′
1-E′

± and E′
+-E′

−

IR, respectively. From Eq. (1.33) we can see that the chiral states also span E± IR.

To take even more advantage of the symmetry of the triangular molecule, we now

write the relationship between the second quantized operators c†iα, ciα and the symmetry
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adapted operators c†Γα, cΓα. From Eqs. (1.27),(1.30) and (1.31), we have







c†A′
1α

c†E′
+α

c†E′
−
α







=






1 1 1

1 ǫ ǫ2

1 ǫ2 ǫ











c†1α
c†2α
c†3α




 , (1.42)

where we have used ǫ4 = ǫ. From the last equation we can write the localized second

quantized operators as a linear combination of symmetry adapted operators






c†1α
c†2α
c†3α




 =






1 1 1

1 ǫ2 ǫ

1 ǫ ǫ2












c†A′
1α

c†E′
+α

c†E′
−
α






. (1.43)

Now we can write the rest of the perturbed Hamiltonian, namely the H0
d−ε on-site

electric field Hamiltonian (Eq. (1.38)) and HSOI spin-orbit Hamiltonian (Eq. (1.25)), in

terms of the symmetry adapted operators

H0
d−ε = − iae

2
√
3

∑

α

[

Ēc†E′
+αcA′

1α
− Ec†E′

−
αcA′

1α
+Ēc†E′

−
αcE′

+α

]

+ H.c., (1.44)

and

HSOI =
√
3λSOI

∑

α

α
(

c†E′
−
αcE′

−
α − c†E′

+αcE′
+α

)

. (1.45)

Here one can notice that the spin-orbit interaction splits the chiral states without mix-

ing them. After the use of symmetry properties in theD3h point group, the Hubbard model

with spin-orbit coupling and an external electric field finally has only five free parameters,

namely t, U , λSOI, dAE and dEE .

The electric dipole matrix elements between the perturbed chiral states of the E± IR

have been determined previously in the limit of localized orbitals: |ea| ≫ dEE , dAE [19].

This leads to the following matrix elements of the electric dipole in the ground state

∣
∣
∣

〈

Φ1σ
E′

−

∣
∣
∣H0

d−ε

∣
∣
∣Φ1σ

E′
+

〉∣
∣
∣ ∝

∣
∣
∣
∣

t3

U3
eEa

∣
∣
∣
∣
, (1.46)

∣
∣
∣

〈

Φ1σ
E′

−

∣
∣
∣H1

d−ε

∣
∣
∣Φ1σ

E′
+

〉∣
∣
∣ ≃

∣
∣
∣
∣

4t

U
EdEE

∣
∣
∣
∣
. (1.47)

The off-diagonal matrix elements in Eqs. (1.46) and (1.47) represent a microscopic

description of the electric dipole coupling introduced in Eq. (1.9) .
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2
Magnetic anisotropy in a single-molecule

magnet

Single-molecule magnets (SMMs) are a special class of spin-ordered and/or magnetically

active molecules characterized by a relatively high molecular spin and large magnetic

anisotropy energy [13]. The latter lifts the spin degeneracy even at zero magnetic field,

and favors one particular alignment of the spin, making the molecule a nanoscale magnet.

As a result, SMMs could be used to store information (spin up and down). A crucial

requirement for this is the ability to control and manipulate the magnetic states of the

SMM in an efficient way. Therefore, it is useful to be able to control the size of the

magnetic anisotropy electrically. In Paper IV (Sec. 8) we investigate control of the mag-

netic anisotropy of a {Fe4} SMM in a single-electron transistor geometry by charging the

molecule. We show that the spin ordering and the magnetic anisotropy of {Fe4} SMM

remain stable in the presence of metallic leads. We also show the change in magnetic

anisotropy for charged states both for the isolated molecule and molecule attached to the

leads. Our calculations were done with NRLMOL (see Appendix C).
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The energy barrier separating the states of spin up and spin down occurs via the spin-

orbit interaction, which is a manifestation of relativistic effects in the electronic structure.

Calculations of spin-orbit coupling have used a generalization of the standard spin-orbit

coupling terms for spherical systems. In this chapter we follow a procedure used to cal-

culate the magnetic anisotropy that goes beyond spherical systems [40] .

2.1 Magnetic Anisotropy

In the last two decades single-molecule magnets (SMMs) have attracted a lot of atten-

tion, in part, because of the possibility that these structures could represent the ultimate

molecular-scale limit for magnetic units in high-density magnetic storage materials. More

recently SMMs have been recognized as promising building blocks in molecular spintron-

ics, the emerging field combining spintronics and molecular electronics [5, 7, 8, 41–43].

In particular, thanks to their long spin coherence time [17], SMMs are good candidates to

realize spintronic devices that maintain, control and exploit quantum coherence of indi-

vidual spin states. These devices could find important applications in the field of quantum

information processing [44, 45].

Magnetic anisotropy of a molecular magnet comes from unpaired electrons in the

material, molecules or cluster, which are not distributed equivalently in all directions in

space. This phenomenon determines the formation of an energy barrier that separates

different microstates with different spin magnetic moment. This energy barrier occurs via

the spin-orbit interaction, which is a manifestation of relativistic effects in the electronic

structure. Magnetic anisotropy determines the type of magnetization of a sample and

fixes its easy, medium and hard magnetic axes. When the energy of the system depends

only on the angle with respect to one specific axis, independently of the other two, the

anisotropy is called uniaxial anisotropy and the axis is referred as “easy axis”. On the

other hand, when the magnetization is free to rotate in a plane perpendicular to a given

(fixed) direction, we say thqat the system is determine by an easy plane. Here we show

the details of calculation on anisotropy parameters used in this thesis.

Single-molecule magnets (SMMs) can usually be described with a Heisenberg model.

The isotropic Heisenberg Hamiltonian is given by

H =
∑

ij

Jijsi · sj , (2.1)

where si is the spin of the magnetic ion i and the constants Jij describe the super-
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exchange coupling between ions i and j. These terms break rotational invariance in spin

space. Up to second-order perturbation theory, these terms, besides anisotropic correc-

tions to the Heisenberg model, include the antisymmetric Dzyaloshinskii-Moriya spin ex-

change, and the single-ion magnetic anisotropy Hia = −∑

i(di · si)2. Because of these

terms, the total spin is no longer a good quantum number. Within the giant-spin model

of SMMs, where the isotropic exchange is the dominant magnetic interaction, the main

effect of the spin-orbit interaction is to lift the spin degeneracy of the ground state (GS)

multiplet. To second-order perturbation theory, this can be described by the following

anisotropy Hamiltonian for the giant spin operator S = (Sx, Sy, Sz)

H = DS2
z + E(S2

x − S2
y) . (2.2)

The parameters D and E specify the axial and transverse magnetic anisotropy, respec-

tively. If D < 0 and |D| ≫ |E|, which define properties for SMMs, the system exhibits

an easy axis in the z-direction. IfD > 0 the systems has a quasi-easy plane perpendicular

to the z-axis without energy barrier. In the absence of magnetic fields, and neglecting

the small transverse anisotropy term, the GS of Eq. (2.2) is doubly degenerate and it cor-

responds to the eigenstates of Sz with eigenvalues ±S. To go from the state Sz = +S

to the state Sz = −S the system has to surmount a magnetic anisotropy energy barrier

∆E = |D|S2. In addition, transitions which change the axial quantum numbers require

some type of carrier to balance the change in spin. When the transverse term is not neg-

ligible and Sz is not a good quantum number, we can still define an anisotropy barrier

separating the two (degenerate) lowest energy levels as the energy difference between GS

energy and the energy of the highest excited state. This is shown in Fig. 2.1. We have

used, as an example, an isolated {Fe4} (S = 5) SMM. D = −0.63 K value has been

taken from Paper IV (see Sec. 8). E values have been chosen in such way that the effect

of the transverse term is clearly seen. Here we have plotted the energy En of the n state

as a function of the expectation value of the spin projection 〈n|Sz |n〉. We can see that

for E = 0 (left panel) the states are pure eigenstates of Sz , each of them corresponding

to a different m = −5,−4, . . . , 4, 5 value. As the value of E increases the eigenstates

of the Hamiltonian become a linear combination of the m states (central and right panel).

Therefore Sz is no longer a good quantum number. It can be also seen that when E be-

comes different from zero the splitting of the states close to m = 0, namely ±1, is much

larger than that of the ±2 levels. This is because the E term mixes directly states which

differ in m by ±2 [13].

The anisotropy parameters D and E can be calculated within a self-consistent-field

33



34 CHAPTER 2. MAGNETIC ANISOTROPY IN A SINGLE-MOLECULE MAGNET

-4 -2 2 4
Xn SZ n\

-15

-10

-5

EnHKL

(a) E=0

-4 -2 2 4 Xn SZ n\

-15

-10

-5

EnHKL

(b) E=D/10000 K

-0.0010 -0.0005 0.0005 0.0010Xn SZ n\

-15

-10

-5

EnHKL

(c) E=D/100

Figure 2.1: Eigenvalues En of the Hamiltonian Eq. (2.2) as a function of the expectation

value of the spin projection 〈n|Sz |n〉 of the corresponding n state for a {Fe4} (S = 5)

single-molecule magnet. Here we have taken the value D = −0.63 K from Paper IV (see

Sec. 8).
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(SCF) one-particle theory (e.g. DFT or Hartree-Fock), by including the contribution of

the spin-orbit interaction. Here we summarize the main steps of the procedure originally

introduced in Ref. [46]. (For more recent reviews see Refs. [47, 48].)

The starting point are the matrix elements of the spin-orbit interaction (SOI) operator

U(r,p,S) = − 1

2c2
S · p×∇Φ(r), (2.3)

where c is the speed of light, S is the spin moment, p is the momentum operator and Φ

is the Coulomb potential. For a spherically symmetry potential, the above expression can

be rewritten as

U(r,L,S) =
1

2c2
S · L1

r

dΦ(r)

dr
, (2.4)

where L is the angular momentum. Although this approximation is widely used, it is

valid only for spherical systems. However there are non spherical corrections that might

be important for anisotropy energies.

Pederson et al. [46] have shown an exact simplified method for incorporating spin-

orbit coupling into density functional theory calculations. This method requires the de-

termination of single-electron wavefunctions. These wavefunctions can be expressed ac-

cording to

ψis(r) =
∑

jα

Cis
jαfj(r)χα , (2.5)

where fj(r) is a spatial basis function, χα is either a majority or minority spinor, and Cis
jα

are determined by effectively diagonalizing the Hamiltonian matrix. In order to calculate

the effect of the SOI (Eq. (2.3)) it is necessary to calculate matrix elements of the form

Ujα,kα′ = 〈fjχα|U(r, p, S) |fkχα′〉

= 〈fjχα| −
1

2c2
p×∇Φ(r) · S |fkχα′〉

=
∑

l

1

i
〈fjχα| −

1

2c2
[∇×∇Φ(r)]lSl |fkχα′〉

=
∑

l

1

i
〈fj | −

1

2c2
[∇×∇Φ(r)]l |fk〉

× 〈χα|Sl |χα′〉

=
∑

l

1

i
〈fj |Vl |fk〉 〈χα|Sl |χα′〉 , (2.6)
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where l = x, y, z, p = ∇/i1 and

〈fj |Vl |fk〉 = 〈fj | −
1

2c2
[∇×∇Φ(r)]l |fk〉 . (2.7)

In order to find the most appropriate form of Eq. (2.7), we write one of its components

as

〈fj |Vx |fk〉 = − 1

2c2

∫

d3rfj

(
d

dy

dΦ

dz
− d

dz

dΦ

dy

)

fk. (2.8)

Each term of R.H.S. can be written as

fj
d

dy

dΦ

dz
fk = fj

d2Φ

dydz
fk + fj

dΦ

dz

d

dy
fk, (2.9)

fj
d

dz

dΦ

dy
fk = fj

d2Φ

dzdy
fk + fj

dΦ

dy

d

dz
fk. (2.10)

Inserting these two equations into Eq. (2.8), we get

〈fj |Vx |fk〉 =
1

2c2

∫

d3rfj

(
dΦ

dy

d

dz
− dΦ

dz

d

dy

)

fk. (2.11)

Now, the factors in last equation can be written as
∫

d3rfj
dΦ

dy

d

dz
fk = −

∫

d3r
d

dy
fjΦ

dfk
dz

−
∫

d3r
dfj
dy

Φ
dfk
dz

−
∫

d3rfjΦ
d2fk
dydz

(2.12)

and
∫

d3rfj
dΦ

dz

d

dy
fk = −

∫

d3r
d

dz
fjΦ

dfk
dy

−
∫

d3r
dfj
dz

Φ
dfk
dy

−
∫

d3rfjΦ
d2fk
dzdy

. (2.13)

The first term in Eqs. (2.12) and (2.13) vanishes if the system is finite because the

basis functions vanish at infinity. Inserting these equation into Eq. (2.11) we finally get

〈fj |Vx |fk〉 =
1

2c2

(〈
dfj
dz

∣
∣
∣
∣
Φ

∣
∣
∣
∣

dfk
dy

〉

−
〈
dfj
dy

∣
∣
∣
∣
Φ

∣
∣
∣
∣

dfk
dz

〉)

. (2.14)

The matrix elements for Vy and Vz are obtained by cyclical permutations of x, y and

z in Eq. (2.14). This methodology for the SOI matrix does not require the determination

1Here we use ~ = 1
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of the electric field, it depends only the Coulomb potential and gradient of each basis

function, and it is specially ideal for basis functions constructed from Gaussian-type or-

bitals, Slater-type functions, and plane waves. It is easier to take the derivative of the basis

functions rather than that of the Coulomb potential.

Now we show a perturbative method for the determination of single-electron and col-

lective shifts in total energies due to spin-orbit coupling [40]. Let us assume that in the

absence of magnetic field and spin-orbit interaction, we have determined the unperturbed

wave functions ψiσ within a self-consistent field (SCF) approximation such a density

functional theory (DFT). The SCF wave functions satisfy

H |ψiσ〉 = ǫiσ |ψiσ〉 , (2.15)

where |ψiσ〉 = φiσ(r)χσ is a simple product of a spatial function and spinor. Now, in the

presence of spin-orbit interaction, the perturbed wave functions must satisfy
[

H +

(
V

i
+

1

c
B

)

· S
]

|ψ′
iσ〉 = ǫ′iσ |ψ′

iσ〉 , (2.16)

where the operator V is defined in Eq. (2.14) and B is the magnetic field. Now we

turn off the magnetic field and defined M = V/i as a small perturbation. Then, from

second order perturbation theory we have that the total energy of a system with arbitrary

symmetry can be expressed as

∆(2) = Si ·
↔

M · Sj =
∑

σσ′

∑

ij

Mσσ′

ij Sσσ′

i Sσσ′

j , (2.17)

where i, j = x, y, z,

Sσσ′

i = 〈χσ |Si|χσ′〉 (2.18)

is a spin integral, and

Mσσ′

ij = −
∑

l,k

〈φlσ |Vi|φkσ′〉 〈φkσ′ |Vi|φlσ〉
ǫlσ − ǫkσ′

, (2.19)

where φlσ and φkσ′ are occupied and empty Kohn-Sham orbitals, respectively.

We now turn to the case of a closed-shell molecule with ∆N excess majority spin

electrons. The above expression is valid for any set of spinors (χ1, χ2), which are con-

structed from a unitary transformation on the Sz eigenstates (|↑〉 , |↓〉) defined with respect

to the z axis. The most general set of spinors can be generated from the following unitary

transformation

|χ1〉 = eiα
[

cos
θ

2
|↑〉+ eiβ sin

θ

2
|↓〉

]

, (2.20)
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|χ2〉 = e−iα

[

−e−iβ sin
θ

2
|↑〉+ cos

θ

2
|↓〉

]

, (2.21)

where θ and β are variational parameters and α is an ignorable parameter. The expectation

values of a spin operator in the above basis is given by

〈χ1 |Sx|χ1〉 = −〈χ2 |Sx|χ2〉 =
1

2
cosβ sin θ

〈χ1 |Sy|χ1〉 = −〈χ2 |Sy|χ2〉 =
1

2
sinβ sin θ

〈χ1 |Sz|χ1〉 = −〈χ2 |Sz|χ2〉 =
cos θ

2
. (2.22)

Therefore, the expectation value of a spin operator in a closed shell molecule with

excess majority spin electrons ∆N is given by

〈χ1 |Si|χ1〉 = −〈χ2 |Si|χ2〉 =
〈Si〉
∆N

(2.23)

and

〈χ1 |Si|χ2〉 〈χ2 |Sj |χ1〉 = 〈χ1 |Si|χ1〉 − 〈χ1 |Si|χ1〉 〈χ1 |Sj |χ1〉

= 〈χ1 |SiSj |χ1〉 −
〈Si〉 〈Sj〉
(∆N)2

, (2.24)

〈χ2 |Si|χ1〉 〈χ1 |Sj |χ2〉 = 〈χ2 |Si|χ2〉 − 〈χ2 |Si|χ2〉 〈χ2 |Sj |χ2〉

= 〈χ2 |SiSj |χ2〉 −
〈Si〉 〈Sj〉
(∆N)2

, (2.25)

〈χm |SiSi|χm〉 =
1

4
, (2.26)

〈χm |SiSj |χm〉 = −〈χm |SjSi|χm〉 for i 6= j, (2.27)

〈χm |SiSj |χm〉 = −〈χn |SiSj |χn〉 for i 6= j. (2.28)

where 〈Si〉 is the ground state expectation value of the ith-component of the total spin

of the system for the given choice of the quantization axis. On the basis of a giant-spin

model, 〈Si〉 can be re-interpreted as the expectation values of the components of the giant-

spin operator S for the spin-coherent state |S, n̂〉 with S = ∆N/2.

Now Eq. (2.17) can be rewritten as a diagonal part in the spin index plus the non-

diagonal remainder according to:

∆(2) =
∑

σ

∑

ij

Mσσ
ij S

σσ
i Sσσ

i +
∑

σ 6=σ′

∑

ij

Mσσ′

ij Sσσ′

i Sσσ′

i (2.29)
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Inserting Eqs. (2.24)-(2.28) into (2.29) we have

∆(2) =
∑

ij

(M11
ij +M22

ij −M12
ij −M21

ij )
〈Si〉 〈Sj〉
(∆N)2

+
1

4

∑

ii

(M12
ii +M21

ii ) (2.30)

where 1 ≡ χ1 and 2 ≡ χ2. For uniaxial symmetry Mσσ′

xx =Mσσ′

yy and running over i and

j we get the total second order energy shift

∆(2) = (M11
xx +M22

xx +M12
zz +M21

zz )
sin2 θ

4

+(M11
zz +M22

zz +M12
xx +M21

xx)
cos2 θ

4

+
1

4
(M12

xx +M21
xx)

= A+
γ

2

[
∆N cos θ

2

]2

(2.31)

where A = (M11
xx +M22

xx +M12
zz +M21

zz +M12
xx +M21

xx)/4 and γ = (2/(∆N)2)(M11
zz +

M22
zz +M

12
xx+M

21
xx−M11

xx−M22
xx−M12

zz −M21
zz ) is the anisotropy tensor. It is convenient

to write Eq. (2.31) in this way because from Eqs. (2.22) and (2.23) we have that 〈Sz〉 =
(∆N cos θ)/2. This is a classical expectation value of a spin projection and a continuous

function of θ and gives us appropriate bounds | 〈Sz〉 | ≤ ∆N/2. The difference between

the maximum energy orientation and the minimum energy orientation is given by

∆
(2)
θ=0 −∆

(2)
θ=π

2
= A+

γ

2

[
∆N cos 0

2

]2

−A− γ

2

[
∆N cos π

2

2

]2

=
γ

2

(∆N)2

2
(2.32)

A positive γ corresponds to an easy plane (no barrier) and a negative γ corresponds to

an easy axis with a barrier at 〈Sz〉 = 0 and minimal at 〈Sz〉 = ±∆N/2, which is the

interesting case to spin tunneling experiments. Therefore the second order energy shift

can be written as

∆(2) = A+
γ

2
〈Sz〉2 . (2.33)
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Once the anisotropy tensor has been diagonalized, the total energy shift, Eq. (2.17)

can be rewritten as

∆(2) =
∑

σσ′

∑

ij

Mσσ′

ij Sσσ′

i Sσσ′

i

= MxxS
2
x +MyyS

2
y +MzzS

2
z . (2.34)

Here one can write the Hamiltonian in terms of axial (D) and rhombic (E) parameters.

In particular, for complexes with biaxial symmetry the Hamiltonian is represented as

H = DS2
z + E(S2

x − S2
y), (2.35)

where

D = Mzz −
1

2
(Mxx +Myy) (2.36)

E =
1

2
(Mxx −Myy) . (2.37)

The magnetic anisotropy energies (MAEs) calculated in Paper IV (see Sec. 8) were

carried out with a density functional theory code called NRLMOL (see Appendix C). This

code calculates the MAEs by two methods: exact diagonalization and by using 2nd order

perturbation theory. In the exact method, the spin-orbit Hamiltonian for a quantization

axis specified by θ and β parameters is first expressed in a basis constructed from all

Khon-Sham (KS) orbitals in a given energy window with associated spinors expressed in

the most general form (see Eqs. (2.20) and (2.21)). The total energy is then calculated by

diagonalizing this Hamiltonian. This process is repeated for different values of both θ and

β. Finally, the MAE is calculated from the difference between the highest and the lowest

energies. On the other hand, in the perturbative method the spin-orbit interaction matrix

elements that enter in the Eqs. (2.36) and (2.37), are calculated. Then, the Hamiltonian

in Eq. (2.35) is solved in a spin basis set calculated from the excess of majority spins

in the molecular system. For example, the excess of majority spins of the {Fe4} single-

molecule magnet investigated in Paper IV was found to be 10. Therefore the spin of

the molecule is S = 10/2 = 5. Using this spin, the magnetic anisotropy energies are

calculated for three different values of the ratio E/D as shown Fig. 2.1.
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3
Quantum Transport in Nanostructures

In Chapter 1 we showed that there exists a spin-electric coupling in triangular molecular

magnets (TMMs). The strength of the coupling is determined by the induced dipole con-

stant d. Coulomb-blockade transport experiments in the cotunneling regime can provide

a direct way to determine the spin-electric coupling strength in TMMs. This is done in

Paper V (see Sec. 9).

In Chapter 2 we studied the magnetic anisotropy energy (MAE) of a single-molecule

magnet (SMM). In Paper IV , Sec. 8, we calculated the MAE of a {Fe4} SMM in

a single-electron transistor geometry. Inelastic tunneling spectroscopy carried out in

a three-terminal charge transport device through such a SMM has previously been re-

ported [21]. In that report the authors detect the MAE (zero-field splitting) of charged

states by means of cotunneling measurements.

Cotunneling spectroscopy has been used as a tool to identify magnetic and elec-

tronic properties in quantum systems such as few-electron quantum dots [49], carbon

nanotube quantum dots [50, 51], metallic carbon nanotubes [52], and single-molecule

junctions [53–55]. In order to perform energy spectroscopy of the quantum system, it is
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Figure 3.1: Schematic diagram of a single-electron transistor.

necessary to know exactly how the current changes when electrons go through it from

lead to lead. This process depends on the allowed states involved in all possible transition

channels between ground and excited states in the isolated molecule.

In this chapter we introduce a theoretical analysis of quantum transport in nanostruc-

tures based on model Hamiltonians. It is supported by a master-equation formalism 1 of

quantum transport both in the sequential and cotunneling regime. First, we introduce the

general background of transport. Then we define the sequential and cotunneling regimes.

In Appendix B we show explicitly the derivation of the cotunneling rates using a renor-

malization scheme [56, 57].

3.1 Quantum Transport

Unlike transport in bulk systems, in the Coulomb blockade (CB) regime the interaction ef-

fects are dominant and control transport. Concepts like charge quantization and charging

energy are the basis in this regime. CB occurs when an electron is captured in a nanos-

tructure that is weakly coupled to conducting leads, provided that the tunnel conductance

of the nanostructure is much less than the quantum of conductance

G ≪ GQ, (3.1)

1In the weak tunneling regime, a master-equation description accounts for the large-scale features of the

current-voltage characteristic of the single-electron transistor. Ab-initio approaches to quantum transport in a

such regime are much more challenging and not completely developed. Some issues involved in this research

are explained in the Paper IV (see Sec. 8).
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where the conductance quantum GQ = 2e2/h is the quantized unit of the electrical con-

ductance. CB physics is studied in systems known as single-electron transistors (SETs)),

where electrons tunneling occur one at a time. A schematic diagram of a SET is shown

in Fig. 3.1. SETs display fascinating transport features, such as Coulomb diamonds,

Coulomb oscillations and Coulomb staircase [58, 59]. In a sequential tunneling regime,

single-electron tunneling processes govern the CB. However, cooperative tunneling or co-

tunneling processes, can become the dominant transport mechanism when single-electron

processes are forbidden.

One important concept that one has to understand in CB is the charging energy, which

is a classical effect due to charge discretization. Consider a small metallic island isolated

from the rest of the world. The charge of this metallic island is defined asQ = Ne, where

N is the number of excess electrons in the island and e is the electron charge. This charge

produces an electric field around the island. The energy accumulated in this electric field

can be expressed in terms of the island capacitance E = Q2/2C = (e2/2C)N2 ≡
ECN

2, where EC is called the charging energy. Now, in order to add one more electron

to the island, one has to pay an extra energy that is given by EN+1
C −EN

C = 2(N+1)EC .

The fact that the extra energy depends on the number of electrons, N , is an effect of

the interaction. This energy cost should be provided by an external bias voltage or by a

thermal fluctuation. If the extra energy is not enough, the electron tunneling is blocked

and no current can flow. This phenomenon is known as Coulomb blockade [60].

Here we are interested in a SET where the central island is a magnetic molecule (see

Fig. 3.2). The molecule is weakly coupled, through two tunnel junctions, to source and

drain leads, which can be viewed as non-interacting systems. The electrical potential of

the molecular magnet (MM) can be tuned by a third capacitively coupled electrode, a

gate voltage. The only way for electrons to travel from one of the junctions to the other

electrode is to tunnel through the MM. This process is discrete, therefore the electric

charge that passes through the tunnel junction flows in multiples of e, the charge of a

single electron. We assume the Coulomb interaction between electrons in the MM and

those in the environment, to be determined by a single and constant capacitance C =

CL + CR + Cg , where CL/R and Cg are the capacitances of the right/left lead and the

gate electrode, respectively. Another assumption is that the single-particle spectrum is

independent of these interactions.

Our Hamiltonian consists of three terms: HL/R describing the reservoirs, Hmol for

the MM and a HT
L/R tunneling term that describes the coupling between the MM and the
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Figure 3.2: Schematic diagram of a molecule in a single-electron transistor (SET) device.

reservoirs:

H = HL/R +Hmol +HT
L/R , (3.2)

where

HL/R =
∑

kα

ε
L/R
k a†L/RkαaL/Rkα (3.3)

describes free electrons in the left/right lead. Here, the operator a†L/Rkα (aL/Rkα) creates

(destroys) one electron with the wave vector k and spin α in the left/right lead, respec-

tively, with energy εL/R
k . The tunnel junctions are represented by the tunneling Hamilto-

nian

HT
L/R =

∑

kmα

(

T
L/R
kmαa

†
L/Rkαcmα + H.c.

)

, (3.4)

where TL/R
kmα is the tunneling amplitude, c†mα (cmα) creates (destroys) an electron in a sin-

gle particle state with quantum numbers m and α inside the MM. The tunneling Hamil-

tonian HT
L/R is treated as a perturbation to Hmol and HL/R.

The general form of the single-molecule magnet Hamiltonian is given by

Hmol = H0 +HU +Ht +Hsoi +HEF (3.5)

where

H0 =
∑

j

∑

α

(ǫj − Vg) c
†
jαcjα, (3.6)

with Vg the bias voltage. HU = U
∑

j nj↑nj↓ where U is the on-site Coulomb repulsion

parameter and njα = c†jαcjα the number operator. Ht = t
∑

j

∑

α c
†
jαcj+1α+H.c. is the
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hopping Hamiltonian with t the hopping parameter. HEF = H1
d−ε +H0

d−ε is the electric

field Hamiltonian defined in Eqs. (1.41) and (1.44) and HSOI the spin-orbit Hamiltonian

defined in Eq. (1.45).

We divide the methods in two main parts. First, we obtain the transition rates and

steady-state probabilities in both sequential tunneling regimes. Second, the transition

rates for the cotunneling regime in the second-order perturbation theory are obtained and

introduced into the current and conductance equations of the entire system.

3.2 Coulomb Blockade Regime, Sequential Tunneling

In the Coulomb blockade regime the coupling between leads and molecule is weak.

Therefore some conditions have to be present. Tunneling rates Γ should be much smaller

than the typical energy scales of the isolated molecule, ~Γ ≪ kBT ≪ Ec, ζs, where ζs
is the s-th single particle level in the molecule. Also, the temperature should be smaller

than the charging energy, kBT ≪ Ec, ζs. The time between two tunneling events is the

longest time scale in the regime, ∆t≫ τφ, where τφ is the electron phase coherence. This

guarantees that once the electron tunnels in, after long enough time it looses its phase co-

herence before it tunnels out. Therefore the charge state can be treated classically, and

non-superposition of charge states is allowed. Only one-electron transitions occur in the

system. These transitions are characterized by means of electron transfers and defined

by rates Γ, where i, j are the initial and final system states involved in the electron trans-

fer. The system is described by stationary non-equilibrium populations Pi of the state i.

These occupation probabilities can be obtained from the master equation

d

dt
Pi =

∑

j(j 6=i)

(ΓijPj − ΓjiPi) , (3.7)

where the first RHS term represents events where the electron tunnels into the state i from

the state j, while the second RHS term represents events where the electron tunnels out

from the state i into the state j. These probabilities obey the normalization condition
∑

i

Pi = 1 . (3.8)

In the steady state, the probability is time-indipendent dPi/dt = 0, therefore Eq. (3.7)

can be written as

0 =
d

dt
Pi =

∑

j(j 6=i)

(ΓijPj − ΓjiPi) . (3.9)
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In order to calculate the transition rates that enter into the master equation, we treat the

tunneling Hamiltonian HT , Eq. (3.4), as a perturbation and use it in Fermi’s golden Rule.

Thus the transition from the system state i to the system state j through the left/right lead

is given by

Γ
L/R
i→j =

2π

~

∑

i,j

∣
∣
∣

〈

j
∣
∣
∣HT

L/R

∣
∣
∣ i
〉∣
∣
∣

2

Wiδ(Ej − Ei) , (3.10)

whereWi is the thermal distribution function, and Ej −Ei gives the energy conservation.

The states |i〉 and |j〉 are the unperturbed system states and are defined as a product of

the molecule and lead states |i〉 = |imol〉 ⊗ |il〉 ⊗ |ir〉. Transition rates depend on if an

electron is leaving or entering into the nanostructure through the left or the right lead.

Inserting the tunneling Hamiltonian Eq. (3.4) into the Fermi’s golden Rule, Eq. (3.10),

the transition rates can be defined as [58, 61]

Γ
L/R,−
i→j = γ

L/R,−
ji

[
1− fL/R(E)

]
, (3.11)

Γ
L/R,+
i→j = γ

L/R,+
ji

[
fL/R(E)

]
, (3.12)

where

γ
L/R,−
ji = ΓL/R

∑

m,α

|〈j |cm,α| i〉|2 (3.13)

and

γ
L/R,+
ji = ΓL/R

∑

m,α

∣
∣
〈
j
∣
∣ c†m,α

∣
∣ i
〉∣
∣
2

(3.14)

are the transition matrix elements between the j and i states; E = Ej − Ei is the en-

ergy difference between many-electron states, and fL/R(E) =
[
e(E−µL/R)/kBT + 1

]−1

is the Fermi function. Here the combination between the tunneling amplitudes TL/R
m,α

and the left/right lead density of states DL/R(iL/R) is considered constant: ΓL/R =

(2π/~)
∣
∣
∣T

L/R
m,α

∣
∣
∣

2

DL/R(iL/R) = (2π/~)
∣
∣TL/R

∣
∣
2
DL/R(iL/R). The full transition ma-

trix in the master equation, Eq. (3.7), is the sum of all contributions of electrons tunneling

out or into the molecule, Eqs. (3.11) and (3.12):

Γij = ΓL,+
ij + ΓR,+

ij + ΓL,−
ij + ΓR,−

ij . (3.15)

The stationary rate equation, Eq. (3.9), is a system of linear equations and has to be

solved numerically for a system of n many-electron states that are taken into account. We
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can rewrite it as a matrix equation

0 =
n∑

j

ΛijPj , (3.16)

where

Λij = Γij − δij

n∑

k=1

Γkj . (3.17)

There must exist a physical solution to Eq. (3.18). Therefore we replace the first line

of this equation by the normalization condition, Eq. (3.8), fixing Λ1j = 1. Thus we can

write

δ1i =
n∑

j

ΛijPj (3.18)

instead of Eq. (3.18). Because of the low temperatures in the Coulomb regime, there are

transition rates that are exponentially small. This leads to numerical problems where it is

difficult to distinguish them from zero. Then some of the states do not contribute, and one

has to devise an appropriate truncation method.

Finally, a current flowing through the left lead coming into the molecule must be equal

to the current flowing through the right lead right lead coming out from the molecule.

Knowing the occupation probabilities, Eq. (3.9), the current through the system is defined

as [62]

I ≡ IL/R = (−/+)e
∑

i,j(j 6=i)

Pj

(

Γ
L/R,−
ij − Γ

L/R,+
ij

)

, (3.19)

3.3 Cotunneling Regime

So far we have studied the regime where tunnel events are incoherent. The time between

two tunnel events is long enough to guarantee that the electron tunneling in looses its co-

herence before it tunnels out. In this regime the leading contribution to transport through

the molecule is the sequential tunneling. When this is forbidden, the current vanishes

in the first-order perturbation theory and Coulomb blockade occurs. However, there are

events in which two electron processes come into play. An electron is transfered from

the left lead to right lead in two successive coherent tunneling events through the nanos-

tructure via intermediate virtual states. The time that the electron spends on the molecule

is much shorter than the time it needs to tunnel sequentially. During this short time, the

47



48 CHAPTER 3. QUANTUM TRANSPORT IN NANOSTRUCTURES

energy cost represented by the charging energy EC , which blocks sequential tunneling,

does not need to be paid. Such processes are called co-operative or cotunneling events.

In this regime, higher order processes play a significant role. Cotunneling can be either

elastic or inelastic. In the former the energies of the initial and final state are the same,

while in the latter the energies are different. The energy difference is provided by a finite

bias voltage. Signatures for these processes have also been observed in single-molecule

junctions [20, 42, 43]. Beyond the Coulomb blockade regime, the tunneling Hamiltonian

must be replaced by the T -matrix, which is given by

T = HT +HT 1

Ej −H0 + iη
T, (3.20)

where Ej is the energy of the initial state |j〉 |n〉. Here |j〉 refers to the equilibrium state

on the left and the right lead and |n〉 is the initial molecular state, η = 0+ is a positive

infinitesimal quantity and H0 = Hmol +HL/R. To the fourth-order, the transition rates

from state |j〉 |n〉 to |j′〉 |n′〉 with an electron tunneling from lead α to the lead α′ is given

by

Γnj;n′j′

αα′ =
2π

~

∣
∣
∣
∣
〈j′| 〈n′|HT 1

Ejn −H0 + iη
HT |n〉 |j〉

∣
∣
∣
∣

2

×δ(Ej′n′ − Ejn) , (3.21)

where Ej′n′ and Ejn are the energies of the final and initial states, respectively. Here

|j′〉 |n′〉 = a†α′k′σ′aαkσ |j〉 |n′〉. Inserting the tunneling Hamiltonian, Eq. (3.4), in the

last equation and after some algebra (see Appendix ??) one can get the expression for the

transition rates for processes from lead α till lead α′ and from the molecular state |n〉 to

the state |n′〉:

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

, (3.22)

where σ is the electron spin, f(ε) is the Fermi distribution function, µα is the chemical

potential in the lead α, µL − µR = −eV/2, |n′′〉 is a virtual state, Aσ′

ij = 〈i| cσ′ |j〉
and Aσ∗

ij = 〈j| c†σ |i〉. Here γσα is the tunneling amplitude. Here n and n′ are states with

the same number of particles. We have not taken into account processes charging the

electron number by ±2 [63, 64]. These transition rates cannot be evaluated directly be-

cause of the second-order poles from the energy denominators. A regularization scheme
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has been carried out to solve these divergences and obtain the cotunneling rates [56, 57].

Here it is important to mention that these divergences occurring in the T -matrix approach

are intrinsic to the method rather than to the physical problem. The fourth-order Bloch-

Redfield quantum master equation (BR) and the real-time diagrammatic technique (RT)

approaches to quantum transport have been developed to avoid any divergences and there-

fore no ad hoc regularization to cotunneling is required [65, 66]. However, the T -matrix

approach agrees with these two approaches and gives good reasonable results deep inside

the Coulomb blockade region. We expect to catch all the relevant physics for our system

with the T -matrix approach. After the regularization scheme is implemented, we get the

tunneling rates defined as (see Appendix B.2)

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

[
∑

k

(
A2J(E1, E2, εak) +B2J(E1, E2, εbk)

)

+2
∑

q

∑

k 6=q

AkAqI(E1, E2, εak, εaq)
∑

q

∑

k 6=q

BkBqI(E1, E2, εbk, εbq) +

2
∑

q

∑

k

AkBqI(E1, E2, εak, εbq)

]

(3.23)

where Ak = Aσ∗
kn′Aσ′

kn, Bk = Aσ′

n′kA
σ∗
nk, εak = εn′ − εk, εbk = εk − εn, E1 = µα and

E2 = µα′ + εn′ − εn. Here I and J are integrals that come out after the regularization

scheme and are defined in Eqs. (B.5) and (B.6), respectively, in Appendix B.

The complete master equation including both sequential and cotunneling contribu-

tions reads

d

dt
Pi =

∑

j(j 6=i)

(ΓijPj − ΓjiPi)

+
∑

αα′j

(

Γji
αα′Pj − Γij

αα′Pi

)

, (3.24)

and the current through the system is now given by

I ≡ IL/R = (−/+)e
∑

i,j(j 6=i)

Pj

(

Γ
L/R,−
ij − Γ

L/R,+
ij

)

+(−/+)e
∑

i,j(j 6=i)

Pj

(

Γji
LR/RL − Γij

RL/LR

)

. (3.25)
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4
Summary and outlook for future work

The main purpose of this thesis has been to investigate the control of magnetic properties

of molecular magnets (MM) by means of electric fields. We have focused on two electric

control mechanisms. The first mechanism is the so-called spin-electric coupling in spin

frustrated antiferromagnetic MMs. The second mechanism deals with the manipulation of

the magnetic anisotropy of a single-molecule magnet by adding or subtracting an electron

via an external electric field.

Spin-electric coupling can be found in spin frustrated MMs. This coupling is mediated

by the spin-induced dipole moment d. By symmetry properties it is possible to determine

whether or not a molecule has an intrinsic dipole moment. Nevertheless, the actual d

value cannot be determined by symmetry. It has to be calculated by ab-initio methods or

extracted from experiments. In Paper I we focused on a {Cu3} MM. We studied its elec-

tronic and magnetic properties using ab-initio methods. Our main finding was the strength

of the spin-electric coupling. We calculated d = 3.38 × 10−33C·m (0.001 Debye). The

molecule response to an applied electric field shows that this spin-electric coupling mech-

anism is of potential interest for the use of these MMs in quantum information processing
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as fast switching devices.

The ground-state manifold of the triangular {Cu3} MM can be split by the spin-

orbit interaction (SOI) via the Dzyaloshinskii-Moriya interaction (DMI). In Paper II we

calculated this splitting. We employed a Hubbard-model approach to express the DMI

constant D in terms of the microscopic Hubbard-model parameters, such as the effective

hopping integral between magnetic sites t, the on-site repulsion energyU , and the strength

of the SOI λSOI. We then carried out an approximated method to extract these parameters

from first-principles methods. We found a small splitting for the {Cu3} MM, which is

consistent with experimental results.

In Paper III we investigated the spin-electric coupling in several triangular MMs and

discussed the underlying mechanism leading to an enhanced coupling, which can be used

as a convenient guide to synthesize MMs that can respond more efficiently to an ex-

ternal electric field. We investigated the dependence of spin-electric coupling on types

of magnetic atoms, distances between magnetic centers and the role of the exchange path

between magnetic atoms. We also studied a fifteen magnetic center MM called {V15}. We

described a method for constructing the chiral degenerate ground state of this molecule.

A generalization of the spin-electric coupling in such a molecule is also reported in this

paper. We found that, among the MMs we investigated, the {V3} MM has the strongest

spin-electric parameter d = 3.02× 10−31C·m=0.09 Debye.

In Paper IV we investigated a single-molecule magnet (SMM) called {Fe4}. We

studied theoretically the properties of this SMM attached to metallic leads in a single-

electron transistor geometry. We found that the spin ordering and the magnetic anisotropy

of such molecule remain stable in the presence of metallic leads. We also calculated the

variation in the magnetic anisotropy for charged states for both the isolated molecule and

the molecule attached to the leads. We found that an external electric potential, modeling

a gate voltage, can be used to manipulate the charge on the molecule-leads system and

therefore the magnetic properties of the spintronics device.

Coulomb-blockade transport experiments in the cotunneling regime can provide a di-

rect way to determine the spin-electric coupling strength in triangular MMs. In Paper

V we calculated the spin-electric splitting of the ground state of a triangular MM. We

found that this splitting can be detected in the inelastic cotunneling conductance mea-

surements. The theoretical analysis, based on a one-band Hubbard model, was supported

by master-equation calculations of quantum transport both in the sequential and the co-

tunneling regime. We employed the Hubbard-model parameters calculated in Paper II.

52



CHAPTER 4. SUMMARY AND OUTLOOK FOR FUTURE WORK 53

We also found a consistency between the d parameter calculated in this paper and the d

calculated in Paper I by first-principles methods.

Many questions have been raised through our research. Several lines of investigation

started with the thesis can be further pursued. Here we mention some possible directions

for future work.

Firstly, the work on spin-electric coupling in spin frustrated MMs requires further in-

vestigation. The appearance of a dipole moment in triangular molecular magnets can be

understood from a Hubbard model. It can be viewed as a microscopic charge redistribu-

tion that appears when one of the three spins, initially all up or down, in the triangular

MM is flipped to form a 1/2-spin frustrated system. This redistribution is given in terms of

the ratio of the Hubbard parameters t/U . Although the one-band Hubbard model that we

have implemented in the calculation of this ratio and the Dzyaloshinskii-Moriya param-

eter, D, have been sufficient to capture the underlying physical picture, a multi-orbital

Hubbard model [67] would provide a more accurate description. A more detailed ab-

initio strategy to extract the parameters involved in the calculation of the spin-electric

coupling can be investigated. With this more sophisticated approach, there is the hope of

addressing and answering such questions as: “How do the non-magnetic atoms mediat-

ing the superexchange between magnetic atoms affect the d value? How does the spatial

separation between magnetic ions influence the spin-electric coupling?”

The spin electric coupling investigated for triangular MMs also exists, albeit in a

more subtle form, in other odd spin rings without inversion symmetry, such as pentagon

antiferromagnetic rings. In this case, however, the presence of the spin-orbit interaction

is crucial for the effect. Although it is expected that the spin-electric coupling should be

smaller in this case, a systematic study would be worthwhile.

Secondly, in Paper IV we studied the magnetic properties of a single-molecule mag-

net in a single-electron transistor geometry. In Paper V we investigated quantum trans-

port in a triangular molecular magnet. One line of research is to build up a formalism

that combines generalized rate equations for quantum transport with a microscopic first-

principles description of interesting molecular magnets [68]. Many research articles,

reviews, and books dealing with molecular nanomagnetism, density functional theory

(DFT), and Coulomb blockade transport have appeared, but research covering the differ-

ent aspects of their interplay is lacking.

Establishing a connection between DFT and Coulomb blockade is certainly a very

challenging task. This research would develop theories and methods to describe the cou-
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pling between charges and quantum spins in electronic devices containing a few magnetic

atoms or molecules weakly coupled to the leads where charging and electronic correla-

tions play a crucial role. Studies would focus on the effect of the spin and orbit degrees

of freedom on the tunneling spectroscopy in MMs. These investigations would contribute

to the development of DFT procedures to calculate the matrix elements that enter in the

tunneling and cotunneling rates in quantum transport. This research would thereby con-

tribute to the development of a new class of spintronics devices such as molecular spin-

transistors.
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A
Group Theory

A.1 Symmetry

Definition

Symmetry operation: transformation that changes the geometrical configuration of an

object but leaves it indistinguishable from the initial configuration. The symmetry of

a molecule can be determined by a set of such transformations that bring the molecule

into self-coincidence. Every possible symmetry operation can be reduced to one of the

following three operations or a combination of them:

• rotation by a defined angle around some axis;

• mirror reflection in a plane;

• parallel transport (translation).
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Symmetry Axis

n-th order symmetry axis Cn: When an object is brought into self-coincidence after a

rotation operation Ĉn of 2π/n angle around some axis, this axis is called an nth order

symmetry axis and is denoted by Cn. A m successive rotation is also a symmetry opera-

tion and is denoted as Ĉm
n . We can see that Ĉn

n = Ê where Ê is the identity operation that

leaves the object unchanged. Thus a Cn axis leads to the existence of a definite number

of axis Cn/p, where p is a divisor of n.

Reflection Operation

A σ mirror reflection in the xy plane is the operation σ̂ that brings the object P (x0, y0, z0)

into P ′(x0, y0,−z0). If a molecule under this operation is brought into self-coincidence,

the molecule is said to posses a symmetry plane. A successive reflection operation brings

a molecule back to its initial configuration, σ̂2 = Ê, σ̂3 = σ̂, etc.

Improper Rotation

Improper Rotation: combination of two symmetry operations, namely, a rotation Ĉ(ϕ)

about the axis C through an angle ϕ and a reflection σ̂ in a plane perpendicular to the

axis. Assume a point P (x0, y0, z0). Apply an improper operation on P such that the final

point is P ′′(x0, y
′
0, z

′
0). First make a rotation Ĉ(ϕ)P (x0, y0, z0) = P ′(x0, y

′
0, z0), now a

reflection σ̂P ′(x0, y
′
0, z0) = P ′′(x0, y

′
0, z

′
0). The improper operation through an angle ϕ

is denoted by Ŝ(ϕ). An improper rotation through an angle 2π/n is denoted by Ŝn. A suc-

cessive improper rotation can be written as Ŝm
n = Ĉnσ̂ . . . Ĉnσ̂

︸ ︷︷ ︸

m

= Ĉn . . . Ĉn
︸ ︷︷ ︸

m

· σ̂ . . . σ̂
︸ ︷︷ ︸

m

=

Ĉm
n σ̂

m.

A very important and particular case of an improper rotation is the inversion symmetry

operation Ŝ2 = Î , which brings a point P (x0, y0, z0) into the point P (−x0,−y0,−z0).

Definition of a Group

A group is defined as a set of elements satisfying the following four requirements:

• Closure Given any two elements of the group X̂ and Ŷ , there is a third element

Ẑ = X̂Ŷ that belongs to the set. This operation is called multiplication. Here it

is essential to clarify that the term multiplication is a general term and does not
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Axes Directions

3C4 C4(x), C4(y), C4(z)

4C3 C3(xyz), C3(xyz), C3(xyz), C3(xyz)

6C2 C2(xy), C2(yz), C2(zx), C2(xy), C2(yz), C2(zx)

Table A.1: Symmetry axes of the octahedral complex (see Fig. A.1). Here x, y, z are the

positive and x, y, z are the negative directions of the coordinate axes.

necessarily mean an algebraic “multiplication". It can be an addition, division,

translation, rotation, etc.

• Identity element The set contains an Ê element called identity element such that

ÊX̂ = X̂Ê for any Ê element in the group.

• Associativity For all elements X̂ , Ŷ and Ẑ in the set, there is a rule of combination

such that X̂(Ŷ Ẑ) = (X̂Ŷ )Ẑ.

• Inverse element For each element X̂ in the set, there exists an inverse element

X̂−1 = Ŷ such that X̂Ŷ = Ŷ X̂ = Ê.

Equivalent Symmetry Elements

Suppose we have three symmetry elements A, B and C. Let A conjugates to B and

C: X̂A = B, Ŷ A = C, where X̂ and Ŷ are group operations. Now let the operation

Ẑ = Ŷ X̂−1 from the same group transforms B into C: ẐB = Ŷ ˆX−1B = Ŷ A = C.

Thus all three elements A, B and C conjugate with each other. Mutually conjugated

symmetry elements are called equivalent. Some examples are shown in Table A.1 for an

octahedral complex (see Fig. A.1).

Classes

Suppose Â, B̂ and Ĉ are three operations of a symmetry group. If there exists a Ĉ such

that Â = ĈB̂Ĉ−1 then the operation Â is said to be conjugate to B̂. The complete col-

lection of mutually conjugate group operations are called classes. For instance consider

the following group C4µ of operations: Ê, Ĉ4, Ĉ2
4 = Ĉ2, Ĉ3

4 , 2σ̂v, 2σ̂d. Let us start with
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Figure A.1: Octahedral complex. Sulfur hexafluoride molecule.

the element Ĉ4:

ÊĈ4Ê
−1 = Ĉ4,

Ĉ4Ĉ4Ĉ
−1
4 = 4̂Ĉ4Ĉ

3
4 = Ĉ4,

Ĉ2Ĉ4Ĉ
−1
2 = Ĉ4,

Ĉ3
4 Ĉ4(Ĉ

3
4 )

−1 = Ĉ4,

σ̂vĈ4σ̂
−1
v = σ̂vĈ4σ̂v = σ̂vσ̂

′
d = Ĉ3

4 ,

σ̂′
vĈ4(σ̂

′
v)

−1 = Ĉ3
4 ,

σ̂dĈ4σ̂
−1
v = Ĉ3

4 ,

σ̂′
dĈ4(σ̂

′
d)

−1 = Ĉ3
4 .

These results can be found in a table form as shown in Table A.2.

A.2 Point Groups

Molecules can be classified by their symmetry operations. The collection of symmetry

elements present in a molecule forms a group, commonly called point group. All the

symmetry elements such as points, lines and planes, will intersect at a single point. Some

of these point groups are:
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Ê Ĉ4 Ĉ2 Ĉ3
4 σ̂v σ̂′

v σ̂d σ̂′
d

Ê Ê Ĉ4 Ĉ2 Ĉ3
4 σ̂v σ̂′

v σ̂d σ̂′
d

Ĉ4 Ĉ4 Ĉ2 Ĉ3
4 Ê σ̂′

d σ̂d σ̂v σ̂′
v

Ĉ2 Ĉ2 Ĉ3
4 Ê Ĉ4 σ̂′

v σ̂v σ̂′
d σ̂d

Ĉ3
4 Ĉ3

4 Ê Ĉ4 Ĉ2 σ̂d σ̂′
d σ̂′

v σ̂v

σ̂v σ̂v σ̂d σ̂′
v σ̂′

d Ê Ĉ2 Ĉ4 Ĉ3
4

σ̂′
v σ̂′

v σ̂′
d σ̂d σ̂v Ĉ3

4 Ê Ĉ2 Ĉ4

σ̂d σ̂d σ̂v σ̂′
d σ̂′

v Ĉ4 Ĉ3
4 Ê Ĉ2

σ̂′
d σ̂′

d σ̂′
v σ̂v σ̂d Ĉ2 Ĉ4 Ĉ3

4 Ê

Table A.2: Multiplication table for the C4v group.

• The rotational group Cn: it consists of rotations Ĉm
n about the nth order Cn axis.

– C1: It contains only the identity operation Ê.

– C2: Two operations Ĉ2 and Ê.

– C3: Three operations Ĉ3, Ĉ2
3 and Ê.

– C4: Four operations Ĉ4, Ĉ2
4 , Ĉ3

4 and Ĉ4
4 = Ê.

– C6: Six operations Ĉ6, Ĉ2
6 , Ĉ3

6 , Ĉ4
6 , Ĉ5

6 and Ĉ6
4 = Ê.

• Rotoflection group S2n: it consists of rotoflection transformations S2n. Each op-

eration over these groups constitutes a class.

– S2: Two operations: Î and Ê.

– S4: Four operations: Ĉ2, Ŝ4, Ŝ3
4 and Ê.

– S4: Six operations: Ĉ3, Ĉ2
3 , Î , Ĉ2

3 σ̂h ≡ Ŝ−1
6 , Ŝ6 and Ê.

• Group Cnh: It consists of rotations Ĉm
n , reflections σ̂h and their products.

– C1h: Two operations: Ĉ1 = Ê and σ̂h, and is denoted by C3.

– C2h: It consists of the operations: Ê, Ĉ2, σ̂h and σ̂hĈ2 = Î .

– C3h: Six operations: Ê, Ĉ3, Ĉ3
3 , σ̂h, Ŝ3 and Ŝ5

3 .

– C4h: Eight operations: Ê, Ĉ4, Ĉ2 = Ĉ2
4 , Ĉ3

4 , Î , Ŝ3
4 , σ̂h and Ŝ4.

• Group Cnv: It consists of a Cn axis and a vertical plane σv.
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– C2v: Four operations: Ê, Ĉ2, σ̂v and σ̂′
v.

– C3v: Six operations: Ê, Ĉ3, Ĉ2
3 , σ̂v, σ̂′

v and σ̂′′
v .

• Dihedral Groups Dn: It consists of aCn axis and n horizontalC2 axes intersecting

at angles π/n.

– D2: Four operations: Ê, Ĉ2, Ĉ ′
2 and Ĉ ′′

2 .

– D3: Eight operations, five classes: Ê, 2Ĉ4, Ĉ2
4 , 2Ĉ ′

2, and 2Ĉ ′′
2 .

• Dihedral Groups Dnh: It consists of a Dn group plus an additional horizontal

plane.

– D2h: Eight classes: Ê, Ĉ2(x), Ĉ2(y), Ĉ2(z), σ̂h, Î , σ̂v(xz) and σ̂v(yz).

– D3h: Six classes: Ê, 2Ĉ3, 2Ŝ3, 3Ĉ ′
2, σ̂h and 3σ̂v.

– D4h: Eight classes: Ê, 2Ĉ4, Ĉ2
4 , 2Ĉ ′

2, 2Ĉ ′′
2 , σ̂h, 2σ̂v, 2σ̂d, Ŝ4 and Î .

• Dihedral Groups Dnd: It consists of a Dn group plus an additional vertical diago-

nal plane to the axis of Dn.

– D2d: Five classes: Ê, Ĉ2, 2Ŝ4, 2Ĉ ′
2 and 2σ̂d.

– D3d: Six classes: Ê, 2Ŝ6, 2Ĉ3, Î , 3Ĉ ′
2 and 3σ̂d.

• Cubic Groups T, Td, Th, O, Oh: Cubic groups include some of the symmetry

operations of a cube. The groups T, Td, Th are called tetrahedral, while O, Oh are

octahedral.

– T: Four classes: Ê, 4Ĉ3, 4Ĉ2
3 and 3Ĉ2.

– Th is the group product T× Ci.

– Td Five classes: Ê, 8Ĉ3, 6Ŝ4, 3Ĉ2 and 6σ̂d.

– O: Six classes: Ê, 8Ĉ3, 6Ĉ2, 6Ĉ4 and 3Ĉ2
4 .

– Oh: Ten classes: Ê, 8Ĉ3, 6Ĉ2, 6Ĉ4, 3Ĉ ′
2, Î , 6Ŝ4, 8Ŝ6, 3σ̂h and 6σ̂d.

A.3 Group Representation

Each symmetry operation has its own matrix representation. Here we will give some

examples of this matrices.
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Matrix Form of Geometrical Representation

Let us consider r the position vector of a point P on the xy-plane. The point P can be

written, in the Cartesian coordinates, as

P = xi+ yj ,

where i and j are unit vectors. The matrix representation of a counterclockwise rotation

through an angle θ about the origin of the Cartesian coordinate system can be written as:

D(θ) =

[

cos θ − sin θ

sin θ cos θ

]

.

Let us make a double rotation. First, we rotate a vector r1 = x1i + y1j through an

angle θ. The new vector r2 = x2i+ y2j is given by:

[

x2

y2

]

= D(θ)

[

x1

y1

]

.

Second, we rotate r2 through an angle ϕ. Thus the new r3 vector is given by:

[

x3

y3

]

= D(ϕ)

[

x2

y2

]

= D(ϕ)D(θ)

[

x1

y1

]

= D(ϕ+ θ)

[

x1

y1

]

.

The matrices D(θ), D(ϕ) and D(θ + ϕ) correspond to the rotation operation Ĉ(θ),

Ĉ(ϕ) and Ĉ(θ+ϕ), respectively. Multiplication of rotation matrices follow the same rule

than multiplication of rotation operators. As a generalized rule, we can say: the product

of geometrical operators

Ĉn . . . Ĉ2Ĉ1 = Q̂

can be obtained by multiplication of the matrices representing each operator

D(R̂n) . . .D(R̂2)D(R̂1) = D(Q̂).

Each geometrical operation is represented by a matrix, while a set of operations is repre-

sented by a set of matrices with the same multiplication table.
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Figure A.2: SO2 molecule with p orbitals on each atom.

Representation and Characters

Let us take the C2vmolecule SO2 with the orbital px on each atom (see Fig. A.2). The

matrix representation of the group C2v can be written as:

D(Ê) =






1 0 0

0 1 0

0 0 1




 ; D(Ĉ2) =






−1 0 0

0 0 −1

0 −1 0




 ;

D(σ̂v) =






1 0 0

0 0 1

0 1 0




 ; D(σ̂′

v) =






−1 0 0

0 −1 0

0 0 −1




 .

(A.1)

The corresponding multiplication table is given by:

C2h Ê Ĉ2 σ̂h Î

Ê Ê Ĉ2 σ̂h Î

Ĉ2 Ĉ2 Ê Î σ̂h

σ̂h σ̂h Î Ê Ĉ2

Î Î σ̂h Ĉ2 Ê

The set of matrices representing all operations of a group is called matrix representa-

tion. The fact that a group can be written in a matrix representation tells us that there is

a link between symbolic manipulation of operations and algebraic manipulation of num-

bers. The character χ of an operation or matrix A is the sum of its diagonal terms:

χ(A) =
∑

i

Aii.
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Irreducible Representation

If we have looked at the matrix representation of the C2h group, Eq. (A.1), we would

noted that they are block-diagonal form:

D =






(•) 0 0

0 (•) (•)
0 (•) (•)




 .

This matrix representation shows us that the symmetry operations do not mix one of

the basis set with the others. Assume that the basis set for the C2h group is ψa, ψb, ψc.

Thus ψa itself is a basis set for the one-dimensional representation

D(Ê) = 1, D(Ĉ2) = −1, D(σ̂v) = 1, D(σ̂′
v) = −1, (A.2)

which we shall call Γ (1). The other two basis functions are the basis of a two-dimensional

representation Γ
(2):

D(Ê) =

[

1 0

0 1

]

; D(Ĉ2) =

[

0 −1

−1 0

]

;

D(σ̂v) =

[

0 1

1 0

]

; D(σ̂′
v) =

[

−1 0

0 −1

]

.

(A.3)

Thus the three-dimensional representation, Γ (3), has been reduced to the direct sum

of a one-dimensional representation Γ
(1) spanned by ψa, and a two-dimensional repre-

sentation Γ
(2), spanned by (ψb, ψc):

Γ
(3) = Γ

(1) + Γ
(2).

The one-dimensional representation cannot be reduced any further, and is called an

irreducible representation. Now, for the two-dimensional representation, we consider

the linear combination ψ1 = ψb + ψc and ψ2 = ψb − ψc. After some algebra we can see

that, in the new basis set (ψ1, ψ2), Eqs. (A.3) can be written as:

D(Ê) =

[

1 0

0 1

]

; D(Ĉ2) =

[

−1 0

0 1

]

;

D(σ̂v) =

[

1 0

0 −1

]

; D(σ̂′
v) =

[

−1 0

0 −1

]

.

(A.4)
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C2v Ê Ĉ2 σ̂v σ̂′
v f (Γ) f (Γ)

A1 1 1 1 1 z z2, x2, y2

A2 1 1 -1 -1 xy

B1 1 -1 1 -1 x zx

B2 1 -1 -1 1 y yz

I II III IV

Table A.3: Character table of the C2v group.

In this new representation all matrices are block-diagonal. Therefore any group oper-

ation does not mix the new basis set. Again we have reduced the Γ
(2) to the sum of two

one-dimensional representations. Thus ψ1 = ψb + ψc spans

D(Ê) = 1, D(Ĉ2) = −1, D(σ̂v) = 1, D(σ̂′
v) = −1,

which is the same one-dimensional representation, Eq. (A.2), that we found for ψa and

ψ2

D(Ê) = 1, D(Ĉ2) = 1, D(σ̂v) = −1, D(σ̂′
v) = −1,

which is a different one dimensional representation that we denote as Γ
(1)′ . Thus we

have found two irreducible representations of the C2v group, Table A.3. The two rep-

resentations are labeled B1 and A2, respectively. Labels A and B are used to denote

one-dimensional representation. A is used if the character under the principal rotation is

+1 while B if it is -1. E and T labels are used for two-dimensional and three-dimensional

representation, respectively. Subscripts are used to distinguish if there is more than one

irreducible representation of the same type.

Properties of Irreducible Representations

Here we formulate some properties of the irreducible representation of point groups.

There is a detailed mathematical proof behind these properties. However we will write

them without any proof [33]:

1. The number of inequivalent irreducible representations of a point group is equal to

the number of classes in the group.

2. The sum of the squares of the dimensions of inequivalent irreducible representa-
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tions is equal to the order of the group:

g21 + g21 + · · ·+ g2r = g,

where g1, g2, . . . , gr are the dimensions of the irreducible representations, r is the

number of classes and g is the order of the group.

3. The group characters of matrices belonging to operations in the same class are the

same in any representation, reducible or irreducible.

4. Orthogonality of different representations.

∑

R̂

χ(Γ1)(R̂)χ(Γ2)(R̂) = 0 for Γ1 6= Γ2.

5. The sum of squared characters in each of the irreducible representations is equal to

the order of the group.
∑

R̂

[

χ(Γ)(R̂)
]2

= g

where Γ numbers the irreducible representation and the summation is over all the

group operations

Character Table

For each point group there is a complete set of symmetry operations listed as a matrix

known as Character table1. For instance, let us study the character table of the C3v group

given in Table A.3. In the upper-left corner the symmetry group is given (point group

label). Next to it, on top, there are the symmetry operations of the group divided into

classes (Ê, Ĉ2, σ̂v, σ̂
′
v). The number of columns is equal to the number of classes. The

left-hand column I (one-dimensional representation: A1,A2,B1,B2), contains the sym-

bols of the irreducible representation Γ, symmetry representation labels. The next four

columns, labeled as II, give the character of each representation for each symmetry oper-

ation. More formally, these columns tell us the basic type of behavior that orbitals may

show when subjected to the symmetry operations of the group, +1 indicates that the or-

bital is unchanged and -1 indicates that it changes sign. Columns III and IV give us the

simplest basis functions f (γ) (x,y,z,xy,yz,zx,x2,y2,z2) of the irreducible representation.

The function z is said to to be transformed according to the representation A1, while x

1A character is a number that indicates the effect of an operation in a given representation
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D3h Ê 2Ĉ3 3Ĉ2 σ̂h 2Ŝ3 3σ̂v

A
′

1 1 1 1 1 1 1 x2 + y2,z2

A
′

2 1 1 -1 1 1 -1 Rz

E
′

2 -1 0 2 -1 0 (x, y) (x2 − y2, xy)

A
′′

1 1 1 1 -1 -1 -1

A
′′

2 1 1 -1 -1 -1 1 z

E
′′

2 -1 0 -2 1 0 (Rx,Ry) xz, yz

Table A.4: Character table of the D3h point group.

and y are transformed over the representation B1 and B2, respectively. The character

of the identity operation Ê tells us the degeneracy of the orbital. Because there are not

characters greater than 1 in the column headed Ê in C2v, Table A.3, then there can be no

doubly or triply degenerate orbitals in a C2v molecule.

D3h is an important point group in our work. Let us take a glance at the Table A.4. We

can see that a D3h molecule has doubly degeneracy. For the rows labeled E
′

and E
′′

, the

characters are the sum of characters of individual orbitals in the basis. Thus a 0 means that

a member of the doubly degenerate pair remains unchanged under a symmetry operation

while the other member changes sign, χ = 1− 1 = 0.

A.4 Vanishing Integrals

The character tables (sec. A.3) provide a quick and convenient way of judging whether

an overlap integral is necessarily zero. Let us consider the overlap integral

I =

∫

f1f2 dτ (A.5)

where f1 might be an atomic orbital ϕ on one atom and f2 an atomic orbital ψ on another

atom. If we knew that the integral I is zero, we would say that there is not molecular

orbital resulting from the overlap (ϕ, ψ).

The integral is an scalar value. Therefore it is independent of the coordinate system, it

does not changes under any symmetry transformation of the molecule. Thus any operation

brings the trivial identity transformation I → I . Now, because the volume element dτ

is different than zero and invariant under any transformation, it follows that I is nonzero

only if the integrand f1f2 is invariant under any symmetry operation of the molecular
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Figure A.3: NH3 molecule.

point group. If the integrand changes its sign under a symmetry operation, the integral I

would be necessarily zero, because its positive part will cancel its negative part. There-

fore the only nonzero contribution comes from integrands for which the characters of the

symmetry operations are all equal to +1. Thus, in order for I to be nonzero, the integrand

f1f2 must span the symmetry species A1.

Group theory provides a procedure to determine the symmetry species of the product

f1f2, and hence to know if it really spans the symmetry species A1. The character table

of the product f1f2 can be obtained by multiplication of the characters from the character

tables of the functions f1 and f2 corresponding to a certain symmetry operator. Here we

show this procedure [69]:

1. Decide on the symmetry species of the individual functions f1 and f2 by reference

of the character table, and write their characters in two rows in the same order as in

the table below.

2. Multiply the numbers in each column, writing the results in the same order.

3. Inspect the row produced, and see if it can be expressed as a sum of characters from

each column of the group. The integral must be zero if this sum does not contain

A1.

For instance, we consider the molecule NH3 shown in Fig. A.3. We let f1 = sN be
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an orbital of the N atom and f2 be a linear combination of three hydrogen atom orbitals,

f2 = sH = sa + sb + sc. Each of the orbitals spans A1 species:

Ê 2Ĉ3 3σ̂v

f1 1 1 1

f2 1 1 1

f1f2 1 1 1

From the table we can see that the product f1f2 spans A1. Therefore the integral I ,

in this case, is not necessarily equal to zero. Thus the functions sN and sH may have

nonzero overlap and bonding and antibonding molecular orbitals can be formed from lin-

ear combinations of sN and sH . The procedure of finding the irreducible representation

of the product of two representations f1 and f2 can be written as a direct product of irre-

ducible representations Γ1×Γ2. For our example above, it can be written as A1×A1 =A1.

Now consider the functions f1 = sN and f2 = Sbc = sb − sc. In this case sN spans A1

and sbc spans E. Thus the product table can be written as:

Ê 2Ĉ3 3σ̂v

f1 1 1 1

f2 2 -1 0

f1f2 2 -1 0

We can see that the product f1f2 spans E instead of A1. Therefore the integral is

equal to zero and no bonding is allow between the orbitals sN and sab. We can write this

product as: A1× E = E. A shortcut for products such as f1f2 is: if f1 and f2 are basis of

irreducible representations and have the same symmetry species, then their overlap may

be nonzero and may form bonding and antibonding combinations. If they have different

symmetry species, their overlap must vanish.

The relation between the symmetry species of the atomic orbitals and their product,

in general, is not as simple as in the previous example. In some cases, the product of

functions f1 and f2 spans a sum of irreducible representations. Let us take as an example

the point group C2v. When we multiply f1f2 we could find the characters 2, 0, 0, -2,

which is the sum of characters for A2 and B1. We write this product as A2×B1=A2+B1,

which is called decomposition of a direct product. Now, because the sum does not include

the species A1, we conclude that the overlap integral is zero. Group theory provides a

simple recipe to find the symmetry species of the irreducible representations [69]:

1. Write down a table with columns headed by the symmetry operations of the group.
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2. In the first row write down the characters of the symmetry species we want to

analyze.

3. In the second row, write down the characters of the irreducible representation Γ we

are interested in.

4. Multiply the two rows together, add the products together, and divide by the order

of the group.

Let us take the following example: imagine that we found the characters f1f2 → 8,

-2, -6, 4 in the point group C2v. To find if A1 does occur in the product with characters 8,

-2, -6, 4 in C2v and know if there may be overlap or not, we draw up the following table:

Ê Ĉ2v σ̂v σ̂′
v sum /order

f1f2 8 -2 -6 4

A1 1 1 1 1

8 -2 -6 4 4 1A1

A2 1 1 -1 -1

8 -2 6 -4 8 2A2

B2 1 -1 -1 1

8 2 6 4 20 5B2

Therefore, the product f1f2 spans A1+2A2+5B2 and because we found a species A1, the

overlap integral may be nonzero.

Another kind of interesting integrals in quantum mechanics are of the form:

I =

∫

f1f2f3 dτ

where, for instance, f1 and f3 could be two basis functions and f2 an operator. The

rule for I to be nonzero is that the product f1f2f3 must span A1 or at least contain one

component that spans A1. Let us take as example the transition dipole moment, r, for the

H2O. We want to calculate whether an electron in an orbital that spans A1 can make a

transition to an orbital that spans B1. H2O is a C2v molecule. Checking this point group,

one can see that the components of the dipole moment, namely x, y and z, span B1,B2 and

A1, respectively. Thus, the multiplication table for each component of the dipole moment

is given by:
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x-component y-component z-component

Ê Ĉ2 σ̂v σ̂′
v Ê Ĉ2 σ̂v σ̂′

v Ê Ĉ2 σ̂v σ̂′
v

f1(B1) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

f2(x, y, z) 1 -1 1 -1 1 -1 -1 1 1 1 1 1

f3(A1) 1 1 1 1 1 1 1 1 1 1 1 1

f1f2f3 1 1 1 1 1 1 -1 -1 1 -1 1 -1

spans A1 A2 B1

We can see that the only component that spans A1 is x. Therefore the x electric dipole

transition is allowed and x-polarization of the radiation can be absorbed, or emitted in this

transition.

A.5 Symmetry Adapted Orbitals

In this section we show how to find the symmetry adapted states for the D3h point group.

We recall the character table for this group, Table A.4. Every reducible representation

(ΓR) can be written as a linear combination of irreducible representations (ΓIR) of a

point group:

ΓR =
∑

IR

nIRΓ
IR , (A.6)

where nIR is the number of times a particular irreducible representation occurs. Now we

use the reduction formula to find nIR:

nIR =
1

h

∑

Q

k · χIR(Q) · χR(Q) ,

where h is the number of operations in the group, Q a particular symmetry operation,

k is the number of operations of Q, χIR(Q) the character of the irreducible representa-

tion under Q, and χR(Q) the character of the reducible representation under Q. For the

irreducible representation A′
1 we have:

nIR =
1

h

∑

Q

k · χIR(Q) · χR(Q)

nA′
1

=
1

12

∑

Q

k · χA′
1(Q) · χR(Q)

nA′
1

=
1

12

(

1 · χA′
1(Ê) · χR(Ê) + 2 · χA′

1(Ĉ3) · χR(Ĉ3) + 3 · χA′
1(Ĉ2) · χR(Ĉ2)+

1 · χA′
1(σ̂h) · χR(σ̂h) + 2 · χA′

1(Ŝ3) · χR(Ŝ3) + 3 · χA′
1(σ̂v) · χR(σ̂v)

)
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Figure A.4: H3 molecule.

As an example we study the H3 molecule shown in Fig. A.4. A reducible representa-

tion is found by determining how all the basis functions transform under each symmetry

operation. We take a look at the bond between orbitals and imagine it as a displacement

vector. If the displacement vector changes its phase we add +1, otherwise -1. Therefore,

for H3, under Ê all the 3 orbitals do not move → 3Ê. Under Ĉ3 none of the bonds are

in their original position, → 0Ĉ3. Under Ĉ2 only the bond on the axis is in its original

position, → 1Ĉ3. Under σ̂h the molecule remains in its original position, → 3σ̂h. Under

Ŝ3 none of the bonds are in their original position, → 0Ŝ3. Under σ̂v only the bond on the

axis is in its original position, → 1σ̂v. The information obtained is given in the following

table:

D3h(H3) Ê 2Ĉ3 3Ĉ2 σ̂v 2Ŝ3 3σ̂v

Γ(H3) 3 0 1 3 0 1

Now we combined this table with the character table of D3h for the irreducible repre-

sentation A′
1:

D3h(H3) Ê 2Ĉ3 3Ĉ2 σ̂v 2Ŝ3 3σ̂v

A′
1 1 1 1 1 1 1

Γ(H3) 3 0 1 3 0 1
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Therefore, for nA′
1

we have

nA′
1

=
1

12
(1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · 1 + 1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · 1)

=
1

12
(3 + 0 + 3 + 3 + 0 + 3) =

1

12
(12) = 1

Working out the symmetry irreducible representations of D3h point group we have:

nA′
2

=
1

12
(1 · 1 · 3 + 2 · 1 · 0 + 3 · −1 · 1 + 1 · 1 · 3 + 2 · 1 · 0 + 3 · −1 · 1)

=
1

12
(3 + 0− 3 + 3 + 0− 3) =

1

12
(0) = 0

nE′ =
1

12
(1 · 2 · 3 + 2 · −1 · 0 + 3 · 0 · 1 + 1 · 2 · 3 + 2 · −1 · 0 + 3 · 0 · 1)

=
1

12
(6 + 0 + 0 + 6 + 0 + 0) =

1

12
(12) = 1

nA′′
1

=
1

12
(1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · 1 + 1 · −1 · 3 + 2 · −1 · 0 + 3 · −1 · 1)

=
1

12
(3 + 0 + 3− 3 + 0− 3) =

1

12
(0) = 0

nA′′
2

=
1

12
(1 · 1 · 3 + 2 · 1 · 0 + 3 · −1 · 1 + 1 · −1 · 3 + 2 · −1 · 0 + 3 · 1 · 1)

=
1

12
(3 + 0− 3− 3 + 0 + 3) =

1

12
(0) = 0

nE′′ =
1

12
(1 · 2 · 3 + 2 · −1 · 0 + 3 · 0 · 1 + 1 · −2 · 3 + 2 · 1 · 0 + 3 · 0 · 1)

=
1

12
(6 + 0 + 0− 6 + 0 + 0) =

1

12
(0) = 0

Inserting this result in Eq. (A.6), we have

ΓR =
∑

IR

nIRΓ
IR

ΓR = nA′
1
A′

1 + nA′
2
A′

2 + nE′E′ + nA′′
1

A′′
1 + nA′′

2
A′′

2 + nE′′E′′

ΓR = A′
1 + E′

A.6 The Projector Operator

Now that we have determined the symmetry adapted orbitals, {ψA′
1
, ψE′

(1)
, ψE′

(2)
}, we will

study the contribution from each orbital. This means that we are going to find the C
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coefficients in the following equation,

ψA′
1

= C
A′

1
1 φH31 + C

A′
1

2 φH32 + C
A′

1
3 φH33

ψE′
(1)

= C
E′
(1)

1 φH31 + C
E′
(1)

2 φH32 + C
E′
(1)

3 φH33

ψE′
(2)

= C
E′
(2)

1 φH31 + C
E′
(2)

2 φH32 + C
E′
(2)

3 φH33 .

These C coefficients are the size of the atomic orbital contributions to the molecular

orbitals and can be found by the projector operator:

PΓ[ψ] =
1

h

∑

Q

χIR(Q) ·Q[ψ] (A.7)

where h is the number of operations in the group; Q is a particular symmetry operation;

[ψ] operates on an orbital function and χIR(Q) is the character of the irreducible repre-

sentation under the symmetry operation Q. The reduction formula gives numbers nIR

while the projector operator gives a function.

As example we will show the effect of the projector operator acting on the molecule

H3 (Fig. A.4). First make an extended projection table with all the symmetry operations.

Then identify the effect of each operation on a specific orbital Q[ψ], for example s1.

D3h(H3) Ê Ĉ1
3 Ĉ2

3 Ĉ2 Ĉ ′
2 Ĉ ′′

2 σ̂v Ŝ1
3 Ŝ−1

3 σ̂v σ̂′
v σ̂′′

v

Q[s1] s1 s2 s3 s1 s3 s2 s1 s2 s3 s1 s2 s3

Now choose an irreducible representation and calculate the product χA′
1(Q) ·Q[ψ]

D3h(H3) Ê Ĉ1
3 Ĉ2

3 Ĉ2 Ĉ ′
2 Ĉ ′′

2 σ̂v Ŝ1
3 Ŝ−1

3 σ̂v σ̂′
v σ̂′′

v

Q[s1] s1 s2 s3 s1 s3 s2 s1 s2 s3 s1 s3 s2

A′
1 1 1 1 1 1 1 1 1 1 1 1 1

χA′
1(Q) ·Q[s1] s1 s2 s3 s1 s3 s2 s1 s2 s3 s1 s3 s2

Therefore from Eq. (A.7), we have

PA′
1
[s1] =

1

h

∑

Q

χA′
1(Q) ·Q[s1]

=
1

12
(s1 + s2 + s3 + s1 + s3 + s2 + s1 + s2 + s3 + s1 + s3 + s2)

=
1

12
(4s1 + 4s2 + 4s3)

=
1

3
(s1 + s2 + s3)
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Thus, finally we have found the H3 wavefunction that transforms as A′
1. Each atomic

orbital contributes in the same way to the wave function.

A.7 Symmetry Adapted Orbitals for Cyclic π Systems

An effective tool used for the investigation of electronic structure in quantum chemistry

is the molecular orbital method. Unlike crystal field theory and hybrid orbital theory, in

which there are restrictions like the approximation of point like, structureless ligands and

pair bondings [33], the molecular orbital method takes into account the electronic struc-

ture of all atoms in the molecule. In this approximation molecular orbitals are constructed

as a linear combination of atomic orbitals (LCAO):

Ψ = c1φ1 + c2φ2 + · · ·+ cnφn ,

where φl are the atomic orbitals, cn are the unknown coefficients and n is the number of

atoms. Here we study the cyclic π system H3. We will construct the LCAO molecular or-

bital for this molecule. Here we introduce the system to C3 instead of D3h. The character

table for the C3 point group is given by:

C3 Ê Ĉ3 Ĉ2
3 f (Γ)

A 1 1 1 z,Rz

E(ε,ε∗) 2 -1 -1 x, y;Rx, Ry

ε 1 ω ω∗ x+ iy;Rx + iRy

ε∗ 1 ω∗ ω x− iy;Rx − iRy

where all the irreducible representations are one-dimensional. A is totally symmetric and

ω represents a complex number:

ω = e2πi/3 = cos
2π

3
+ i sin

2π

3
.

Let us apply the projector operator (Eq. (A.7)) to the s1 basis set:

76



APPENDIX A. GROUP THEORY 77

C3(H3) Ê Ĉ1
3 Ĉ2

3

Q[s1] s1 s2 s3

A 1 1 1

χA(Q) ·Q[s1] s1 s2 s3

Q[s1] s1 s2 s3

ε 1 ω ω∗

χε(Q) ·Q[s1] s1 ωs2 ω∗s3

Q[s1] s1 s2 s3

ε∗ 1 ω∗ ω

χε∗(Q) ·Q[s1] s1 ω∗s2 ωs3

After normalizing, we find

Ψ(A) =
1√
3
(s1 + s2 + s3)

Ψ(ε) =
1√
3
(s1 + ωs2 + ω∗s3)

Ψ(ε∗) =
1√
3
(s1 + ω∗s2 + ωs3)

Ψ(ε) and Ψ(ε∗) are the basis of one two-fold degenerate level. From the character

table we can see that these functions transform as x+iy and x−iy, respectively. Therefore

it is convenient to introduce the real x and y basis of the two-dimensional representation

E as:

Ψ(Ex) =
1√
2
(Ψ(ε) + Ψ(ε∗)) =

1√
6
(2s1 − s2 − s3),

Ψ(Ey) = −i 1√
2
(Ψ(ε)−Ψ(ε∗)) =

1√
2
(s2 − s3)

Now, we can go back to the initial group D3h. We can notice that the Ψ(C3) is

transformed in the D3h point group according to the representation A′
1 while Ψ(Ex) and

Ψ(Ey) correspond to the representation E’ in the D3h point group.
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B
Cotunneling Rates

B.1 Explicit derivation of Eq. (3.22)

Here we demostrate how to obtain the Eq. (3.22) we study the transition rates up to four

order in the tunneling Hamiltonian. The transition rate from state |j〉 |n〉 to |j′〉 |n′〉 with

one electron tunneling from lead α to the lead α′ is given by

Γnj;n′j′

αα′ =
2π

~

∣
∣
∣
∣
〈j′| 〈n′|H T 1

Ejn − H0 + iη
H

T |n〉 |j〉
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn) ,

where Ej′n′ and Ejn are the energies of the final and initial states, respectively. HT =
∑

α=L,R

tα
∑

kσ

(

a†αkσcσ + c†σaαkσ

)

is the tunneling Hamiltonian Eq. (3.4) with TL/R
kmα =

tα. H0 = Hmol + Hleads and η is a positive infinitesimal number. Here |j′〉 |n′〉 =

a†α′k′σ′aαkσ |j〉 |n′〉. |j〉 (|n〉) refers to the equilibrium state of the left and right Fermi

sea (molecule). The total cotunneling rates for transitions that involve virtual transitions
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between two n, n′-occupied molecule states are then given by

Γnj;n′j′

αα′ =
2π

~

∑

kk′σσ′

∣
∣
∣
∣
∣
〈j| 〈n′| a†αkσaα′k′σ′

∑

α′′′

t∗α′′′

∑

k′′′σ′′′

(

a†α′′′k′′′σ′′′cσ′′′ + c†σ′′′aα′′′k′′′σ′′′

)

× 1

Ejn − H0 + iη

∑

α′′

tα′′

∑

k′′σ′′

(

a†α′′k′′σ′′cσ′′ + c†σ′′aα′′k′′σ′′

)

|n〉 |j〉
∣
∣
∣
∣
∣

2

×δ(Ej′n′ − Ejn)

=
2π

~

∑

kk′σσ′

∣
∣
∣
∣
∣
〈j| 〈n′| a†αkσaα′k′σ′

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

×







a†α′′′k′′′σ′′′cσ′′′

1

Ejn − H0 + iη
a†α′′k′′σ′′cσ′′

︸ ︷︷ ︸

= 0, n-2 states

+a†α′′′k′′′σ′′′cσ′′′

1

Ejn − H0 + iη
c†σ′′aα′′k′′σ′′

+c†σ′′′aα′′′k′′′σ′′′

1

Ejn − H0 + iη
a†α′′k′′σ′′cσ′′

+c†σ′′′aα′′′k′′′σ′′′

1

Ejn − H0 + iη
c†σ′′aα′′k′′σ′′

︸ ︷︷ ︸

= 0, n+2 states








× |n〉 |j〉|2 δ(Ej′n′ − Ejn)
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Γnj;n′j′

αα′ =
2π

~

∑

kk′σσ′

∣
∣
∣
∣
∣
〈j| 〈n′| a†αkσaα′k′σ′

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

×
{

c†σ′′′aα′′′k′′′σ′′′

1

Ejn − H0 + iη
a†α′′k′′σ′′cσ′′

+a†α′′′k′′′σ′′′cσ′′′

1

Ejn − H0 + iη
c†σ′′aα′′k′′σ′′

}

|n〉 |j〉
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn)

=
2π

~

∑

kk′σσ′

∣
∣
∣
∣
∣

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

{

〈j| 〈n′| a†αkσaα′k′σ′c†σ′′′aα′′′k′′′σ′′′

1

Ejn − H0 + iη
a†α′′k′′σ′′cσ′′ |n〉 |j〉

+ 〈j| 〈n′| a†αkσaα′k′σ′a†α′′′k′′′σ′′′cσ′′′

1

Ejn − H0 + iη
c†σ′′aα′′k′′σ′′ |n〉 |j〉

}
∣
∣
∣
∣

2

×δ(Ej′n′ − Ejn) (B.1)

Here n and n′ are states with the same number of particles. Now we take a look at the

numerator terms

〈j| a†αkσaα′k′σ′aα′′′k′′′σ′′′a†α′′k′′σ′′ |j〉 = −〈j| a†αkσaα′′′k′′′σ′′′aα′k′σ′a†α′′k′′σ′′ |j〉
= −f (ε− µα) δαα′′′δkk′′′δσσ′′′

× (1− f (ε+ εn − εn′ − µα′)) δα′α′′δk′k′′δσ′σ′′

and

〈j| a†αkσaα′k′σ′a†α′′′k′′′σ′′′aα′′k′′σ′′ |j〉 = 〈j| a†αkσaα′k′σ′

×





�
�
�

�
�
�

�
�
�:

0

δα′′′α′′δk′′′k′′δσ′′′σ′′ − aα′′k′′σ′′a†α′′′k′′′σ′′′



 |j〉

= −〈j| a†αkσaα′k′σ′aα′′k′′σ′′a†α′′′k′′′σ′′′ |j〉
= 〈j| a†αkσaα′′k′′σ′′ |j〉 〈j| aα′k′σ′a†α′′′k′′′σ′′′ |j〉
= f (ε− µα) δαα′′δkk′′δσσ′′

(1− f (ε+ εn − εn′ − µα′)) δα′α′′′δk′k′′′δσ′σ′′′

Here we have used a Taylor series expansion on the operator 1/(Ejn − H0) =

(1/Ejn)
∑∞

l=0(H0/Ejn)
l.
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Taking into account the last delta rules, we have

〈n′| c†σ′′′cσ′′ |n〉 =
∑

n′′

〈n′| c†σ |n′′〉 〈n′′| cσ′ |n〉 =
∑

n′′

(〈n′′| cσ |n′〉)† 〈n′′| cσ′ |n〉

=
∑

n′′

Aσ∗
n′′n′Aσ′

n′′n

and

〈n′| cσ′c†σ |n〉 =
∑

n′′

〈n′| cσ′ |n′′〉 〈n′′| c†σ |n〉 =
∑

n′′

〈n′| cσ′ |n′′〉 (〈n| cσ |n′′〉)†

=
∑

n′′

Aσ′

n′n′′Aσ∗
nn′′

whereAσ′

n′n′′ = 〈n′| cσ′ |n′′〉 andAσ∗
nn′′ = 〈n′′| c†σ |n〉. Here n′′ represents an intermediate

state.

Thus Eq. (B.1) becomes

Γnj;n′j′

αα′ =
2π

~

∑

kk′σσ′

∣
∣
∣
∣
∣

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

{

−〈j| 〈n′| a†αkσaα′k′σ′aα′′′k′′′σ′′′c†σ′′′

1

εn′ − εn′′ − ε+ iη
cσ′′ |n〉 a†α′′k′′σ′′ |j〉

+ 〈j| 〈n′| a†αkσaα′k′σ′a†α′′′k′′′σ′′′cσ′′′

1

εn − εn′′ + ε+ iη
c†σ′′ |n〉 aα′′k′′σ′′ |j〉

}
∣
∣
∣
∣

2

×δ(Ej′n′ − Ejn) (B.2)

Γn;n′

αα′ = 2 |tα|2 |tα′ |2
∑

σσ′

να(σ)να′(σ′)

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

(B.3)

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

Q

(B.4)
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B.2 Explicit derivation of Eq. (3.23)

From Eq. (B.4) we have

Q =

∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

=

(

Aσ′∗
1n A

σ
1n′

ε− εn′ + ε1 − iη
+

Aσ
n1A

σ′∗
n′1

ε+ εn − ε1 − iη
+

Aσ′∗
2n A

σ
2n′

ε− εn′ + ε2 − iη
+

Aσ
n2A

σ′∗
n′2

ε+ εn − ε2 − iη

+
Aσ′∗

3n A
σ
3n′

ε− εn′ + εn′′ − iη
+

Aσ
n3A

σ′∗
n′3

ε+ εn − ε3 − iη

)

×
(

Aσ∗
1n′Aσ′

1n

ε− εn′ + ε1 + iη
+

Aσ′

n′1A
σ∗
n1

ε+ εn − ε1 + iη
+

Aσ∗
2n′Aσ′

2n

ε− εn′ + ε2 + iη
+

Aσ′

n′2A
σ∗
n2

ε+ εn − ε2 + iη

+
Aσ∗

3n′Aσ′

3n

ε− εn′ + εn′′ + iη
+

Aσ′

n′3A
σ∗
n3

ε+ εn − ε3 + iη

)

Q =
∑

k

(

(Aσ∗
kn′Aσ′

kn)
2

(ε− εn′ + εk)2 + η2
+

(Aσ′

n′kA
σ∗
nk)

2

(ε+ εn − εk)2 + η2

)

+2Re

∑

q

∑

k<q

(

Aσ∗
qn′Aσ′

qn

ε− εn′ + εq + iη

Aσ∗
kn′Aσ′

kn

ε− εn′ + εk − iη

+
Aσ′

n′qA
σ∗
nq

ε+ εn − εq + iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)

+2Re

∑

q

∑

k

(

Aσ∗
kn′Aσ′

kn

ε− εn′ + εq − iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)
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Thus Eq. (3.22) becomes

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

=
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
[
∑

k

(

(Aσ∗
kn′Aσ′

kn)
2

(ε− εn′ + εk)2 + η2
+

(Aσ′

n′kA
σ∗
nk)

2

(ε+ εn − εk)2 + η2

)

+2Re

∑

q

∑

k<q

(

Aσ∗
qn′Aσ′

qn

ε− εn′ + εq + iη

Aσ∗
kn′Aσ′

kn

ε− εn′ + εk − iη

+
Aσ′

n′qA
σ∗
nq

ε+ εn − εq + iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)

+ 2Re

∑

q

∑

k

(

Aσ∗
kn′Aσ′

kn

ε− εn′ + εq − iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)]

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− E1) (1− f (ε− E2))

×
[
∑

k

A2

(ε− εak)2 + η2
(Integral type J)

+
∑

k

B2

(ε− εbk)2 + η2
(Integral type J)

+2Re

∑

q

∑

k<q

Ak

ε− εak + iη

Aq

ε− εaq − iη
(Integral type I)

+2Re

∑

q

∑

k<q

Bk

ε− εbk + iη

Bq

ε− εbq − iη
(Integral type I)

+ 2Re

∑

q

∑

k

Ak

ε− εak + iη

Bq

ε− εbq − iη

]

(Integral type I)

where Ak = Aσ∗
kn′Aσ′

kn, Bk = Aσ′

n′kA
σ∗
nk, εak = εn′ − εk, εbk = εk − εn, E1 = µα and

E2 = µα′ + εn′ − εn
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Integral type I

I(E1, E2, ε1, ε2) = Re

∫

dεf(ε− E1) [1− f(ε− E2)]
1

ε− ε1 − iγ

1

ε− ε2 + iγ

=
nB(E2 − E1)

ε1 − ε2
Re

{

ψ

(
1

2
+
iβ

2π
[E2 − ε1]

)

− ψ

(
1

2
− iβ

2π
[E2 − ε2]

)

−ψ
(
1

2
+
iβ

2π
[E1 − ε1]

)

+ ψ

(
1

2
− iβ

2π
[E1 − ε2]

)}

(B.5)

Here ψ is the digamma function, nB is the Bose function and β = 1/kBT .

Integral type J

J(E1, E2, ε1) =

∫

dεf(ε− E1) [1− f(ε− E2)]
1

(ε− ε1)2 + η2

=
β

2π
nB(E2 − E1)

×Im

{

ψ′

(
1

2
+
iβ

2π
[E2 − ε1]

)

− ψ′

(
1

2
+
iβ

2π
[E1 − ε1]

)}

(B.6)

Thus Eq. (B.5) becomes

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

[
∑

k

(
A2J(E1, E2, εak) +B2J(E1, E2, εbk)

)

+2
∑

q

∑

k 6=q

(AkAqI(E1, E2, εak, εaq) +BkBqI(E1, E2, εbk, εbq))

+ 2
∑

q

∑

k

AkBqI(E1, E2, εak, εbq)

]

(B.7)
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C
Introduction to Density Functional Theory

C.1 Density Functional Theory

In simple words, density functional theory (DFT) is the most successful quantum me-

chanical method used in physics and chemistry to obtain an approximate solution to the

Schrödinger equation of a many-body system such as atoms, molecules, clusters, peri-

odic systems, etc. The core spirit of DFT resides in that the problem of solving the 3N

spatial Schrödinger’s many-particle wavefunction, where N is the number of particles, is

reduced to the solution of an electron density functional, which contains only 3 spatial

variables. Thus, instead of dealing with the huge amount of 3N variables, one only has to

deal with 3 variables, which makes it far easier to handle. This reduction is mediated by

the idea that there is a one-to-one unique relationship between the electron density and the

exact ground state (GS) wavefunction. In the formulation given by Kohn, Hohenberg, and

Sham in the 1960’s, the real system is described by an effective one-body system [70, 71].

DFT is used to calculate magnetic and electronic properties of molecules, materials and

defects, the binding energy of molecules, and relativistic effects in heavy elements and in
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atomic nuclei and many other systems. Here we introduce the basic concepts underlying

density functional theory, but before doing that, it is useful to mention the most important

ideas behind DFT:

• In DFT we apply the Born-Oppenheimer approximation, which means that we treat

the nuclei classically and only consider the electrons moving in electrostatic poten-

tial of fixed nuclei.

• The multi-electron wavefunction contains much more information than we really

need, and therefore we only look for the electron density.

• The GS of a system always minimizes the expectation value of the Hamiltonian;

consequently we only look at the total GS energy and charge density.

• There is still one contribution to the total energy that cannot be expressed in terms of

the known quantities. This energy term, which models the exchange and correlation

energy of the electrons, has to be approximated by educated guessing.

Here we outline the basic principles of DFT, and point out the extensions that must

be taken into account in spin DFT (SDFT) [72–77]. One simple form of the independent

Schrödinger equation is

HΨ = EΨ, (C.1)

whereH is the Hamiltonian operator, and Ψ is a set of solutions of the Hamiltonian. Each

of these solutions, Ψn, has an associated eigenvalue En. The form of the Hamiltonian

depends on the system. Some of the well-known and exactly solved examples are the

particle in a box or a harmonic oscillator. In the case of many interacting electrons,

i.e. a many-body problem, this equation is much more complicated. In this case the

Schrödinger equation becomes





N∑

i

(

−~
2∇2

i

2m

)

+

N∑

i

v(ri) +
∑

i<j

U(ri, rj)



Ψ(r1, r2 . . . , rN ) = EΨ(r1, r2 . . . , rN )

[

T̂ + V̂ + Û
]

Ψ(r1, r2 . . . , rN ) = EΨ(r1, r2 . . . , rN ),

(C.2)

where m is the electron mass, and N is the number of electrons, v(r) is a potential acting

on the electrons, U(ri, rj) is the electron-electron interaction. The three terms in brackets
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in this equation define, in order, the kinetic energy operator

T̂ = − ~
2

2m

∑

i

∇2
i , (C.3)

and the interaction energy between each electron and the collection of atomic nuclei

V̂ =
∑

i

v(ri) =
∑

ik

Zke

|ri −Rk|
, (C.4)

where the sum over k k extends over all nuclei in the system, each at the position Rk.

Finally, there is the interaction energy between different electrons

Û =
∑

i<j

U(ri, rj) =
∑

i<j

q2

|ri − rj |
. (C.5)

In Eq. (C.2), Ψ is the electronic wavefunction, which is a function of the three spatial

coordinates of each of the N electrons1. If we were interested, let us say, in a {Cu3}
molecular magnet (see Sec. I), the full wavefunction would be a 3147-dimensional func-

tion (3 dimensions for each of the 1049 electrons)2. This shows us why solving the

Schrödinger equation is a difficult task. The terms T̂ and Û are universal, while V̂ is

system-dependent.

It is useful to stop for a moment and think about the wavefunction and its utility. The

wavefunction cannot be directly observed in experiments. The quantity that, in princi-

ple, can be measured is the probability that N electrons could be at a particular set of

coordinates, r1, · · · , rN . This probability is defined as

Ψ∗(r1, · · · , rN )Ψ∗(r1, · · · , rN ), (C.6)

where the asterisk indicates a complex conjugate. Another important remark is that in a

real experiment, for the system measured it is not important which electron in the material

is labeled i or j. This means that the probability is the quantity of physical interest. An

important observable close to the probability is the density of electrons at a particular

1Here we have neglected the electron spin.
2A simple estimate of the computational complexity involved in solving the Schrödinger equation for this

molecule is to imagine a real representation of Ψ on a mesh, in which each coordinate is discretized by using,

let us say, only 10 mesh points. For 1049 electrons, Ψ becomes a function of 3 × 1049 = 3147 coordinates,

and 103147 values are required to describe Ψ on the mesh. The density n(r) is a function of three coordinates,

and requires only 103 values on the same mesh. Thus, the many-body wave function requires 103147/103 =

103144 times more storage space than the density.
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position in space, n(r), which is written in terms of the individual electron wavefunctions

as

n(r) = N

∫

d3r2

∫

d3r3 . . .

∫

d3rNΨ∗(r, r2 . . . , rN )Ψ(r, r2 . . . , rN ). (C.7)

Having said that, we can now state why DFT is such a great theory. It provides a sys-

tematic way to map a many-body problem with Û , into a single-particle problem without

Û . DFT recognizes that in Coulomb systems, T̂ and Û are universal and only V̂ differs

between them. This is done when DFT lifts the status of the density n(r) from being

an observable to the rank of being a key variable, on which the calculation of all other

observables can be based.

As its name says, DFT is a theory based on functionals. Here we introduce some

useful mathematical definitions3:

• Functional: A functional is a rule for going from a function to a number. Let us

define the function f(x) = x2 + x + 1 and the functional F [f ] =
1∫

0

f(x) dx. So,

the functional F [f ] is a rule for going from f to the number F [f ] = 11/6.

• Functional derivative: This tells us how the value of the functional changes if the

function f(x) is changed at the point x. It can be defined as

dF =

∫ b

a

dx
δF

δf(x)

∣
∣
∣
∣
f0(x)

δf(x), (C.8)

where f0(x) is the particular function f(x) that is the starting point for the infinites-

imal change δf(x). Here δF
δf(x) is the functional derivative. For example, take the

functional F [f ] =
1∫

0

f(x)2 dx. To calculate the functional derivative, we calculate

the change dF that is due to an infinitesimal change δf :

F [f + δf ] =

∫ 1

0

[f(x) + δf(x)]2 dx

=

∫ 1

0

[

f(x)2 + 2f(x)δf(x) +
�
�

�
��:

0
(δf(x))2

]

dx

= F [f ] +

∫ 1

0

2f(x)δf(x) dx.

3These definitions are not defined in a rigorously mathematical formalism, but rather they are defined in a

very simple way.
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Thus, the infinitesimal change in F is

dF = F [f + δf ]− F [f ] =

∫ 1

0

2f(x)δf(x) dx.

Comparing it with Eq. (C.8) we have that the functional derivative corresponds to

δF

δf(x)
= 2f(x).

The heart of the density functional theory resides in the Hohenberg-Kohn (HK) theo-

rems. The first theorem states:

The ground-state energy from the Schrödinger equation is a unique functional of

the electron density.

This theorem tells us about the one-to-one mapping between the GS wavefunction and

the GS electron density. It is possible to calculate the GS wavefunction Ψ0(r1, r2, . . . , rN )

provided the GS electron density n0 (Eq. (C.7)). The GS electron density determines all

properties of the GS, including the energy and wavefunction. Although the first HK the-

orem tells us about the existence of an electron density functional that could solve the

Schrödinger equation , unfortunately it does not say anything about what this wonderful

functional is.

The second HK theorem states

The density that minimizes the total energy is the exact ground-state density.

If we knew the exact form of the functional, we would be able to vary it and find the

energy from the functional is minimized. This is done in practice with approximate forms

of the functional, not with the “true” functional.

A useful way to write down the HK energy functional is in terms of the wavefunctions,

Eq. (C.7),

E[Ψi] = Eknown[Ψi] + EXC[Ψi], (C.9)
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where we have split the energy functional in two parts, namely, a known part Eknown[Ψi]

and everything else EXC[Ψi]. The known part includes four contributions

Eknown[Ψi] =
h2

m

∑

i

∫

Ψ∗
i∇2Ψi d

3r+

∫

V (r)n(r) d3r+
e2

2

∫∫
n(r)n(r′)

|r− r′| d3r d3r′+Eion,

(C.10)

where the terms on the right-hand side of the equation correspond to the electron kinetic

energies, the Coulomb interaction between electrons and the nuclei, the Coulomb inter-

actions between pairs of electrons and the Coulomb interactions between pairs of nuclei.

The other energy term, EXC[Ψi], is the exchange-correlation functional, and includes all

the quantum effects that are not included in the known energy. Once one has the correct

exchange-correlation functional, the next step is to find minimum energy solutions of the

total energy functional. Kohn and Sham showed that the right electron density can be

expressed in a way that involves solving a set of equations in which each equation only

involves a single electron. In other words, in the Kohn-Sham (KS) approach, a fictitious

non-interacting system is constructed, in such a way, that its density is the same as that

of the interacting electrons. Therefore, the task is changed from finding the universal HK

functional to finding the fictitious system of non-interacting electrons which has the same

density as the “real” one with the interacting electrons.

The KS equations have the form
[
h2

2m
∇2 + V (r) + VH(r) + VXC(r)

]

Ψi(r) = εiΨi(r), (C.11)

where V is the interaction between an electron and the collection of atomic nuclei, and

VH(r) is the Hartree (or Coulomb) potential4,

VH(r) = e2
∫

n(r′)

|r− r′| d
3r′. (C.12)

Finally, VXC is the functional derivative of the exchange-correlation energy

VXC(r) =
δEXC(r

′)

δn(r)
. (C.13)

Here we are now facing a problem about what to do first. There are four tasks to do, but

they are in a circle. There is neither a beginning nor an end. To solve the KS equations,

we need to define the Hartree potential. To define the Hartree potential we need to know

4This potential describes the Coulomb repulsion between the electron being considered in one of the KS

equations and the total electron density defined by all electrons in the problem.
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Figure C.1: Endless loop in solving the KS equations.

the electron density. To find the electron density, we must know the single-electron wave

functions. To know the wavefunctions, we must solve the KS equations, and so on; (see

Fig. C.1). In order to break this cycle we use an iterative algorithm:

1. Define (guess) an initial, trial electron density, n(r).

2. Solve the KS equations defined using the electron density defined in step one to

find the single-particle wavefunctions, Ψi(r).

3. Calculate the electron density defined by the KS single-particle wavefunctions from

step 2 (nKS(r) as in Eq. (C.7)).

4. Now, compare the calculated electron density from step two, nKS(r), with the trial

electron density used in solving the KS equations in step one, n(r). If n(r) =

nKS(r), then this is the ground-state electron density, but if n(r) 6= nKS(r) then the

trial electron density n(r) must be adjusted in some way and one has to start over

from step 2. Once these two densities are the same, it can be used to calculate the

total energy.

Fig. C.2 shows a schematic flowchart of the self-consistent loop for solving the KS equa-

tions. Here we have omitted several important details about this self-consistent procedure,

such as, the tolerance of the self-consistent condition, and how to define the initial density,

but these details are beyond the scope of this introduction.

So far, we have seen that we could solve the many-body Schrödinger equation to

find the ground-state energy. Thanks to the HK theorems we know that we can find the
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Figure C.2: Schematic representation of the self-consistent loop for solving the KS equa-

tions.
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ground state of a many-body system minimizing the energy of a energy functional. Kohn

and Sham have shown us a way to achieve this by means of a self-consistent solution of

a set of single-particle equations. There is, however, a huge complication in this simple

and beautiful scheme; in order to solve the KS equations, one has to define the exchange-

correlation functional EXC[Ψi]. This is not an easy task; in fact, the true form of this

exchange-correlation functional that will solve the true many-body Schrödinger equation

is simply not known. Fortunately, as in many physics problems, it turns out that there is

one case where this functional can be defined exactly: the uniform electron gas. In this

case the density is uniform in all space, n(r) =constant. To solve the KS equations using

the uniform electron gas, we define the exchange-correlation potential as

VXC(r) = V electron gas
XC [n(r)].

In this approximation we use the local density to model the exchange-correlation po-

tential. This is called the local density approximation (LDA). Although the LDA gives us

a way to define the KS equations, we must remember that this is not the true exchange-

correlation functional. Since we are not solving the true Schrödinger equation t There are

more functionals that are implemented in DFT calculations. A well-known functional be-

yond LDA uses the local electron density and its local gradient, it is called the generalized

gradient approximation (GGA). Although the GGA includes more physical information

than the LDA, sometimes it is not more accurate. There are many distinct GGA func-

tionals out there. The most widely used are the Perdew-Wnag functional (PW91) and the

Perdew-Burke-Ernzerhof functional (PBE).

We now introduce the spin density functional theory (SDFT) as a generalization of

the DFT. In order to find the ground-state total energy E and spin densities n↑(r), n↓(r)

for a collection of N electrons interacting with one another and with an external potential

V (r), we use the self-consistent solution of a fictitious one-electron Schrödinger equation

, the spin Kohn-Sham equation:
[
h2

2m
∇2 + V ([n]; r) + VH([n]; r) + V σ

XC([n↑, n↓]; r)

]

Ψασ(r) = εασΨασ(r), (C.14)

with

nσ(r) =
∑

α

θ(µ− εασ) + |Ψασ(r)|2, (C.15)

n(r) = n↑(r) + n↓(r), (C.16)
∫

d3r n(r) = N. (C.17)
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Here σ =↑ or ↓ is the z-component of the spin, and α stands for the remaining one-

electron quantum numbers. The step function in Eq. (C.15) guarantees that all KS spin

orbitals with εασ < µ are singly-occupied, and those with εασ < µ are empty. The

exchange-correlation potential is defined as

V σ
XC(r) =

δE

δnσ(r)
. (C.18)

In the local spin density approximation (LSDA), the exchange-correlation energy

functional is approximated as

ELSDA
XC [n↑, n↓] =

∫

d3r n(r)εXC(n↑(r), n↓(r)), (C.19)

where εXC(n↑(r), n↓(r)) is the exchange-correlation energy per particle for an electron

gas of uniform spin densities n↑(r) and n↓(r). In the GGA approximation, the spin

exchange-correlation energy functional is a function of the densities and their gradient

EGGA
XC [n↑, n↓] =

∫

d3r f(n↑(r), n↓(r),∇n↑(r),∇n↓(r)). (C.20)

C.2 NRLMOL

Having discussed the main ideas behind DFT, we present the implementation of DFT

used in this work: the Naval Research Laboratory Molecular Orbital Library (NRLMOL)

computer code. It was developed by M. Pederson and co-workers and is freely avail-

able for non-profit use [78–86]. NRLMOL is based on the Kohn-Sham formulation of

DFT and solves Kohn-Sham equations by expressing the Kohn-Sham orbitals as a linear

combination of Gaussian orbitals. Very large basis sets, based on a nonlinear optimiza-

tion procedure described in Ref. [84], have been used. As discussed in Ref. [84], this

procedure simultaneously optimizes the contraction coefficients and the Gaussian-decay

parameters by first performing atomic self-consistent field (SCF) calculations, using a

single-Gaussian basis, and then using the conjugate-gradient method in conjunction with

gradients of the energy with respect to the decay parameters to minimize the total atomic

energy. A key feature of this optimization scheme is that it identifies a scaling law (proven

in Ref. [84]) showing that the shortest-range Gaussian should scale as Z10/3 to ensure that

there is no basis-set superposition error. The basis sets are available upon request. The

exchange-correlation functionals that can be used in NRLMOL are:
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• LDA exchange-correlation functionals: VWN, CA, Perdew-Zunger 81, RPA, Wigner

Interpolation Functional, Kohn-Sham exchange only and Gunnarsson-Lundquist.

• GGA functionals: PW91 and PBE.

The NRLMOL capability covers full or partial structure optimization, calculations of

harmonic vibrational frequencies, infra-red spectra, Raman spectra, polarizability, den-

sity of states, joint density of states, vibrational polarizability, etc, and has been applied

successfully to calculate the electronic and magnetic properties of several molecular mag-

nets [32, 38, 47, 87–100]. In addition, NRLMOL uses the point group symmetry of

molecules in an efficient manner, and practically any point group can be used. The de-

fault basis set of the NRLMOL has been specifically optimized for the Perdew- Burke-

Ernzerhof exchange-correlation functional within the generalized gradient approximation

and is much larger than the default basis sets used in other codes. One important feature

of NRLMOL is its very efficient parallelization that allows for calculations of more than

a hundred atoms at the all-electron level, which has been important in the case of the

molecular magnets discussed in this thesis. Fig. C.3 shows a simplified flowchart that de-

scribes the standard tasks which are used in NRLMOL in order to solve self-consistently

the Kohn-Sham equations [101]. In order to set up the mesh, NRLMOL divides the space

into three different types of regions: atomic spheres, interstitial parallelepipeds and ex-

cluded cube regions. First of all, NRLMOL determines the locations and charges of the

linear combination of Gaussian functions centered at the atomic sites. Once these are de-

termined, the program uses a previously generated basis set. This previous basis set has

been obtained by performing a self-consistent LDA calculation of the spherical unpolar-

ized atom where the total energy of the atom was converged to within 10 meV. Second

of all, for each isolated atom, the self-consistent potential is numerically determined and

a least-square representation of it is generated. These potentials are expanded as a sum

of bare spherical Gaussians or as a sum of Gaussian-screened 1/r potentials. Given the

basis sets and the Gaussian-representation of the atomic potentials, it is possible to obtain

very good insight into the class of multicenter integrands that need to be integrated, and

this information is used to generate a numerical variational integration mesh that allows

determining precisely the integrals required for the calculation of secular matrices, total

energies and derivatives. Once the variational mesh is defined, the calculation starts. For

the initial guess of the wavefunctions, one has to rely on the least-square fit representation

of overlapping atomic potentials to determine a starting Hamiltonian. Once the wave-

functions are determined, by solution of Poisson’s equation, it is possible to calculate the
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potential due to these wavefunctions. Further, the Coulomb potential due to the electrons

and the nuclei, as well as the exchange-correlation energy density and potentials, are re-

quired. The exchange-correlation term requires the evaluation of spin densities and the

first and second derivatives of the spin densities for the GGA. The solution of the KS

equation for that potential determines the new wavefunctions. The equations are then

solved self-consistently by iterating until the total energy is converged to a 10−5 Hartree.

Once self-consistency is achieved, the forces acting on each atom are determined from

the Hellmann-Feynman-Pulay theorem. After obtaining all the forces acting on all the

atoms, a conjugate-gradient method can be used to determine a new set of atomic coordi-

nates. Once a new set of atomic coordinates is determined, we find that the wavefunction

expansion coefficients provide the best starting point for a calculation on this geometry.

Once an equilibrium geometry and the KS wavefunctions are determined there are many

physical observables that could be calculated.
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Figure C.3: Flow chart of parallel version of NRLMOL. The gray area represents the

iterative part of the self-consistency cycle which is the computationally intensive part of

the problem. The stars on the boxes represent the tasks which are massively parallelized.

Reprinted with permission of John Wiley & Sons.
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We report on a study of the electronic and magnetic properties of the triangular antiferromagnetic �Cu3�
single-molecule magnet, based on spin-density-functional theory. Our calculations show that the low-energy
magnetic properties are correctly described by an effective three-site spin s=1 /2 Heisenberg model, with an
antiferromagnetic exchange coupling J�5 meV. The ground-state manifold of the model is composed of two
degenerate spin S=1 /2 doublets of opposite chirality. Due to lack of inversion symmetry in the molecule these
two states are coupled by an external electric field, even when spin-orbit interaction is absent. The spin-electric
coupling can be viewed as originating from a modified exchange constant �J induced by the electric field. We
find that the calculated transition rate between the chiral states yields an effective electric dipole moment d
=3.38�10−33 C m�e10−4a, where a is the Cu separation. For external electric fields ��108 V /m this value
corresponds to a Rabi time ��1 ns and to a �J on the order of a few �eV.

DOI: 10.1103/PhysRevB.82.155446 PACS number�s�: 75.50.Xx, 75.75.�c

I. INTRODUCTION

Single-molecule magnets �SMMs� have been intensively
studied in the last two decades �for a review see Ref. 1�. At
low temperature these remarkable molecules behave in part
like bulk magnets thanks to their very long magnetization
relaxation time. At the same time SMMs are genuine quan-
tum systems. They display a variety of nontrivial quantum
effects such as the quantum tunneling of the
magnetization,2,3 Berry phase interference,4 and quantum
spin coherence.5 Due to their double nature, SMMs are ideal
systems to investigate decoherence and the interplay between
classical and quantum behavior.5

From the point of view of applications, interest in SMMs
has been in part spurred by the possibility that these struc-
tures could represent the ultimate molecular-scale limit for
magnetic units in high-density magnetic storage materials.
More recently SMMs have been recognized as promising
building blocks in molecular spintronics, the emerging field
combining spintronics and molecular electronics.6–11 In par-
ticular, thanks to their long spin coherence time,5 SMMs are
good candidates to realize spintronic devices that maintain,
control and exploit quantum coherence of individual spin
states. These devices could find important applications in the
field of quantum information processing.12,13

One key issue in using SMMs in molecular spintronics
and quantum information processing is the ability of switch-
ing efficiently between their different magnetic states. The
conventional way of manipulating magnetic states is by ap-
plying an external magnetic field. However, this approach
has significant drawbacks when it comes to controlling mag-
netic states at the molecular level. Quantum manipulation of
SMM requires application of an external field at a very small
spatial and temporal scale. It is, however, very difficult to
achieve such a small scale manipulation using standard
electron-spin control techniques such as electron spin reso-
nance driven by ac magnetic field.5

One promising alternative to achieve control of magnetic
states at the molecular level is to use an electric field instead.

Typically, by using scanning tunnel microscope �STM� tips,
for example, it is possible to apply strong time-dependent
electric fields in subnanoregions, with time scales of 1
ns.14,15 Clearly since electric fields do not couple directly to
spins, it is essential to find efficient mechanisms for spin-
electric coupling as well as real SMMs where this mecha-
nism can be at play. In principle, an electric field can interact
with spins indirectly via the spin-orbit interaction. However,
since the strength of the coupling scales like the volume of
the system �More specifically, it is the ratio of the spin-orbit
interaction strength to the single-particle energy mean-level
spacing that is proportional to the volume of the system. If
we view a molecular magnet as an ultra-small quantum dot,
the relative strength of the spin-orbit interaction should scale
accordingly and one expects that the effective spin-electric
coupling should be very small. Although we believe that this
statement is reasonable, a microscopic study of the spin-
electric coupling via spin-orbit interaction has not been done
yet.� this mechanism is not the most efficient one for ma-
nipulating SMMs.

Recently, it has been proposed16 that in some molecular
antiferromagnets lacking inversion symmetry, such as the tri-
angular antiferromagnetic �Cu3� and other odd-spin rings, an
electric field can efficiently couple spin states through a com-
bination of exchange and chiralilty of the spin-manifold
ground state.16 The �Cu3� molecule while large,17,18 reduces
to a simple model composed of three identical spin s=1 /2
Cu cations coupled by an antiferromagnetic �Heisenberg� ex-
change integration. Its ground state consists of two total-spin
S=1 /2 doublets of opposite spin chirality, degenerate in the
absence of spin-orbit interaction. According to an analysis
based on group theory,16,19 due to the lack of inversion sym-
metry, an electric field can couple states of opposite chirality
through the dipole operator, even when spin-orbit interaction
is absent. This opens up the possibility of using this two-
level system of chiral states as components of qbits in quan-
tum computation. In the presence of an additional small dc
magnetic field that mixes the spin states, the electric field-
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induced transitions can also result in spin flips.
An intuitive picture of this coupling is the following.

Since a spin S=1 /2 triangular antiferromagnet is frustrated,
there exist three energetically degenerate antiferromagnetic
spin configurations for Sz=1 /2 and three for Sz=−1 /2. Both
eigenstates of the chiral operator, with a given value of Sz,
are appropriate, equally weighted, linear combinations of
these three frustrated spin configurations. Each of these three
configurations, if prepared, would have a dipole moment
with the same magnitude that points from the antiparallel
sites to the midpoint between the two parallel sites. While
the net dipole moment of the two chiral eigenstates is zero,
the dipole transition matrix element between them is not and
it is simply related to the magnitude of the permanent dipole
moment of the energetically degenerate frustrated configura-
tions.

In practice the relevance of this spin-electric mechanism
depends on the coupling strength of the chiral states by the
electric field, i.e., on the value of the dipole moment of the
frustrated spin configurations. Theoretically this is an issue
that only a microscopic calculation for the specific molecule
can address. The main objective of this work is to calculate
the strength of this coupling for the �Cu3� molecule using ab
initio methods. Our approach is based on spin-density-
functional theory �SDFT�, implemented in the NRLMOL

codes, which has been very successful in describing the elec-
tronics and magnetic properties of Mn12 acetate and other
SMMs.20–23 Recently SDFT implemented in NRLMOL has
been used in a first-principles study of quantum transport in
a Mn12 single-electron transistor.24

Our results show that indeed the crucial electric-dipole
moment is not negligible in �Cu3� and it would correspond to
characteristic Rabi times of 1 ns in the presence of typical
electric fields generated by STM tips. As originally sug-
gested in Ref. 16, the spin-electric coupling can be inter-
preted as due to a modified exchange interaction brought
about by the electric field. Although here we only address the
specific case of �Cu3�, our paper introduces a methodology
that can be followed in a systematic study of other SMMs
without inversion symmetry.

The paper is organized as follows. In Sec. II we discuss
the electronic and magnetic properties of triangular �Cu3�
molecule based on ab initio calculations and show that the
low-energy quantum properties of the molecule can be de-
scribed by an effective three-spin s=1 /2 Heisenberg model
with antiferromagnetic coupling. In Sec. II B we review the
underlying mechanism of spin-electric coupling in �Cu3� an-
tiferromagnet, based on the effective spin Hamiltonian. The
first-principles computation of the spin-electric coupling and
electric dipole moment of �Cu3� is presented in Sec. IV. In
Sec. IV B we discuss the effect of the electric field on the
exchange coupling. Finally we present the summary of our
work in Sec. V.

II. ELECTRONIC AND MAGNETIC PROPERTIES
OF {Cu3}

A. Microscopic description of the molecule

The �Cu3� molecule that we are interested in has chemical
composition Na12�Cu3�AsW9O33�2 ·3H2O� ·32H2O.17 This

molecule has been studied experimentally by different
groups.17,18 The three Cu2+ cations form an equilateral tri-
angle and, as we show below, are the sites of three identical
s=1 /2 quantum spins. The frontier electrons on each of
these sites have primarily d character. The bridging atoms
consist of predominantly paired electrons and are only polar-
ized to the degree that the same-spin states hybridize with
the unpaired d electrons on the Cu sites. Due to the localized
nature of transition-metal 3d states, direct exchange stabili-
zation due to parallel neighboring states is expected to be
exponentially small. Therefore, unless the frontier d elec-
trons are spatially orthogonal by symmetry to the d electrons
on other sites, antiferromagnetic ordering between electrons
on a pair of neighboring Cu atoms is energetically preferred
due to the increase in the system’s kinetic energy, induced by
orthogonality constraints, when neighboring states are paral-
lel.

Our calculated antiferromagnetic coupling parameter is in
general accord with what would be expected from the
Goodenough-Kanamori rules.25–27 These rules were origi-
nally developed, using perturbative arguments, to predict the
sign of magnetic coupling between two cations that are
coupled through anions and they apply situations such as this
�Cu3� system where a localized Heitler-London picture is a
good approach to representing the magnetic orbitals. How-
ever, they were really derived for situations where next-
neighbor cation ions are coupled through a single anion. The
�Cu3� system has significantly more complicated bridging
between cations and the Cu atoms are third, rather than sec-
ond, nearest neighbors. For the case of two cations coupled
via an anion, the Goodenough-Kanamori rules state that the
coupling between two magnetic ions with half-occupied or-
bitals is almost always antiferromagnetic unless there is a
90° angle between the bridging anion and the two cations.
While the term kinetic exchange has been introduced for this
type of phenomena, a recent analysis28 has shown that some
of the assumptions about kinetic exchange always leading to
antiferromagnetic behavior can be incorrect for special cases.
However, the kinetic energy of the system is found to in-
crease when the unpaired orbitals on different states are
placed in parallel spin states.

Although the spin model of three exchange-coupled spin
1/2 is quite useful to understand the magnetic properties of
the �Cu3� SMM, all the other atoms in the molecule are es-
sential for its geometrical stability and for the resulting su-
perexchange interaction among the spins at the Cu sites. A
proper ab initio description of the molecule must therefore
include to a certain extent all these atoms.

Building a suitable model of the molecule is a consider-
able challenge since the model molecule should preserve the
essential physics. We have constructed the molecule by pre-
serving the D3h symmetry of the polyanionic part of the mol-
ecule as observed in the experiment.17,18 Three of the twelve
Na atoms of the molecule are placed at the belt region of the
molecule. These three are the most important of all the Na
atoms for the stability of the belt region of the molecule.
There is some uncertainty in the position of the Na atoms but
we have placed eight of the remaining nine Na atoms in a
way to preserve the D3h symmetry. The last Na atom is re-
placed by a H atom and is placed at the center of the mol-

ISLAM et al. PHYSICAL REVIEW B 82, 155446 �2010�

155446-2



ecule to maintain the charge neutrality of the valance elec-
trons. The model of the molecule used in this calculation is
shown in Fig. 1.

We have relaxed the geometry using the ab initio package
NRLMOL �Refs. 30 and 31� that uses a Gaussian basis set to
solve the Kohn-Sham equations using Perdew-Burke-
Ernzerhof generalized gradient approximation.32 All-electron
calculations are performed for all elements of the molecule
except for tungsten, for which we have used pseudo poten-
tials. The relaxation is first performed by setting the net total
spin of the molecule to S=3 /2 and then by changing the net
spin to 1/2. Self-consistency is reached when the total energy
is converged to 10−6 Hartree or less.

The density of states of the molecule is shown in Fig. 2.
The highest occupied molecular orbital-lowest unoccupied
molecular orbital �HOMO-LUMO� gap for the majority spin
is calculated to be about 0.78 eV and that for minority spin is
about 0.58 eV. Although in our calculations we have used an
equilateral arrangement of the three Cu atoms, it is found
experimentally that the �Cu3� molecule in the ground state is
slightly distorted into an isosceles triangle.17 Since the cal-
culated HOMO-LUMO gap for the equilateral configuration
is relatively large, the distortion is likely to be due to mag-
netic exchange rather than to the Jahn-Teller effect.

One important result of our calculations, after the geom-
etry relaxation have been implemented, is that the ground
state of the system is antiferromagnetic, with a net total spin
of 1/2 in accordance with experiment.33 The ground-state

energy is lower by about 8.4 meV relative to spin S=3 /2
configuration. This allows us to assign an exchange constant
J�5 meV to the three-site Heisenberg spin model men-
tioned above �see also next section�.

The calculated magnetization density of the relaxed mol-
ecule shows the presence of three electron-spin magnetic
moments �i�0.55�B, i=1,2 ,3, essentially localized at the
three Cu atom sites. Note that the orbital moments are
quenched. These results confirm that the low-energy proper-
ties of the �Cu3� molecule can be approximately described by
an effective spin Hamiltonian of three spins s=1 /2 localized
at the Cu sites.

The exchange coupling between two Cu atoms is indirect
and follows a superexchange path18 along Cu-O-W-O-W-
O-Cu as shown in Fig. 3—see the yellow line connecting the
atoms. To understand this coupling mechanism we focus on
one of the three CuO5 complexes of the molecule �shown
inside the circle in Fig. 3�. Because of the square-pyramidal
C4v point-group symmetry of this complex, the dxy, dxz, and
dyz states of Cu have lower energies compared to the dx2-y2

and dz2 states. Moreover, our calculation shows that the axial
Cu-O distance �2.35 A� in each unit is larger than the four

FIG. 1. �Color online� Model of the �Cu3� molecule with chemi-
cal composition Na11H�Cu3�AsW9O33�2 ·3H2O� used in this work.
Xcrysden visualization tool �Ref. 29� is used for this figure.
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FIG. 2. �Color online� Density of states of �Cu3� molecule.
HOMO-LUMO gaps for majority and minority spins are shown in
the inset.

FIG. 3. �Color online� Superexchange coupling between two Cu
atoms. The yellow line connecting two Cu atoms through three O
and two W atoms shows the path along which spin coupling be-
tween Cu atoms is mediated. The numbers near the atoms are the
magnetic moment �in units of �B� of the atoms along the exchange
path.
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equatorial Cu-O distances �1.93 A�. Thus the energy of dz2

state is lower than dx2-y2 state and the unpaired d electron of
the Cu2+ ion resides in dx2-y2 state that is directed along the
equatorial Cu-O vectors. Therefore, the exchange coupling
between two Cu atoms involves three O atoms and two W
atoms.

The magnetic moment calculations of the atoms of �Cu3�
molecule also support the superexchange path. The magnetic
moments at the O and W atoms on this path is much smaller
than at the Cu sites but still two order of magnitude larger
than at atoms not belonging to this path.

B. Effective spin Hamiltonian description

Based on the results of the ab initio calculations, the low-
energy properties of the �Cu3� molecule can be described by
the following quantum spin Hamiltonian:

H0 = �
i=1

3

Ji,i+1si · si+1 + �
i=1

3

Di,i+1 · si � si+1, �1�

where J is the exchange parameter, D is the Dzyaloshinskii
vector and si are three spins-1/2, located at the Cu sites. The
first term in the Hamiltonian is an isotropic Heisenberg
model. The geometry-relaxation and electronic-structure cal-
culations showed that the Cu atoms form an equilateral tri-
angle with a very small intrinsic deformation. Since the
atomic environment around each of the the three Cu-Cu
bonds is the same, we take the three exchange constants Ji,i+1
to be the same value, J. On the basis of the splitting between
the ferromagnetic and antiferromagnetic configurations dis-
cussed in the previous section, J is positive and 	5 meV.
The second term in Eq. �1� is the anisotropic Dzyaloshinskii-
Moriya �DM� exchange interaction originating from spin-
orbit interaction. Its strength 
Di,i+1
 is at least one order of
magnitude smaller than the isotropic exchange constant J,
and we will disregard it for the moment.

The ground state of Eq. �1� is total spin S=1 /2 manifold,
which can be constructed in terms of six degenerate spin
configurations, three associated with Sz=+1 /2 and the other
three associated with Sz=−1 /2. Figure 4 shows the three
possible spin configurations associated with Sz=+1 /2. The
total-spin S=3 /2 four-dimensional subspace has an energy
of order J above the ground-state manifold.

Within the S=1 /2 ground-state manifold, we can con-
struct two degenerate, linearly independent doublets. Specifi-
cally the two Sz=+1 /2 states �shown in Fig. 4�b�� are

�E+,+
1

2
� =

1
3

��↓↑↑ + ��↑↓↑ + �2�↑↑↓� ,

�E−,+
1

2
� =

1
3

��↓↑↑ + �2�↑↓↑ + ��↑↑↓� �2�

while the Sz=−1 /2 states are

�E+,−
1

2
� =

1
3

��↑↓↓ + ��↓↑↓ + �2�↓↑↑� ,

�E−,−
1

2
� =

1
3

��↑↓↓ + �2�↓↑↓ + ��↓↓↑� , �3�

where �=ei2	/3. The quantum numbers E+ and E− specify the
so called handness or chirality of the states 
E
 ,M�, which
are eigenstates of the chirality operator

Cz =
4
3

s1 · s2 � s3 �4�

with eigenvalues 
1, respectively. It is useful to introduce
also the other two components of the chiral vector operator

Cx = −
2

3
�s1 · s2 − 2s2 · s3 + s3 · s1� , �5�

Cy =
2
3

�s1 · s2 − s3 · s1� , �6�

and the ladder operators C
�Cx
 iCy. Note that �Cl ,Cm�
= i2�lmnCn and �Cl ,Sm�=0. Here �lmn is the Levi-Civita sym-
bol. The ladder operators reverse the chirality of the states:
C

E� ,M�= 
E
 ,M�. They also have the property that
C

E
 ,M�=0. Thus C behaves exactly like the operator S
�for S=1 /2� in chiral space.

In the microscopic description of the molecule imple-
mented within density functional theory via the NRLMOL

code, the chiral states defined in Eqs. �2� and �3� have to be
understood as being composed both of a spin and an orbital
part.

We conclude this section with an observation of the DM
interaction. As shown in Ref. 16, the DM interaction within
the S=1 /2 ground-state manifold takes the simple form
HDM=SOCzSz, where SO is the effective spin orbit cou-
pling constant. Thus equal-spin states of opposite chirality
are split by 2SO.

FIG. 4. �Color online� �a� The three spin configurations of the
molecule associated with total spin projection Sz=+1 /2. �b� The
two chiral states formed from a� with chirality +1 and −1,
respectively.

ISLAM et al. PHYSICAL REVIEW B 82, 155446 �2010�

155446-4



III. SPIN-ELECTRIC EFFECT IN {Cu3}

A. Absence of inversion symmetry and coupling of ground-
state chiral states

The triangular spin-1/2 antiferromagnet �Cu3� belongs to
the class of antiferromagnetic rings with an odd number of
half-integer spins.34,35 In these systems, the lack of inversion
symmetry of the molecule as a whole implies that the ground
state is a four-dimensional manifold, whose basis states

E
 ,Sz= 
1 /2� are characterized by the spin projection Sz
= 
1 /2 and by the chirality Cz= 
1 �which we also label as
E
�. In contrast, antiferromagnetic rings with an even num-
ber of spins have nondegenerate S=0 singlet ground state.
According to the original proposal in Refs. 16 and 19, in
odd-spin rings the two states of opposite chirality 
E
 ,Sz
=M� can be coupled linearly by an external electric field,
even in the absence of spin-orbit interaction. In order for
electric coupling to be nonzero, other criteria must be
satisfied.19 First of all, permanent electric dipoles dij must be
present on the bridges that mediate the coupling of spin si
and s j. A necessary �although not sufficient� condition for
this is that the superexchange bridge that magnetically
couples si and s j lacks a center of inversion symmetry. Even
when local dipole moments are present on individual
bridges, the resulting final spin-electric coupling between
chiral states depends in a nontrivial way on the overall sym-
metry of the molecule. The best way to settle this issue is to
carry out a systematic symmetry analysis based on group
theory. It turns out that in triangular spin-1/2 antiferromag-
nets the coupling is nonzero. On the other hand in pentagon
spin 1/2 antiferromagnets, the coupling vanishes, unless
spin-orbit interaction is included.19

We focus now on the spin-electric coupling of chiral
states in �Cu3�. In the presence of an external electric field �,
The Hamiltonian acquires the additional electric-dipole term
H�=�ieri ·�=eR ·�, where e is the electron charge and ri is
the coordinate of the ith electron.

In the subspace of spin projection Sz=1 /2 of the ground-
state manifold, which is invariant under the application of
the operator H�, the perturbed Hamiltonian H0+H� can be
expressed in the basis of the chiral states as

H = H0 + H�

= ��E+,+
1

2
�H0�E+,+

1

2
� �E+,+

1

2
�H��E−,+

1

2
�

�E−,+
1

2
�H��E+,+

1

2
� �E−,+

1

2
�H0�E−,+

1

2
� � ,

�7�

A similar expression holds for the Sz=−1 /2 subspace. The
eigenvalues of H are

E1/2

 ��� = E1/2


 �0� 
 
d · �
 , �8�

with E1/2

 �0�= �E
 ,+ 1

2 
H0
E
 ,+ 1
2 �, and the corresponding

eigenstates


�1/2

 ���� =

1
2

��E+,+
1

2
� 



d · �

d · �

�E−,+
1

2
�� . �9�

Here we have introduced the electric dipole matrix element
d, which couples states of opposite chirality �but with the
same spin projection�

d = �E+,+
1

2
�eR�E−,+

1

2
� . �10�

For the specific example of �Cu3� molecule only the ma-
trix elements of X and Y components of R are nonzero and

�E+,+
1

2
�eX�E−,+

1

2
� = i�E+,+

1

2
�eY�E−,+

1

2
� =

d
2

,

�11�

where d�
d
.
The matrix element in Eq. �10� is the key quantity in the

spin-electric coupling mechanism. Substituting the expres-
sions for the chiral states from Eqs. �2� and using the or-
thogonality of spin states we obtain

d =
1

3
���↓↑↑
eR
�↓↑↑� + ���↑↓↑
eR
�↑↓↑�

+ �2��↑↑↓
eR
�↑↑↓�� . �12�

Evaluating the dipole matrix element between two states of
opposite chirality is therefore equivalent to calculating the
dipole moment of each of the three spin configurations. This
matrix element determines the strength of spin-electric cou-
pling and we are primarily interested in calculating this
quantity by ab initio methods.

Finally, note that all the matrix elements of the electric
dipole operator eR are identically zero in the S=3 /2 sub-
space. This is obvious since ��↑↑↑
eR
�↑↑↑� and
1
3 ���↓↑↑
eR
�↓↑↑�+ ��↑↓↑
eR
�↑↓↑�+ ��↑↑↓
eR
�↑↑↓�� are
both zero by symmetry. We will confirm this result by direct
ab initio calculations.

B. Effective spin Hamiltonian description

The effect of the electric field on the the low-energy spec-
trum of �Cu3� can be recast in the form of the effective spin
model introduced in Sec. II B. Since the electric dipole op-
erator has nonzero matrix elements only in the ground-state
manifold, where it couples states with equal spin components
and opposite chirality, we expect that the spin-electric
Hamiltonian H� can be rewritten as a linear combination of
the ladder operators C
. By comparing the matrix elements
of H� given in Eqs. �10� and �11� with the action of C
 on
the chiral states, one can show that19

H�
eff =

d
2

�� · C� , �13�

where ��=Rz����7	 /6−2���, with R��� being the matrix
representing a rotation by an angle � around the z axis, and
� being the angle between the in-plane component �� of the
electric field and the bond s1-s2. By using Eqs. �5� and �6� we
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can now rewrite C� = �Cx ,Cy� in term of spin-operators si and
we obtain19

H�
eff = �

i

3

�Jii+1���si · s j , �14�

where the modified exchange parameters take the form19

�Jii+1��� =
4d

32

��
cos�2	

3
i + �� . �15�

This expression of the effective electric-dipole Hamil-
tonian suggests a transparent physical interpretation of the
spin-electric couping mechanism.16,19 An external electric
field changes the charge distribution of the �Cu3� molecule
which, in turn, changes the exchange interaction between
neighboring atoms. Since the modified exchange interaction
does not commute with H0, it can cause transitions between
chiral states within the ground-state manifold.

In Eq. �15�, �� is the projection of electric field on the Cu3
plane �in our case �� =��, i=1 and �=30° is the angle be-
tween � and the line joining Cu1 and Cu2. Finally, note that
Eqs. �14� and �15� provide an estimate of the dependence of
the ground-state energy as function of the electric field. Since
in the absence of spin-orbit coupling the electric-dipole
Hamiltonian has zero matrix elements in the S=3 /2 sub-
space, Eq. �15� gives us an estimate of the dependence of the
exchange constant J �proportional to the splitting between
the S=1 /2 ground state and S=3 /2 excited state� on �.

IV. AB INITIO EVALUATION OF THE SPIN-ELECTRIC
COUPLING

A. Calculation of the electric dipole moment

To construct the chiral states of the full �Cu3� molecule,
we have calculated the ground state of the molecule for dif-
ferent spin configurations, as shown in Fig. 4. Although there
are two doublets of chiral states for the triangular arrange-
ment of three spin 1/2 atoms, in this calculation we have
used only one doublet associated with the spin projection
+1 /2 since we are interested in coupling between states of
opposite chirality with the same spin projection.

To study the spin-electric effect we have applied an exter-
nal field along the perpendicular bisectors between positions
2 and 3 of the Cu3 triangle shown in Fig. 5, and have calcu-
lated the corresponding ground-state energy self-consistently
for different spin configurations. We have kept the direction
of the field relative to coordinate axes fixed, and have
changed the orientation of the spins at the Cu atoms to gen-
erate the three possible spin configurations of the �Cu3� mol-
ecule.

Our calculations show that �Cu3� molecule in the spin
Sz=3 /2 state does not have any permanent electric-dipole
moment. On the other hand each of the three frustrated spin
Sz=1 /2 configurations have a small permanent �i.e, zero-
field� dipole moment, as expected from the general discus-
sion of Sec. III. The three moments have all the same mag-
nitude but their directions are along the perpendicular
bisector of Cu3 triangle and between two Cu atoms with
parallel spin alignments. The relative orientations of these

moments along with components are shown in Fig. 6. The
fact that the Sz=3 /2 state does not have permanent dipole
moment whereas Sz=1 /2 states do, suggests that the dipole
moments are solely due to spin effects.

In the presence of an electric field the energies of the
�Cu3� molecule are slightly lower when field is between two
Cu atoms with parallel spins than for the other two spin
configurations, where the field is between two Cu atoms with
antiparallel spin alignments. This difference in energy is due
to the direction of permanent moment relative to the induced
moment. We have calculated the permanent dipole moment
of the ground-state spin configuration by fitting the depen-
dence of energy of one of the Sz=1 /2 spin configurations
with external field, as shown in Fig. 7. The calculated values
of the permanent dipole moment and polarizability of �Cu3�
molecule are p=4.77�10−33 C m and �=1.025
�10−38 C m2 /V, respectively. Although there is no experi-
mental value of polarizability available for �Cu3�, polariz-
abilities within DFT calculations are generally accurate to
1–3 %.

The value p extracted from this fitting is consistent with
the direct calculation of the electric dipole moment of the
three spin configurations at zero field, implemented in the
NRLMOL. To calculate the matrix element d given in Eq. �12�,
we substitute the components of the moments for the differ-
ent spin configurations of Fig. 6,

FIG. 5. �Color online� The direction of the applied electric fields
used in this calculation.

FIG. 6. �Color online� Dipole moments of three spin configura-
tions and their relative angles. p↓↑↑= ��↓↑↑
eR
�↓↑↑�, p↑↓↑
= ��↑↓↑
eR
�↑↓↑�, and p↑↑↓= ��↑↑↓
eR
�↑↑↓� are the moments cor-
responding to the spin configurations of Fig. 4�a�.
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d =
1

3
p��1 + � cos � + �2 cos 2��x̂ + �� sin �

+ �2 sin 2��ŷ� =
p

2
�x̂ + iŷ� . �16�

The magnitude of the dipole coupling in �Cu3� molecule
is, therefore

d =
p
2

= 3.38 � 10−33 C m. �17�

The efficiency of the �Cu3� molecule as a switching de-
vice depends on how fast an electric field can generate tran-
sitions from one chiral state to the other. The characteristic
�Rabi� time for transitions between the two chiral states is
given by

� =
h


d · �

. �18�

Here, h is Planck constant, d is the dipole matrix element
between states of different chirality given by Eq. �17�, and �
is the external electric field. Figure 8 shows the dependence
of the Rabi time on external field, with the maximum value

of �50 ns for a field �	5�106 V /m. For larger fields on
the order of 	108 V /m, easily attainable in the vicinity of a
STM tip, the Rabi time is on the order of 1 ns, which is
considered to be a relatively fast control-time in quantum
information processing.

B. Modification of the exchange coupling in an electric field

To calculate the dependence of the exchange coupling J
on the electric field, we need to determine how the spin S
=1 /2 ground state and the spin S=3 /2 excited state depend
on the field. We define the exchange energy J��� as the dif-
ference

J��� = E3/2��� − E1/2
− ��� , �19�

where E1/2��� and E3/2��� are the energies of the S=1 /2
ground state and of the spin S=3 /2 excited state, respec-
tively, in the presence of an electric field.

Based on on our discussion of Sec. III A �see Eq. �8��, the
energy of the S=1 /2 chiral ground-state manifold and the
S=3 /2 excited state vs � are shown schematically in Fig. 9,
where we have disregarded the quadratic dependence of both
E3/2 and E1/2 on the field due to the induced electric dipole
moment.

The calculation of the electric-field-modified exchange
parameter using first-principles methods is not completely
straightforward since the SDFT calculations done within NR-

LMOL allow us to calculate the energy of a given spin con-
figuration whereas the �chiral� ground state is a linear com-
bination of three possible spin configurations. However, we
can get an estimate of the dependence of J on � by approxi-
mating

E1/2
− ��� � �1

2��↓↑↑
HDFT���
�↓↑↑� + �2
2��↑↓↑
HDFT���
�↑↓↑�

+ �3
2��↑↑↓
HDFT���
�↑↑↓� = �1

2E↓↑↑ + �2
2E↑↓↑

+ �3
2E↑↑↓.

The coefficients ��s can be obtained by expanding 
�1/2
− ����

in Eq. �9� in terms of the spin configurations, which leads to
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FIG. 7. Electric field dependence of the energy for one of the
three spin Sz=1 /2 spin configurations. The plot for the other two
configurations is very similar and the fitting yields essentially the
same values of p and �.
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FIG. 8. Electric field dependence of the Rabi time for quantum
transitions between the two ground state.

FIG. 9. Schematic electric-field dependence of the energies of
the S=1 /2 chiral states and spin S=3 /2 excited state, and the ex-
change energy J defined in Eq. �19�.
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�1/2
− ���� =

1
6

��1 − r��↓↑↑ + �� − �2r��↑↓↑ + ��2

− �r��↑↑↓� = �1�↓↑↑ + �2�↑↓↑ + �3�↑↑↓,

�20�

where r= 
d·�

d·� = 1

2
�1− i�, for the given choice of the electric

field direction.
Therefore,

E1/2
− ��� �

1

6��2 − 2�E↓↑↑ + �2 +
1 − 3

2
�E↑↓↑

+ �2 +
1 + 3

2
�E↑↑↓� . �21�

The energies E↑↓↑ and E↑↑↓ are the same because of symme-
try. Since the difference between E↓↑↑ and E↑↓↑ is very small
and near the accuracy limit of our calculations, we further
approximate E↓↑↑�E↑↓↑.

The exchange parameter J becomes

J��� � E↑↑↑��� − E↓↑↑��� , �22�

with E↑↑↑����E3/2���.
In Fig. 10 we plot the electric field-induced variation in

the exchange energy �J����J���−J�0� vs �. The result for
�J obtained by evaluating Eq. �22� with SDFT is shown by
the red curve. For this part of the calculations the conver-
gence criterion has been increased up to 10−8 Hartree. We
can see that the dependence of J on electric field is quite
small, and �J is in the microelectron volt range for electric
fields �= �1–10��107 V /m. These energies are not far form
the accuracy limit of our numerical calculations, which is the
reason of the fluctuations seen in the plot. Nevertheless the
overall trend is an increase in �J��� with �, which is approxi-
mately linear at low fields. Note that the SDFT evaluations
of E↑↑↑��� and E↓↑↑��� contain a quadratic contribution in �
but this nearly cancels at small fields when computing �J,
and it becomes appreciable only at ��5�107 V /m.

The blue line in Fig. 10 shows the dependence of �J on �
given by the prefactor of the cosine function in Eq. �15�,
which was derived within the spin Hamiltonian formalism.
When plotting Eq. �15� we have used the value of d extracted
from our first-principles calculations. Comparing the two
curves, we note that, apart form the fluctuations in the nu-
merical result mentioned above, the theoretical and numeri-
cal values for �J are consistent, and both procedures predict
an overall increase in �J with electric field. The quadratic
behavior of �J observed at higher electric fields is due to the
slight difference in polarizabilities of S=1 /2 and S=3 /2 spin
configurations.

The electric field dependence of the exchange constant in
this work is calculated for one direction of electric field only,
between the Cu atoms at sites 2 and 3, as shown in Fig. 5.
Although in principle the angular dependence of the ex-
change constant on the electric field direction can be calcu-
lated using our method, given the smallness of �J �close to
the limiting accuracy of our DFT calculations� and the ensu-
ing fluctuations in the calculated values �see Fig. 10�, it is in
practice hard to extract this dependence unambiguously.

V. SUMMARY

In this paper we have carried out a first-principles study of
the spin-electric coupling in single-molecule magnets
�SMMs� without inversion symmetry. Specifically, we have
analyzed the clear-cut case of the �Cu3� triangular antiferro-
magnet where because of spin frustration, the ground state
consists of two generate spin 1/2 doublets of opposite chiral-
ity. Theory predicts16,19 that an electric field can couple these
states, even when spin-orbit interaction is absent. The main
goal of our work has been to compute how strong this cou-
pling is.

Our calculations of the electronic structure of the �Cu3�
molecule show that the spin magnetic moments are localized
at the three Cu atom sites of the molecule. The magnetic
properties of the molecule are correctly described by a trian-
gular spin s=1 /2 Heisenberg antiferromagnet, with an ex-
change coupling J on the order of 5 meV that separates the
energies of the spin-S=1 /2 ground-state many-fold and the
spin-S=3 /2 excited states. In agreement with theoretical
predictions,16,19 we find that an electric field couples the two
ground-state doublets of opposite chirality, even when spin-
orbit interaction is absent. For electric fields that are not too
large ���5�107 V /m.�, the strength of the coupling is lin-
ear in the field and proportional to the permanent electric
dipole moment d of the three frustrated spin configurations.
The calculations yield a value of d�4�10−33 C m
�e10−4a for �Cu3�, where a is the Cu atom separation. Cor-
responding Rabi times for electric field-induced transitions
between chiral states can be as short as 1 ns, for electric
fields on the order of 108 V /m, which are easily produced
by a nearby STM tip. Thus this spin-electric coupling mecha-
nism is of potential interest for the use of single-molecule
magnets in quantum information processing as fast switching
devices.

Our calculations also indicate that the presence of an ex-
ternal electric field modifies the exchange constant J. Typi-
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FIG. 10. �Color online� Electric-field dependence of the varia-
tion in the exchange energy �J����J���−J�0� induced by the field.
The red curve �fluctuating� is the first-principles result obtained by
evaluating Eq. �22� and the dashed black curve is the quadratic fit of
�J���. The blue curve �straight line� is a plot of Eq. �15� with the
numerical value of d extracted from the first-principles calculations.
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cally the electric field increases J, although the energy scale
of this change is in the microelectron volt range for typical
STM-generated electric fields. Thus for this specific antifer-
romagnetic SMM, the electric field cannot trigger directly a
level crossing between magnetic states with different total
spin, as suggested recently for other SMMs.36,37

This work shows that a microscopic investigation of the
spin-electric coupling using the NRLMOL first-principles code
is feasible, and can systematically implemented for a large
class of SMMs which lack inversion symmetry. In this paper
we have disregarded the effect of spin-orbit interaction and
external magnetic field. The spin-orbit interaction strength is
small compared to the exchange coupling J. In the case of
�Cu3� it simply introduces a small splitting between the chi-
ral states but is not expected to influence significantly the
spin-electric coupling. However, in other antiferromagnetic

rings with an odd number of spins spin-orbit interaction is
essential for the very existence of the coupling mechanism.19

Work to include both spin-orbit interactions and an external
magnetic field is in progress. Together with the group-theory
analysis presented in Ref. 19, these studies will be a consid-
erable help in guiding future experiments and selecting the
most promising SMMs for applications in quantum informa-
tion processing and nanospintronics.
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Frustrated triangular molecule magnets such as {Cu3} are characterized by two degenerate S = 1/2 ground
states with opposite chirality. Recently, it has been proposed theoretically [M. Trif et al., Phys. Rev. Lett. 101,
217201 (2008)] and verified by ab initio calculations [M. F. Islam et al., Phys. Rev. B 82, 155446 (2010)] that
an external electric field can efficiently couple these two chiral spin states, even in the absence of spin-orbit
interaction (SOI). The SOI is, nevertheless, important since it introduces a splitting in the ground-state manifold
via the Dzyaloshinskii-Moriya (DM) interaction. In this paper, we present a theoretical study of the effect of the
SOI on the chiral states within spin-density functional theory. We employ a recently introduced Hubbard-model
approach to elucidate the connection between the SOI and the Dzyaloshinskii-Moriya interaction. This allows
us to express the Dzyaloshinskii-Moriya interaction constant D in terms of the microscopic Hubbard-model
parameters, which we calculate from first principles. The small splitting that we find for the {Cu3} chiral
state energies (� ≈ 0.02 meV) is consistent with experimental results. The one-band Hubbard-model approach
adopted and analyzed here also yields a better estimate of the isotropic exchange constant than the ones obtained
by comparing total energies of different spin configurations. The method used here for calculating the DM
interaction unmasks its simple fundamental origin, which is the off-diagonal spin-orbit interaction between the
generally multireference vacuum state and single-electron excitations out of those states.

DOI: 10.1103/PhysRevB.85.085427 PACS number(s): 75.50.Xx, 75.75.−c, 75.70.Tj

I. INTRODUCTION

In the last 20 years, single-molecule magnets (SMMs)
have been widely studied both for their fundamental physical
properties1 and for possible applications in magnetic storage
and quantum information.2,3 Unlike traditional bulk magnetic
materials, molecular magnetic materials can be magnetized
in a magnetic field without any interaction between the
individual molecules. This magnetization is a property of
the molecules themselves. The magnetization occurs because
of the large ground-state (GS) spin and the large easy-axis
magnetic anisotropy barrier separating the spin-up and spin-
down states. In principle, it is possible to store and manipulate
information in one SMM. Furthermore, the two quantum
states representing the two possible spin orientations can be
used to build a quantum qubit. Whether used as classical
magnetic storage units or as quantum coherent elements, the
crucial requirement in both cases is the ability to control and
manipulate the magnetic states of the SMM in an efficient
way. Manipulation by magnetic fields is straightforward but,
in practice, cannot be realized with molecular-size spatial
resolution and at fast temporal scales. Unlike magnetic fields,
electric fields are easily produced, quickly switched, and
can be applied locally at the nanoscale and molecular scale.
Therefore, manipulation of the properties of SMMs by external
electric fields is an attractive and promising alternative.4

Although electric fields do not directly couple to spins,
electric manipulation of the spin states is possible indirectly
via spin-orbit coupling. This requires the presence of a strong
spin-orbit coupling such that the electric field can effectively
flip the spin states by acting on the orbital part of the spin
orbitals. When SMMs are involved, this is not the most efficient

mechanism, since the relative strength of spin-orbit interaction
scales like the volume of the molecule.

Recently, a different mechanism of spin-electric coupling
in antiferromagnetic (AFM) SMMs, characterized by a lack of
inversion symmetry and spin frustration, has been proposed.4

The best example of such a system is a triangular spin s = 1/2
ring with AFM coupling, realized, for example, in the {Cu3}
SMM. The low-energy physics of this system can be described
by a three-site spin s = 1/2 Heisenberg Hamiltonian whose
ground-state manifold is composed of two degenerate (total)
spin S = 1/2 doublets, with wave functions represented by∣∣∣∣χ±,Sz = +1

2

〉
= 1√

3
(|↓↑↑〉 + ε±|↑↓↑〉 + ε∓|↑↑↓〉),

(1)∣∣∣∣χ±,Sz = −1

2

〉
= 1√

3
(|↑↓↓〉 + ε±|↓↑↓〉 + ε∓|↓↓↑〉),

(2)

where the many-body states |σ1σ2σ3〉 are products of spin-
orbital states, σi = (↑ ,↓), i = 1,2,3, localized on the three
magnetic ions of the molecules, and ε± = exp(±2πi/3). The
four states |χ±,Sz = ±1/2〉 in Eqs. (1) and (2) are labeled by
the eigenvalues Sz = ±1/2 of the z component of the total
spin, and by the chirality quantum number χ± = ±1, that is,
the eigenvalues of the chiral operator,

Cz = 4√
3

s1 · s2 × s3, (3)

where si (i =1,2,3) is the spin of the ith atom.
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FIG. 1. (Color online) Schematic diagram of electric-field-
induced transitions between states of different chirality belonging
to the spin S = 1/2 ground-state manifold of a triangular antiferro-
magnet. � represents zero-field splitting of the chiral states due to
Dzyaloshinskii-Moriya interaction.

An electric field couples to the SMM through eE · R, where
e is the electron charge and R = ∑3

i=1 ri , with ri being the
coordinates of the ith electron. The two spin-orbital states
|χ±,Sz〉, characterized by opposite chirality and equal spin
projection, form the basis of a two-dimensional E′ irreducible
representation of D3h. General group theory arguments then
guarantee that the matrix elements e〈χ+1,Sz|X−|χ−1,Sz〉 =
e〈χ−1,Sz|X+|χ+1,Sz〉 = 2id 
= 0, where X± ≡ ±X + iY are
the in-plane components of R, which also transform as the
two-dimensional irreducible representation E′. Here, d is a
real number that is referred to as spin-electric dipole coupling.
It follows that due to these nonzero matrix elements, an electric
field can cause transitions between two ground-state wave
functions of opposite chirality, but with the same Sz.

The observation of such electric-field-induced transitions
from one chiral state to another requires that the degeneracies
between these states be lifted. The anisotropic Dzyaloshinskii-
Moriya (DM) interaction plays a crucial role in that it
provides one possible mechanism that lifts the degeneracies
between states of different chirality without mixing them,
as shown in Fig. 1. More generally, the presence of the
DM interaction provides a mechanism to control the size of
quantum entanglement in magnetic trimers as a function of
the temperature and external magnetic field.5 Experimentally,
the DM-induced splitting in {Cu3} is estimated to be small
(approximately 0.5 K).6

Recently,7 we have investigated the details of the electronic
properties of the {Cu3} SMM, which has the chemical
composition Na[Cu3(AsW9O33) ·3H2O]·32H2O. It has been
shown experimentally that the ground state of this molecule
has AFM order with J ≈ 5K.6 This molecule is one of
the most promising triangular spin-1/2 molecules where the
spin-electric effect can be realized. In particular, we introduced
a scheme to evaluate the strength of spin-electric dipole
coupling d using ab initio methods. However, the value of
the anisotropic DM exchange constant interaction, which is
responsible for the ground-state zero-field splitting, has not
yet been calculated. The purpose of this work is to calculate
this splitting by ab initio methods. In order to achieve this
goal, we analyze the microscopic origin of the DM interaction

via a Hubbard-model approach in the presence of spin-orbit
integration, which is the correct minimal model to describe
both spin and charge fluctuations of these strongly correlated
electron systems. At half filling and in the large Hubbard U

limit, spin-dependent virtual hopping processes, induced by
the spin-orbit interaction, give rise to an anisotropic exchange
interaction.8 There is a close analogy with the isotropic
Heisenberg exchange interaction obtained in second-order per-
turbation theory in the spin-independent hopping perturbation.
In addition to elucidating the physical mechanism leading
to the anisotropic DM exchange interaction, this approach
provides a very convenient prescription of how to extract
the DM exchange constant from first-principles calculations,
which we have carried out for {Cu3}.

This paper is organized as follows. In Sec. II A, we discuss
the general properties of the DM interaction. The Hubbard-
model approach for calculating the DM vector, adopted in this
work, is discussed in Sec. II B. In Sec. III, we discuss details
of extracting Hubbard-model parameters from our ab initio
calculations. In Sec. III D, we discuss other methods that are
usually employed for calculating the DM vector. Finally, in
Sec. IV, we present a summary of our work.

II. THE DZYALOSHINSKII-MORIYA INTERACTION IN
FRUSTRATED ANTIFERROMAGNETIC SPIN RINGS

A. General properties of the DM interaction

The Dzyaloshinskii-Moriya (DM) interaction is an
anisotropic exchange interaction resulting from the interplay of
the Coulomb interaction and the spin-orbit coupling in systems
of low crystal symmetry. The DM interaction is an important
effect for many magnetic systems and plays a crucial role
in determining the zero-field splitting of energy levels. An
anisotropic exchange interaction of the form

D12 · S1 × S2, (4)

which is linear in the spin-orbit interaction, was put forward
by Dzyaloshinskii on the basis of symmetry considerations.9

Here, D12 is the DM vector between two localized spins, S1

and S2. Later, Moriya10,11 provided a mechanism for this in-
teraction by extending Anderson’s theory of superexchange12

to include the effect of spin-orbit coupling. Let us consider
for simplicity two “magnetic ions” located at sites R and
R′, each occupied by a single electron in the ground state.
Second-order perturbation theory in the hopping Hamiltonian
Ht coupling the two sites gives rise to an isotropic AFM
interaction with exchange constant J = 2t2

RR′/U , where tRR′

is a spin-independent hopping integral and U is the energy
required to transfer an electron from R to R′. When spin-orbit
interaction HSOI is included, similar second-order processes
can generate an anisotropic exchange interaction in the form
of Eq. (4), with D ∼ tRR′bRR′/U where bRR′ is an SOI-induced
spin-dependent hopping integral. To the lowest order, bRR′ is
just the matrix elements of the HSOI between two orbitals
localized at R and R′. This is the dominant contribution to
D. In the case in which, at each site, more than one orbital
|R,μ〉, μ = 1,2, . . ., plays a role, higher-order terms such
as bRR′ = tRR′ 〈R,μ|HSOI|R′,μ′〉/�Eμ,μ′ are possible, making
the corresponding D effectively a third-order coupling in the
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perturbations Ht and HSOI. It turns out that D  (�g/g),
where g is the free-electron gyromagnetic ratio and �g is
the deviation from g induced by the SOI.11

As shown by Moriya, other terms linear in the SOI
contribute to the anisotropic exchange of the form of Eq. (4).
The second most important contribution is also a second-
order term resulting from the SOI and direct interatomic
exchange interaction J ex(R,R′). In AFM crystals, this term is
J ex(R,R′)/J times smaller than the second-order contribution
proportional to tRR′bRR′ . Finally, third-order contributions to D

include the hopping terms twice and the intra-atomic exchange
constant J0. They are J0/U smaller than second-order terms.

The DM exchange vector D vanishes when the symmetry
of the crystal is high. This is the case, for example, when the
center of inversion of the system is located halfway between
the two magnetic ions in a unit cell. In low-dimensional
crystals where D 
= 0, the anisotropic exchange is typically
the most important anisotropic contribution between spins.
The DM interaction favors noncollinear spin configurations,
with typical canted spins. As such, it determines the spin
arrangements and it is responsible for the weak ferromag-
netism observed in some predominantly AFM crystals, such
as α-Fe2O2. The tendency toward canted spin configurations
is most easily seen by minimizing the energy in Eq. (4)
for two classical spins, when the DM vector D is, for
example, perpendicular to the line joining the two ions. From
Eq. (4), we can see that the minimum energy corresponds
to a spin configuration where both spins are perpendicular
to each other and to the direction of D. Similar conclusions
can be obtained by analyzing the same system quantum
mechanically. The DM interactions are also responsible for
the proposed noncollinear spin configurations in magnetic
clusters engineered by scanning tunneling microscopy (STM)
techniques on insulating surfaces.13,14

B. The DM interaction for antiferromagnetic spin rings within
the one-band Hubbard-model approach

In this section, we specialize the previous discussion to
the case of an AFM spin triangle, and show how the DM
interaction can be derived microscopically from a Hubbard
model at half filling, in the presence of spin-orbit interaction.

As mentioned in Sec. I, the low-energy magnetic properties
of {Cu3} are well described by an isotropic AFM Heisenberg
model,

HH =
∑
〈i,j〉

Jij si · sj , Jij > 0, (5)

where si are spin vector operators of magnitude si = 1/2,
predominately localized at the three Cu sites. Here, i and
j stand for atomic indices. If the small distortion from a
perfect equilateral arrangement of the three Cu atoms is
neglected, then the three exchange constants are the same,
Jij = J . Density functional theory (DFT) calculations7 find
J ≈ 3.7 meV. The GS manifold comprises two spin S = 1/2
doublets, which can be represented by the two chiral states
given in Eqs. (1) and (2), or any two orthogonal linear
combination of these. The spin S = 3/2 excited-state multiplet
is separated by the GS by an energy of order J .

It is well known that the AFM Heisenberg model represents
an effective low-energy spin model that can be derived from
an underlying Hubbard model at half filling in the large t/U

limit. The choice of the best minimal model capturing the
essential microscopic features of the electronic system is often
a complex task, particularly when the exchange interaction
between the magnetic ions is mediated via several paths
involving nonmagnetic ions, as in the case of {Cu3}. We
will neglect these complications and assume that an effective
one-band Hubbard model suffices for this purpose. We will
see that our first-principles calculations corroborate this
choice, showing that one localized orbital at each magnetic
ion indeed is enough to describe the low-energy physics
of the system. We will comment later on the possibility of
considering a more complex Hubbard model to describe the
nonmagnetic bridges between Cu atoms, as well as the need
to include more than one orbital at the Cu sites.

The second quantized one-band Hubbard Hamiltonian
reads

HU = −t
∑
i,j

∑
α

{c†
iαcjα + H.c.} + 1

2
U

∑
i

ni↑ ni↓, (6)

where c
†
iα (c†

iα) creates (destroys) an electron with spin α at
site i, and niα = c

†
iαciα is the particle-number operator. More

precisely, the index i labels a Wannier function localized at site
i. The first term represents the kinetic energy, characterized by
a spin-independent hopping parameter t , which is the same for
all pairs of sites due to the C3 symmetry of the {Cu3} molecule
magnet. The second term is an on-site repulsion energy of
strength U , which has an effect only when two electrons of
opposite spins reside on the same site. It is the on-site repulsion
energy.

The spin-orbit interaction in the Hubbard model is de-
scribed by adding the following spin-dependent hopping
term:8,15–17

HSOI =
∑
i,j

∑
α,β

{
c
†
iα

(
i
Pij

2
· σ αβ

)
cjβ + H.c.

}
, (7)

where σ is the vector of the three Pauli matrices. Here,
the vector Pij is proportional to the matrix element of
∇V × p between the orbital parts of the Wannier functions
at sites i and j ; V is the one-electron potential and p is
the momentum operator. Clearly, the spin-orbit term has the
form of a spin-dependent hopping, which is added to the usual
spin-independent hopping proportional to t . This form of the
spin-orbit interaction is a special case of Moriya’s hopping
terms11 in the limit that all but one orbital energy is taken to
infinity,16 and it is consistent with our choice of a one-band
Hubbard model.

In contrast to the spin-independent hopping term, the spin-
depending hopping parameters are related by both the full
symmetry of the molecule and the local symmetry of localized
orbitals.8 Now, because of the σv symmetry, Pij = P ez. The
final expression of the Hubbard model, including the spin-orbit
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interaction, is

HU+SOI =
∑
i,α

{c†
iα(−t + iλSOIα)ci+1α + H.c.}

+ 1

2
U

∑
i

ni↑ ni↓, (8)

where λSOI ≡ P/2 = Pij /2 · ez is the spin-orbit parameter.
We want to treat the two hopping terms perturbatively on

the same footing by doing an expansion around the atomic
limit t/U, λSOI/U → 0. In many molecular magnets, t �
λSOI. This turns out to be the case also for {Cu3}. In other
molecules, the two hopping parameters are of the same order
of magnitude.

We are interested in the half-filling regime. We know
that second-order perturbation theory in t results in an AFM
isotropic exchange term that splits the spin degeneracy of
the low-energy sector of the Hubbard model, defined by the
singly occupied states. This action can be represented with
an effective spin Hamiltonian, i.e., the isotropic Heisenberg
model, with exchange constant J = 4t2/|U |.18 Similarly, Loss
et al. showed that another second-order term proportional to
tλSOI/U generates an anisotropic exchange term that can be
identified with the DM interaction.8 They write approximate
adapted many-body states to first order in the perturbation
|t |,λSOI � U , corresponding to singly occupied states. In
particular, there are two independent doublets,

∣∣ψ1 α
E′±

〉 = 1√
3

(|↓↑↑〉 + ε±|↑↓↑〉 + ε∓|↑↑↓〉) (9)

and
∣∣ψ1 α

E′±

〉 = 1√
3

(|↑↓↓〉 + ε±|↓↑↓〉 + ε∓|↓↓↑〉), (10)

with ε± = exp(±2πi/3). These are states with S = 1/2 and
Sz = ±1/2. These states are formally identical to the chiral
states given in Eqs. (1) and (2). Now, each of the terms
appearing in these equations is a single Slater determinant
obtained by three creation operators acting on the vacuum,
e.g.,

|↑↑↓〉 ≡ c
†
1 ↑c

†
2 ↑c

†
3 ↓|0〉. (11)

The states |ψ1 α
E′+

〉 and |ψ1 α
E′−

〉 are eigenstates of the Hubbard
Hamiltonian when t = λSOI = 0. The tunneling and SOI mix
the singly occupied and doubly occupied states. The first-order
correction is obtained by mixing in doubly occupied states,

∣∣�1 α
E′±

〉 ≡ |ψ1 α
E′±

〉 + (ε− − 1)(t ± αλSOI)√
2U

∣∣ψ2 α

E
′1±

〉

+ 3ε+(t ± αλSOI)√
2U

∣∣ψ2 α

E
′2±

〉
, (12)

where

∣∣ψ2 α

E
′1±

〉 = 1√
6

3∑
i=1

εi−1
1,2

(∣∣ψα
i1

〉 + ∣∣ψα
i2

〉)
(13)

and

∣∣ψ2 α

E
′2±

〉 = 1√
6

3∑
i=1

εi−1
1,2

(∣∣ψα
i1

〉 − ∣∣ψα
i2

〉)
, (14)

with |ψα
ij 〉 = c

†
i↑c

†
i↓c

†
jα|0〉 (i = 1,2,3 and j 
= i) representing

the doubly occupied sites.
The next step is to take the expectation value of the spin-

orbit part of Eq. (8) in these approximated states. The result
is8

〈
�1 α

E′±

∣∣HSOI

∣∣�1 α
E′±

〉 = ±5
√

3λSOIt

2U
sgn(α). (15)

Note that the off-diagonal matrix elements of HSOI vanish;
in other words, the SOI splits but does not mix the chiral states.

In the small t/U, λSOI/U limit, we can resort to a spin-
only description of the low-energy physics of the system. The
ground-state manifold [corresponding to the states of Eq. (12)]
is given by the two chiral spin states of Eqs. (1) and (2).

The anisotropic DM spin-exchange Hamiltonian in D3h

symmetry is given by8

HDM = iDz

2

3∑
1

(si
+ si+1

− − si
− si+1

+ ). (16)

Now, for a molecular magnet with D3h symmetry, the spin-
orbit interaction acting in the S = 1/2 subspace can be reduced
to the effective form4

HSOI = �SOICzSz, (17)

where �SOI is the effective SOI coupling constant and Sz =
s1z + s2z + s3z is the z component of the total spin S. By
using Eq. (3), one can see that with the identification Dz =
(1/

√
3)�SOI, this form of the spin-orbit interaction reduces to

HDM given in Eq. (16).
The DM interaction expressed in this form clearly shows

that it splits but does not mix the two chiral states.19 The
splitting is exactly proportional to Dz and, via Eq. (15) in the
low-energy regime, we can make the identification4

Dz = 5λSOIt

U
. (18)

This Hubbard-model analysis suggests an avenue to extract
the DM parameters from an ab initio calculation. Only three
parameters are needed, namely, the spin-orbit interaction λSOI,
the hopping parameter t , and the on-site repulsion energy U .

Before carrying out this procedure, it is useful to comment
on possible generalizations of the Hubbard model considered
here and their implications for the DM exchange interaction.
One obvious generalization is to consider a multiband model,
where at each magnetic site i, besides the GS orbital gi

consider so far, there are one or more excited states ei . If
this is the case, other contributions to the DM interaction
already considered by Moriya and mentioned in Sec. II A
are possible. In an interesting set of papers, Yoon and
Solomon considered explicitly these terms in the study of
a class of trinuclear Cu complexes (see, for example, the
review paper [20], and references therein). Their expression
for the DM (antisymmetric) exchange parameter is, as in
our case, first order in the SOI. It involves the product
of the matrix element of the SOI between the GS and an
excited state at the same magnetic site, 〈gi |HSOI|ei〉, times
the two-electron (super)exchange interaction J

eigj

gigj
between

two different magnetic sites, i,j . These terms could possibly
be relevant in a multiorbital Hubbard model, particularly in
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the case of strong (super)exchange pathways involving the
same GS orbitals. As we will see in the following section,
for the specific {Cu3} molecular magnet considered here, a
one-band Hubbard model seems to capture the salient magnetic
properties of the system. Therefore we will focus on this
model and neglect the DM contributions arising from the
many-orbital case. 21

Finally, one could also consider the more complicated situa-
tion where the magnetic sites are connected by ligand bridges.
A generalized Hubbard model describing this situation was
already considered in Ref. 4, where a corresponding expression
of the DM exchange was derived. Again, these are all possible
improvements of the one-band, all-magnetic-site model. Our
strategy, however, is to carry out an ab initio study of the DM
interaction based on the simplest relevant model and see how
well it can capture the underlying physics.

C. Semiclassical analysis of the DM interaction in frustrated
spin systems

The quantum mechanical frustration present in an AFM
spin triangle and the DM interaction both tend to favor
noncollinear spin configurations. It is instructive to study their
interplay in a semiclassical approach, where noncollinearity is
a more intuitive concept.

The classical Heisenberg model with an energy functional
given by Eq. (5) has two degenerate “ground states,” given
by the two noncollinear spin configurations shown in Fig. 2.
Classically, these two states are the best way to bypass the
frustration present for any collinear spin configuration in a
triangular antiferromagnet. Quantum mechanically, the two
noncollinear spin configurations can be represented by the

(a)Left-handed

(b)Right-handed

a

b c

a

FIG. 2. (Color online) Noncollinear helical system of three
Cu-atom spins. (a) Anticlockwise rotations (by −240◦) define a
left-handed helical state. (b) Clockwise rotations (by +240◦) define
a right-hand helical state.

states

|ψnc ±〉 = [(α1|↑〉1 + β1|↓〉1) ⊗ (α2|↑〉2 + β2|↓〉2)

⊗ (α3|↑〉3 + β3|↓〉3)], (19)

where α = cos(θ/2) and β = exp{iφ} sin(θ/2). Here, θ is the
elevation angle and φ is the azimuth angle. The three spinors,
(αi |↑〉i + βi |↓〉i), i = 1,2,3, are three spin-1/2 coherent
states defined by the three noncollinear directions obtained
by rotating consecutively by the angle ±240◦ (see Fig. 2).
Anticlockwise rotations (by −240◦) define a left-handed
helical state [Fig. 2(a)]; clockwise rotations (by +240◦) define
a right-hand helical state [Fig. 2(b)].

In contrast to the true GS given in Eqs. (1) and (2), the
noncollinear states defined in Eq. (19) are neither eigenstates
of the quantum Hamiltonian given by Eq. (5) nor of S2 and Sz.
The expectation value of the Hamiltonian HH at these states
is defined by

〈ψnc ±|HH|ψnc ±〉 = 3J/4. (20)

The fact that the energy of the collinear states is higher than
the energy of the chiral states by 3J/8 is not surprising, since
the noncollinear states defined in Eq. (19) are a mixture of
S = 1/2 and S = 3/2 components.

When rewritten in terms of the electronic states for the
corresponding Hubbard model at half filling in the small t/U

limit, the noncollinear spin-coherent states defined in Eq. (19)
can be considered to be the “best” energy states given by a
single Slater determinant (note that the chiral states cannot be
written as a single Slater determinant).

It is now interesting to examine the effect of the DM
interaction on these states. A straightforward calculation shows
that for the DM interaction of Eq. (16), where only the z

component of D is nonzero,

〈ψnc ±|HDM|ψnc ±〉 = ±3

4

√
3

2
Dz. (21)

Therefore, as for the GS manifold of the exact eigenstates,
the DM interaction splits but does not couple the two
noncollinear states. The DM parameter Dz is, by Eq. (21),
related to the DM interaction-induced energy gap between the
two noncollinear states,

�Enc = 〈ψnc +|HDM|ψnc +〉 − 〈ψnc −|HDM|ψnc −〉 = 3
√

3

4
Dz.

(22)

This result suggests a way of extracting the DM vector
parameter D similar in spirit to the method used to calculate
the isotropic exchange parameter J by comparing the energy
difference of states with ferromagnetic and AFM spin config-
urations, respectively. In the next section, we will see that this
procedure can also be carried out by first-principles methods.

III. AB INITIO CALCULATION OF THE DM VECTOR

All of the calculations in this work are carried out by using
the ab initio package NRLMOL,22,23 which uses a Gaussian
basis set to solve the Kohn-Sham equations within the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation
(GGA).24 The PBE-GGA calculations discussed here use the
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TABLE I. Number of primitive Gaussians used for each type of
atom, the minimum and maximum values of the exponents, and the
number of contracted Gaussians. Here, α represents the range of the
exponents for the primitive Gaussians.

Contracted
Atom Bare functions Maximum Minimum

type Gaussians s p d α α

H 1 4 3 1 7.8 × 103 7.5 × 10−2

W 6 4 2 3 1.5 × 100 3.6 × 10−2

O 13 5 4 3 6.1 × 106 1.0 × 10−1

Na 16 6 4 3 2.5 × 107 2.7 × 10−2

Cu 20 7 5 4 4.8 × 108 5.0 × 10−2

As 21 7 6 4 7.0 × 108 6.1 × 10−2

massively parallel NRLMOL electronic structure code. The
numerical methods are described in full in Ref. 25. Very
large basis sets, based on a nonlinear optimization procedure
described in Ref. 26, have been used. As discussed in Ref. 26,
this procedure simultaneously optimizes the contraction coef-
ficients and the Gaussian-decay parameters by first performing
atomic self-consistent field (SCF) calculations, using single-
basis Gaussians, and then using the conjugate-gradient method
in conjunction with gradients of the energy with respect to
the decay parameters to minimize the total atomic energy. A
key feature of this optimization scheme is that it identified a
scaling law (proven in Ref. 26) showing that the shortest-range
Gaussian should scale as Z10/3 to ensure that there is no
basis-set superposition error. The basis sets are available upon
request. Table I shows the number of Gaussians used in our
calculations for each atom. For more computational details
and the electronic properties of {Cu3}, we refer the reader to
our previous work.7 In this molecule, the three Cu2+ cations
form an equilateral triangle and are the sites of three identical
s = 1/2 quantum spins. The electrons on each of the Cu atoms
have primarily d character. Our calculations have shown that
the low-energy magnetic properties are correctly described by
an effective three-site spin s = 1/2 Heisenberg model, with an
AFM exchange coupling, J ≈ 5 meV.

A. Calculation of the hopping term t

As discussed in Sec. II B, the Hubbard-model approach
is based on allowing the localized electrons to hop to their
nearest-neighbor sites and, in the present case of the {Cu3}
molecule, these localized electrons are d electrons. Therefore,
for calculating hopping parameter t , the relevant states are
those d electron states that lie close to the Fermi level. Let
|K,α〉 be the three relevant Kohn-Sham eigenstates calculated
from NRLMOL. We can write them as a linear combination of
the localized atomic orbitals, centered at the three Cu sites,
{|φa〉,|φb〉,|φc〉} ⊗ |χα〉, with α =↑ ,↓ for spin up and down,
respectively:

|K,α〉 =
∑

i

Ci
Kα|φi〉|χα〉, (23)

where Ci
Kα is the weight of the localized |φi〉|χα〉 wave

function.

FIG. 3. (Color online) Schematic diagram of the Kohn-Sham
energy levels around the Fermi level.

For the |↑↑↑〉 spin configuration, in the absence of spin-
orbit interaction, the relevant three levels around the Fermi
level are doubly and singly degenerate. These levels are
sketched in Fig. 3.

We obtain the level structure by diagonalizing the three-site
Hamiltonian in the absence of the SOI,

H0 = ε0

∑
i

|φi〉〈φi | − t
∑
i 
=j

|φi〉〈φj |, (24)

where ε0 is the on-site energy, t is the hopping term, and i,j =
a,b,c represent the copper sites. We get the eigenvalues ε0 + t

and ε0 − 2t for the twofold and onefold degenerate states,
respectively. The Kohn-Sham eigenvectors can be defined as
a linear combination of the localized wave functions,

|E1,↑〉 = 1√
2

(|φa〉 − |φb〉)|↑〉,

|E2,↑〉 = 1√
6

(|φa〉 + |φb〉 − 2|φc〉)|↑〉, (25)

|A,↑〉 = 1√
3

(|φa〉 + |φb〉 + |φc〉)|↑〉.

Now the localized states can be written in term of the Kohn-
Sham functions,

|φa〉|↑〉 = |A, ↑〉√
3

+ |E1,↑〉√
2

+ |E2,↑〉√
6

,

|φb〉|↑〉 = |A, ↑〉√
3

− |E1,↑〉√
2

+ |E2,↑〉√
6

, (26)

|φc〉|↑〉 = |A, ↑〉√
3

− 2
|E2,↑〉√

6
.

Our calculations show that these states are primarily
localized on the Cu atoms and have d character. We have
obtained the Kohn-Sham eigenenergies for the onefold and
twofold degenerate states,

〈E1,↑ |H0|E1,↑〉 = 1
2 (〈φa| − 〈φb|)H0(|φa〉 − |φb〉) = ε0 + t,

(27)
〈A,↑ |H0|A,↑〉 = 1

3 (〈φa| + 〈φb| + 〈φc|)H0

× (|φa〉 + |φb〉 + |φc〉) = ε0 − 2t.

From Eqs. (27), we can finally evaluate the value of the
parameter t as

t = 1
3 (〈E1,↑ |H0|E1,↑〉 − 〈A,↑ |H0|A,↑〉) = 50.84 meV.

(28)
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B. Calculation of the spin-orbit interaction parameter λSOI

The standard spin-orbit interaction representation for spher-
ical systems is given by

Uso(r,L,S) = 1

2c2
S · L

1

r

d�(r)

dr
, (29)

where r is the position, L is the angular momentum, S is the
spin moment, c is the speed of light, and � is a spherically
symmetric potential. The above equation is exact for spherical
systems. For a multicenter system, a superposition of such
terms needs to be considered. However, this approximation
could miss nonspherical correlations that are important for
anisotropic energies. Instead of using Eq. (29), a generalization
of the spin-orbit interaction for nonspherical or multicenter
systems is given by

Uso(r,p,S) = − 1

2c2
S · p × ∇�(r), (30)

where p is the momentum operator and a external electric field
is given by E = −∇�.

Pederson et al. (see Ref. 27) have shown an exact simplified
method for incorporating spin-orbit coupling into density
functional calculations. In order to get the basis set for the
spin-orbit coupling, the single-electron wave function can be
expressed as

ψis(r) =
∑
jα

Cis
jαfj (r)χα, (31)

where fj (r) is a spatial basis function, χα is either a majority
or minority spin spinor, and Cis

jα are determined by effectively
diagonalizing the Hamiltonian matrix. In order to calculate the
effect of the SOI [Eq. (30)], it is necessary to calculate matrix
elements of the form

Ujα,kα′ = 〈fjχα|U (r,p,S)|fkχα′ 〉
=

∑
x

1

i
〈fj |Vx |fk〉〈χα|Sx |χα′ 〉, (32)

where

〈fj |Vx |fk〉 = 1

2c2

(〈
dfj

dz

∣∣∣∣�
∣∣∣∣dfk

dy

〉
−

〈
dfj

dy

∣∣∣∣�
∣∣∣∣dfk

dz

〉)
.

(33)

The matrix elements for Vy and Vz are obtained by cyclical
permutations of x, y, and z in Eq. (33). This methodology
for the SOI matrix gives several advantages, including that it
does not require the determination of the electric field; it is
specially ideal for basis functions constructed from Gaussian-
type orbitals, Slater-type functions, and plane waves.

We are interested in the matrix elements in the localized
basis set, given by Eq. (26),

〈φi |〈χ↑|Uso|φk〉|χ↑〉

= − 1

2c2
〈φi |p × ∇�(r)|φk〉 · 〈χ↑|S|χ↑〉

= 1

2i
〈φi |Vz|φk〉 = − i

2
pz

ik ≡ −iλSOI. (34)

We can write these matrix elements in the Kohn-Sham basis
set as

〈φi |〈χ↑|Uso|φk〉|χ↑〉 =
∑
KK ′

(
C̃i

K↑
)∗

C̃i
K ′↑

×〈K,↑ |USOI|K ′,↑〉. (35)

We have obtained the matrix elements for the spin-orbit
interaction in the Kohn-Sham basis, {|E1〉,|E2〉,|A〉} ⊗ |χα〉
[Eq. (35)], and used Eqs. (26) to obtain the matrix elements:

pz =

⎛
⎜⎝

0 0.85 0.85

0.85 0 0.85

0.85 0.85 0

⎞
⎟⎠. (36)

From Eq. (34), we have λSOI = pz
ik/2 = 0.43 meV.

C. Calculation of the Hubbard U and evaluation of Dz and J

The most common approach for the calculation of U

involves the calculation of energy E of the molecule with
N , N + 1, and N − 1 electron, and the extraction of U from
the following equation:

U = E(N + 1) + E(N − 1) − 2E(N )

= [E(N + 1) − E(N )] − [E(N ) − E(N − 1)] = A − I.

(37)

In the above equation, A is (minus) the electron affinity28

and I is the ionization energy. For systems that are not closed
shell, such as those considered here, the U value is essentially
the second derivative of energy with respect to the charge, and
it is possible to determine U by calculating the energy as a
function of the charge.

For the single-band Hubbard model corresponding to the
{Cu3} molecule, we are interested in obtaining energies for
the charge-transfer excitations involving the transfer of a
localized d electron on one copper site to a localized d

electron on another site. Specifically, we wish to know the
energy of |X〉 = |↑a↓a↑c〉 relative to |↑a↓b↑c〉. There are a
total of 12 charge-transfer excitations that can be made with
one site that is doubly occupied and one electron on one of
the other sites. For the half-filled case of interest here, the
energy difference depends upon the electron affinity of the
state on site a, the ionization energy of the state on site b,
and the residual long-range Coulomb interaction between the
negatively charged electron added to site a and the positively
charged hole that is left behind on site b. Since site b and site
a are equivalent, it follows that we simply need to calculate
U for any one of the copper sites in the half-filled case. A
very rough estimate of the charge-transfer energy may be
determined by calculating the PBE-GGA energy of the Cu
atom with an electron configuration of 1s22s23s24s2p63p63dn

with n = 8, 9, 10. Using n = 9 as the reference state, one
finds a bare U value of 13.76 eV, which, after accounting
for the particle-hole interaction (27.2116/RCu−Cu = 2.95 eV,
where RCu−Cu = 4.87 Bohr is the distance between magnetic
centers), is shifted to 10.8 eV.

In the {Cu3} molecule, we have chosen to calculate U

quasianalytically by gradually adding (or subtracting) a small
fraction of electronic charge δq to one of the half-filled Cu d
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FIG. 4. (Color online) Dependence of the total energy on added
fractional charge δq. The (blue) circle represent the results of NRLMOL

calculations, and the dashed (red) line represents a quadratic fit.

states. The energy of the system as a function of δq is shown
in Fig. 4, where we can see that it can be well reproduced by
a quadratic fitting curve. The figure shows that upon adding a
fractional charge to a localized orbital, the total energy initially
decreases, since the orbital energy is negative. Eventually,
however, the competing Coulomb repulsion takes over and
the net change in total energy for adding one electron to a
localized orbital is positive. In contrast, with one extra electron
delocalized throughout the molecule, the total energy is usually
smaller than the energy of the neutral molecule.

The difference in the energy of the system before and after
adding a fraction of electronic charge δq is given by �E =
Ueff = Uδq2 − e2δq2/RCu-Cu, where U = ∂2E(q)/∂q2. We
have calculated the effective parameter Ueff by setting δq = 1:

Ueff = δq2

[
∂2E(q)

∂q2
− e2

RCu-Cu

]
= 9.06 eV, (38)

where E(q) = E0 + (U/2)(q − q0)2, with E0 being a con-
stant.

1. Evaluation of Dz and J

Having calculated the parameters t , λSO , and Ueff , we are
now able to use Eq. (18) and evaluate the Dzyaloshinskii-
Moriya parameter Dz. We obtain

Dz = 5
λSOIt

Ueff
= 0.01 meV. (39)

This value of Dz yields a small splitting of the chiral
state, � ≈ 0.02 meV ≈ 0.3 K. Experimental estimates of
the DM parameter find a splitting that is three to four times
larger than this value. Considering the smallness of this
energy, the uncertainty in the experimental measurements
and the approximation in evaluating t , U , and λSOI, the two
estimates are consistent with each other. A better agreement
between theory and experiment could perhaps be provided by
considering additional contributions to the DM interaction, as,
for example, proposed by Solomon et al.20 As we discussed
earlier, these terms would be present in our formalism within
a generalized multiband Hubbard model. Although these
terms cannot be a priori disregarded and should be carefully
evaluated, the success of the one-band Hubbard model in
describing the low-energy magnetic properties of the system

(see below) seems to suggest that they are less likely to resolve
the discrepancy with experiment.

On the other hand, it is also possible that part of the
discrepancy between theory and experiment is due to the fact
that other mechanisms, different from the DM interaction,
contribute to the splitting. In particular, Ref. 29 pointed out
that small deformations of the triangular molecule can lift the
chiral degeneracy and this contribution to the splitting could
be even more important than the DM interaction. If this is
indeed the case, then our results would imply that our method
of computing the DM parameter is actually rather accurate.

From a computational point of view, it is interesting at this
point to evaluate the isotropic exchange constant J from the
Hubbard-model perturbative approach, which gives

J = 4t2/U ≈ 1 meV. (40)

This estimate of J is considerably closer to the experimental
value of 0.5 meV than the value of 3.7 meV obtained
by computing the energy difference between states with
ferromagnetic and AFM spin configurations.7 This is again
another indication that a one-band Hubbard model considered
here might be the correct effective model to describe the {Cu3}
molecular magnet.

D. Comparison with other methods

In a recent work, Takeda et al.30 have used a noncollinear
approach to estimate the DM interaction. Instead of the use
of simple product functions, this work capitalizes on the
use of generalized orbitals, which are composed of a linear
combination of both spinors with different and variable spatial
functions. By using such a representation, it is possible to
develop single determinants, which are composed of a linear
combination of the chiral spin-1/2 states and the nonchiral
spin-3/2 states. For example, the states associated with the
system depicted in Fig. 2(a) would be represented according to

|ψnc±〉 = |Xa
±Xb

±Xc
±〉

= 1

2
√

2
[|↑↑↑〉 ± i|↓↑↑〉 ∓ (−1)1/6|↑↓↑〉

∓ (−1)5/6|↑↑↓〉 ∓ i|↓↓↓〉 − |↑↓↓〉
+ (−1)1/3|↓↑↓〉 − (−1)2/3|↓↑↓〉], (41)

where X+(θ,φ) = cos(θ/2)|↑〉 + exp{iφ} sin(θ/2)|↓〉
and X−(θ,φ) = sin(θ/2)|↑〉 − exp{iφ} cos(θ/2)|↓〉, with
θ = π/2 and φ = π/2, 7π/2, − π/2. They further claim
that �Enc = 3

√
3/4Dz [see Eq. (22)] can be estimated by a

perturbational treatment of the SOI as follows:

�Enc = 〈ψnc +|HSOI|ψnc +〉 − 〈ψnc −|HSOI|ψnc −〉, (42)

where HSOI is the one-electron spin-orbit interaction. These
expectation values can be calculated by DFT.

It is clear from the expression given by Eq. (41) that the
expectation value of the spin-orbit interaction for this and other
states would be linear, so, without other considerations, one
cannot extract an interaction that depends upon the excitations
of interest to the Hubbard Hamiltonian. However, in analogy
with the expansion of the many-electron wave function for
molecular hydrogen in regions intermediate between the bond-
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ing and separated-atom limit, a self-consistent optimization
of such a starting determinant allows the spin orbitals to
be intermediate between the doubly occupied and singly
occupied representations. While the resulting noncollinear
wave function is still a single Slater determinant in character,
the expansion of the noncollinear state in terms of the Hubbard
states would show a wave function comprised primarily of
the 8 × 8 half-filled determinants, but would also contain
small contributions of the ionic contributions which are shifted
upward by Ueff . It is the small admixture of these states that
allow Takeda et al. to extract both the exchange parameters
and the DM interaction through the use of noncollinear
representations. This approach could have advantages from
an operational viewpoint since it effectively addresses the
potential role of other excited states that are routinely ex-
cluded from the Hubbard Hamiltonian. However, the precise
interactions, which ultimately mediate the appearance of the
DM interaction, require additional analysis that is every bit as
arduous as that presented here.

An alternative method to calculate the DM vector, based
on Andersen’s “local force theorem,”31 was developed by
Solovyev et al.32 More recently, this method was utilized in
conjunction with DFT to study the DM interaction between
magnetic atoms inserted in different crystalline systems and
surfaces.14,33 Essentially, this method expresses the DM vector
in terms of the Green’s functions of the system, modified
by the spin-orbit interaction. Although computationally so-
phisticated, the Green’s function method is physically less
transparent than the one adopted here, particularly for a finite
system such as triangular SMM, where the crucial ingredients
leading to the anisotropic DM exchange can be reduced to a
few parameters that have a direct physical interpretation within
the Hubbard model.

IV. CONCLUSIONS

We carried out a first-principles investigation of the
zero-field splitting of the chiral ground states of a {Cu3}
single-molecule magnet (SMM) caused by the Dzyaloshinskii-
Moriya interaction. Our approach relies on the perturbative
analysis of a Hubbard model, which includes spin-orbit
interaction. In the large U limit, appropriate for {Cu3}, it
is possible to express the Dzyaloshinskii-Moriya constant in
terms of the parameters that define the Hubbard model, such

as the effective hopping integral between magnetic sites t ,
the on-site repulsion energy U , and the strength of the spin
orbit λSOI. We then carried out an approximate method to
extract the values of these parameters from our spin-density
functional theory calculations of the SMM. The value of
the Dzyaloshinskii-Moriya constant D that we found is of
the order of 0.01 meV, which is a factor of 5 smaller than
the value measured experimentally. Given the uncertainty of
the experimental result and the fact that other effects might
contribute to the zero-field spin splitting of the chiral states,
our estimate should be considered consistent with experiment.

The method of computing the DM parameter by effectively
extending Anderson’s theory of superexchange to include spin-
orbit interaction is very close to Moriya’s original formulation
of anisotropic exchange. It is interesting to note that if we use
this approach to calculate the isotropic superexchange constant
J of the Heisenberg model describing {Cu3}, we obtain a value
that is closer to the experimental result than the estimates based
on total energy calculations of ferromagnetic vs AFM spin
configurations. This seems to suggest that this approach is not
only physically very intuitive, but it might also bear promise
for good numerical accuracy.

While the methods discussed here provide physical insight
into the nature of the DM interaction, we note that for future
calculations, it would be desirable to consider excitations that
are not normally included in the single-band Hubbard model.
A multiband Hubbard model, where additional contributions
to the DM interaction are present,20 could in particular provide
a better agreement between the theoretical and experimental
values of the DM interaction parameter. For such an approach,
it would be necessary to include methodologies that allow for
the calculation of all excitations in such systems.
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Frustrated triangular molecular magnets are a very important class of magnetic molecules. Ex-
ternal electric fields can couple to the spin chirality of such molecules. The coupling exists even
in the absence of spin-orbit interaction. Spin-electric coupling in these molecular magnets (MMs)
represents a very efficient and fast way of manipulating the magnetic states of the MM. This manip-
ulation can be achieved via a localized electric field generated, e.g., by a nearby Scanning Tunneling
Microscope tip, with possible applications in quantum information processing. The efficiency of this
coupling depends on the electric dipole moment between chiral states. In this paper we report on
first-principles calculations of spin-electric coupling in several triangular molecules. We discuss the
underlying mechanism leading to an enhanced coupling, which can be used as a convenient guide to
synthesize MMs that can respond more efficiently to an external electric field.

I. INTRODUCTION

The ability to manipulate spins of a system by an
external field is one of the central issues addressed in
spintronics. Traditionally, magnetic fields are used
for controlling magnetic states. But the efficient ma-
nipulation of spins by an external magnetic field at
nanoscale level has significant drawbacks. The quan-
tum manipulation of spins in this regime has to be
performed at very small spatial (∼ nm) and tempo-
ral (∼1 ns) scales. This requires large magnetic fields
and high spatial resolution, which is very difficult to
achieve.
An alternative to the magnetic field is to apply

an electric field for spin manipulation. However,
since spin does not couple to the electric field di-
rectly, the electric manipulation of spins requires the
presence of strong spin-orbit coupling. In a system
with strong spin-orbit interaction (SOI) an electric
field can modify orbitals which in turn can change
the spin states since spin states are coupled to the
orbitals through the SOI. The electric control of
spins through spin-orbit coupling has been studied in
magnetic semiconductors since spin-orbit coupling is
stronger in such systems.1 Multiferroic compounds
are another class of systems where spin-electric cou-
pling is intensely investigated because of their strong
magnetoelectric effects.2–4

Since SOI scales with the size of the system, it is
very weak in molecular magnets (MMs). Thus, elec-
tric control of the spins through SOI is inefficient and
hence, alternative approaches are being investigated.
It has recently been shown that electric control of
magnetization is possible in some di-cobaltocene-

based molecules.5 However, in this work we focus
on a different class of MMs, namely spin frustrated
MMs with triangular symmetry where electric con-
trol of spin states can be achieved through the chi-
rality of the system.6,7 The lack of inversion symme-
try in such systems allows the spins to couple with
electric field to linear order.

The strength of the coupling between spin chiral
states and external electric fields is a crucial quantity
as it is responsible for the efficiency of this mecha-
nism in these systems. Calculation of the coupling
constant by ab-initio methods is a challenging task.
We have developed a method for calculating the
coupling strength and have previously applied to a
{Cu3} MM.8 However, it is not yet clear what kind
of molecules have strong spin-electric coupling.

To address this issue, in this work, we have
calculated spin-electric coupling in several triangu-
lar MMs. To investigate the dependence of spin-
electric coupling on different types of magnetic
atoms, distances between magnetic centers and ex-
change paths between magnetic atoms. We have
chosen three different MMs: K12[(VO)3(BiW9O33)2 ·
29H2O

9 (hereafter {V3}) and {Cu3}Cl3N6C9H9O
10

(hereafter {Cu3O}) triangular MMs, which have
three magnetic centers. We also study a
K6[V15As6O42(H2O)]8H2O MM11 (hereafter {V15})
which has fifteen magnetic atoms.

The spin-electric coupling in triangular molecules
is achieved through the chirality of the ground state
of these molecules. Construction of the chiral ground
states for {V3} and {Cu3O} MMs is rather simple
as only three magnetic centers are involved. On the
other hand, the construction of chiral states for the
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{V15}MM requires some generalization as it involves
fifteen magnetic centers. In this work we also de-
scribe a method for constructing the chiral states
of the {V15} molecule and the calculation of spin-
electric coupling in generalized chiral states.
The organization of this paper is as follows. In

section II we describe the mechanism of spin-electric
coupling in frustrated anti-ferromagnetically ordered
MMs with D3h symmetry. In section III we dis-
cuss the electronic structures of the three molecules
we have investigated in this work and finally in sec-
tion IV we discuss the results of our calculations.

II. SPIN-ELECTRIC COUPLING VIA

CHIRAL STATES

The lower energy regime of a spin frustrated tri-
angular molecular magnet (MM) is composed of
two two-fold degenerate chiral states. Based on
a spin model and symmetry properties of the tri-
angular molecule, one can demonstrate that elec-
tric fields can couple states of opposite chirality but
with the same spin through the spin induced dipole
moment.6,7

The strength of the spin-electric dipole coupling
constant, d, determines the effectiveness of the ma-
nipulation of the spin states by electric fields. A
precise estimate of this strength constant cannot be
obtained analytically and has to be determined by
ab-initio calculations or through experiments.
In this section we first describe the generalization

of chiral states in a MM of fifteen magnetic centers
called {V15} MM (see Fig. 1). Chiral states have
usually been well defined for a three-site triangular
MM such a {Cu3}.8 We then derive an expression
for the spin-electric coupling in the generalized {V15}
MM chiral states.
The unique cluster anion {V15}13 contains fifteen

VIV ions (Si=1/2). It exhibits layers of different
magnetization. There are two hexagon layers sand-
wiching a triangular central belt layer. The isotropic
Heisenberg exchange Hamiltonian for the {V15} MM
can be written as

HH =

15∑

〈i,j〉

Jijsi · sj , Jij > 0 , (1)

where Jij is the Heisenberg exchange parameter be-
tween the spins si and sj .
The the size of the Hilbert space for this molecule

is 215 = 32768. To obtain all the spin states of the
system one needs to diagonalize the Hamiltonian in
this large basis set. To study the spin-electric cou-
pling in {V15}, we need to focus only on the Sz = 1/2

FIG. 1. (Color online) Spin structure of one of the
ground state spin configurations of the {V15} molecu-
lar magnet (MM). There are six exchange parameters in
this molecule, namely, J1, J2, J3, J , J

′ and J ′′. These
parameters have been calculated previously by ab-initio
methods.12

ground state subspace. Since total spin projection
Sz of the system commutes with the Hamiltonian,
we can express it in block diagonal form and work
only in the Sz = 1/2 subspace.
By diagonalizing the Hamiltonian in the Sz = 1/2

subspace we obtain a two-fold degenerate ground
state. It contains only 1200 different spin configura-
tions that have spin projection zero on the hexagon
layers of the molecule (see blue and green balls in
Fig. 1). Only 1/3 of these spin configurations are
associated with each of the three 1/2-spin triangu-
lar configurations at the central belt layer (see red
balls in Fig. 1). In addition, for each of the three
spin configurations of the central triangle only 64
hexagon spin configurations are related by C3 sym-
metry. These last 192 spin states contribute about
99.9% to the total Sz = 1/2 ground state. The two
real solutions of the ground state are:

ψR
1 =

64∑

i=1

(a1i |hiduu〉+ b1i |hiduu〉+ c1i |hiduu〉)

ψR
2 =

64∑

i=1

(a2i |hiduu〉+ b2i |hiduu〉+ c2i |hiduu〉)(2)

where hi’s are different hexagon configurations for
each spin arrangement of the central triangle |duu〉,
|udu〉 and |uud〉. Here u and d stand for up and down
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spin, respectively and aji, bji’s are real coefficients.
To construct the chiral operator for this system we

note that the exchange parameters for different pairs
shown in Fig. 1 are J=290.3, J ′=222.7, J ′′=15.9,
J1=13.8, J2=23.4 and J3=0.55 meV12. Clearly, the
exchange interaction between the pairs in the central
triangle is much weaker compared to the exchange
interaction between other pairs. Therefore, the low
energy magnetic structure is determined by the three
magnetic sites at the central triangle of the {V15}
molecule. The chiral operator for this system can
be defined only by these three sites as

Cz =
4√
3
s1 · s2 × s3 . (3)

Since the chiral operator, Cz, defined in Eq. (3)
commutes with the spin Hamiltonian in Eq. (1),
they share common eigenstates. We have obtained
the chiral states by diagonalizing the chiral operator
in the basis of real ground states, Eq. (2), that gives,

Ψ1 = ψR
1 + iψR

2

Ψ2 = ψR
1 − iψR

2 (4)

Substituting Eq. (2) in Eq. (4), and after some
algebra we obtain,

Ψ1 =

64∑

i=1

ai(|hiduu〉+ ω |h′iduu〉+ ω2 |h′′i duu〉)

Ψ2 =

64∑

i=1

bi(|hiduu〉+ ω2 |h′iduu〉+ ω |h′′i duu〉).(5)

Here, ω = e
i2π
3 and ai,bi are complex coefficients.

Note that Ψ1 and Ψ2 are states of opposite chiral-
ity. An external electric field can couple these states
through the induced dipole moment.
Alternatively, we can treat the effect of the chiral

operator as a small perturbation and diagonalize the
Hamiltonian,

HH =
15∑

〈i,j〉

Jijsi · sj + λCz ; , Jij > 0 , (6)

in the basis of 1200 spin configurations of Sz = 1/2
subspace and obtain the same chiral ground state as
above.

Spin-electric coupling in the {V15} MM

An external electric field couples states of opposite
chirality but same spin. Therefore, we are interested

in calculating the matrix element

〈

Ψ1

∣
∣
∣e
−→
E · −→r

∣
∣
∣Ψ2

〉

= e
−→
E · 〈Ψ1 |−→r |Ψ2〉 = e

−→
E · −→d .

(7)
Substituting Eq. (5) in Eq. (??), we obtain

−→
d =

64∑

i=1

a∗i bi (〈hiduu |−→r |hiduu〉+ ω 〈h′iudu |−→r |h′iudu〉

ω2 〈h′′i uud |−→r |h′′i uud〉
)

=

64∑

i=1

a∗i bi(
−→p duu

i + ω−→p udu
i + ω2−→p uud

i )

=

64∑

i=1

a∗i bi
−→p i (8)

FIG. 2. Dipole moment of a spin configuration.

The magnitude of −→p duu
i , −→p udu

i and −→p uud
i are the

same because of the C3 symmetry. Thus, we can
express −→p i as (see Fig.2)

−→p i = pi[sin θi cosφix̂+ sin θi sinφiŷ

+ω sin θi cos(φi + α)x̂ + ω sin θi sin(φi + α)ŷ

+ω2 sin θi cos(φi + 2α)x̂+ ω2 sin θ sin(φ + 2α)ŷ]

= pi sin θi[{cosφi + ω cos(φi + α) + ω2 cos(φi + 2α)}
x̂+ {sinφi + ω sin(φi + α) + ω2 sin(φi + 2α)}ŷ]

=
3

2
pi sin θi[{cosφi − i sinφi}x̂+ {sinφi + i cosφi}ŷ].

Therefore,

e
−→
E · −→d =

3e

2

64∑

i=1

a∗i bipi sin θi[{cosφi − i sinφi}Ex

+{sinφi + i cosφi}Ey]

=
3

2
eE

64∑

i=1

a∗i bipi sin θi[{cosφi − i sinφi}

+{sinφi + i cosφi}],
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where we have assumed Ex = Ey. The strength of
the spin-electric coupling is then

|−→d | = 3

2

∣
∣
∣
∣
∣

64∑

i=1

a∗i bipi sin θi[{cosφi + sinφi}

+i{cosφi − sinφi}]| . (9)

For triangular MMs with three magnetic centers
such as {Cu3}, {V3} etc., only three spin configura-
tions are involved and they contribute equally to the
ground state. Thus, Eq. (9) reduces to8

d =
p√
2

(10)

III. ELECTRONIC STRUCTURE OF

TRIANGULAR MOLECULAR MAGNETS

In this work we have investigated three molecular
magnets (MMs), namely, {V3}, {Cu3O} and {V15}.
Here we present the electronic structure of these
molecules. Our results show that a spin model of
three exchange-coupled spin s = 1/2 is useful to un-
derstand the magnetic properties of triangular MMs.
However, all the other atoms in the molecule are es-
sential for its geometrical stability and for the re-
sulting superexchange interaction among the spins
at the magnetic sites. Therefore, for a proper ab-
initio description of the molecule, these atoms must
be included to a certain extent in the calculations.
Our theoretical studies were performed with the

all-electron Gaussian-orbital-based NRLMOL (Refs.
14 and 15). All calculations employed Gaussian
basis set to solve the Kohn-Sham equations us-
ing Perdew-Burke-Ernzerhof16 (PBE) generalized
gradient approximation (GGA) for the exchange-
correlation potential. Full basis sets were used for all
atoms except for tungsten, for which we have used
pseudo potentials. Prior to geometry relaxation, an
initial net total spin configuration for the triangular
core were assigned to S=3/2. Self-consistency were
reached when the total energy is converged to 10−6

Hartree or less. After optimization, the net spin were
changed to S=1/2.

A. {V3}

The model of {V3} MM used in this calculation
consists of 104 atoms. The molecule has D3h sym-
metry with three V4+ ions forming an equilateral
triangle as shown in Fig. 3. The structure of the
molecule is identical to that of {Cu3} MM8 except
that the distance between V ions in this case is 5.69

FIG. 3. (Color online) Ball and stick model of
{V3} molecular magnet with chemical composition
K12[(VO)3(BiW9O33)2·29H2O.9

Å, which is larger than the separation between Cu
ions in {Cu3} MM.
The three V4+ ions are the sites of three iden-

tical s=1/2 quantum spins. The frontier electrons
on each of these sites are primarily of d charac-
ter. Fig. 4 shows the density of states (DOS) of
{V3} MM where highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital
(LUMO) are dominated by V d electrons. The inset
figure shows the DOS close to the HOMO-LUMO
close to the Fermi energy. The energies of the mi-
nority spin highest occupied orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) lev-
els are found to be -4.16 and -4.03 eV, respectively,
while the majority spin HOMO and LUMO levels are
found to be -6.01 and -3.96 eV, respectively. The
majority-minority and minority-majority spin flips
gaps (0.20 and 1.97 eV, respectively) are both pos-
itive, which ensures that the system is stable with
respect to the total magnetic moment. The ground
state of the molecule is antiferromagnetic with total
spin S = 1/2. The exchange constant, defined as
proportional to the difference between the ground
S = 1/2 energy, Eduu, and the first excited S = 3/2
energy, Euuu, is J = 2(Euuu − Eduu)/3 ≈ 1.2 meV.
The magnetic interactions among the magnetic

ions in a molecule might be of the direct exchange or
superexchange type. Interactions mediated through
direct overlap of electronic orbitals are called direct
exchange. The exchange interaction between d elec-
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FIG. 4. Majority and minority density of states for the
{V3} ring. Inset figure inset shows the density of states
close to the HOMO-LUMO.

trons of two V in {V3} MM is mediated either by an
intermediate oxygen ion, V-O-V, or by more compli-
cated exchange paths involving other non-magnetic
atoms such a V-O-W-O-W-O-V shown by yellow line
in Fig. 5(a). Superexchange interaction through two
or more non-magnetic ions is also called by some
authors super-super-exchange.17 We will, however,
refer to it simply as superexchange.
Qualitative relationships for signs and values of

spin exchange interactions, for simple systems, were
first developed by Goodenough18,19, and extended
by Kanamori.20 The strengths of the superexchange
interactions can be estimated in terms of the an-
gle sustained in the V-O-V bond and the symme-
try properties of the vanadium d orbitals. Superex-
change involving more non-magnetic ions, such a
V-O-W-O-W-O-V path shown in Fig. 5(a), is far
from being a trivial problem. So far there are
no such qualitative rules for predicting the magni-
tude and sign of this interactions. In some cases a
longer-path superexchange interaction through non-
magnetic atoms can be even stronger than the direct
superexchange interactions.21

In order to understand the magnetic properties
and superexchange path of the {V3} MM we note
that the local crystal field symmetry of V ions are
of square-pyramidal as shown in Fig. 5(b). The
vanadyl (VO2+) bond, apex of the pyramid, is 1.59
Å, while the other, almost co-planar, V-O bonds are
1.91-1.94 Å. The d-orbitals of the V ion split into dif-
ferent energy levels under the influence of this crys-
tal field. In the ground state of a V4+ (3d1) ion in a
pyramidal crystal field (distorted octahedral22) con-
taining a vanadyl bond, the unbounded electron is
placed in the dxy orbital of t2g subspace(see Fig. 6).

The energy gap ∆1 between the non-degenerate
orbital dxy and the the first degenerated excited

(a)

(b)

FIG. 5. (Color online) a) Superexchange coupling be-
tween two V atoms. The yellow line connecting two V
atoms shows the superexchange path through three O
and two W atoms. The numbers near the atoms are the
magnetic moment (in units of µB) of the corresponding
atoms along the superexchange path. Local VO5 com-
plex is marked by a blue circle. b) Local square-pyramid
coordination polyhedra of a V4+ atom.

state, dyz or dxz orbitals, is much larger than kBT.
23

The spatial location of the dxy orbital is perpendicu-
lar to the vanadyl bond, see Fig. 5(b). The overlap
between the dxy orbitals of the V 4+ and the sur-
rounding equatorial p orbitals of the oxygen atoms
is of π-type. The d-orbital energies are shown in
Fig. 4. The dominant magnetic interactions take
place through these equatorial atoms while the in-
teraction with the apical oxygen atom is expected to
be much weaker.

The magnitude and sign of the resulting magnetic
superexchange interaction between V4+ ions is much
more complicated than in the case of cuprates like
Cu2+ compounds. In the later, the unbounded elec-
tron is placed in the dx2−y2 orbital, which takes part
in the σ-bond between copper and oxygen. Thus, the
overlap and angle involved in the exchange path are
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FIG. 6. Crystal field splitting of d-orbitals for the cubic
field and octahedron symmetry.

clearly well defined. On the other hand, the π-bond
between dxy of V4+ and surrounding oxygen ions is
less well defined because its overlap strongly depends
of the relative orientations between the vanadium
ion and the surrounding oxygen ions.

B. {Cu3}O

The structure of the {Cu3O} molecular magnet
(MM)(see Fig. 7) consists of a Cu equilateral trian-
gular cluster with Cu4+-Cu4+ separation of 3.29 Å,
with one oxygen at the center of the molecule. The
distance between a Cu atom and O atom is 1.9 Å.
The three cation Cu2+ atoms are the sites of three

identical s=1/2 quantum spins. The frontier elec-
trons on each of these sites are primarily of d char-
acter. The density of states is shown in Fig. 8. The
energies of the minority spin HOMO and LUMO lev-
els are found to be at -6.62 and -6.09 eV, respectively,
while the majority spin HOMO and LUMO levels
are found to be at -6.46 and -5.44 eV, respectively.
As in the {V3} MM case, the majority-minority and
minority-majority spin flips gaps (1.18 and 0.37 eV,
respectively) are both positive, which ensures that
the system is stable with respect to the total mag-
netic moment. The ground state of the molecule
is antiferromagnetic with total spin S = 1/2. The
energy difference ES=3/2 − ES=1/2 ≈ 14meV is

in agreement with the experiment,24 Thus, the ex-
change constant is J ≈ 9.3 meV
The magnetic interactions in {Cu3O} is mediated

along the superexchange path involving one oxygen
atom is Cu-O-Cu. The Cu-Cu bond length is 3.29Å,
Cu-O 1.9 Å, Cu-N 1.9 Å, angle Cu-O-Cu is 120◦ (See

FIG. 7. (Color online) {Cu3}Cl3N6C9H9O
10 molecular

magnet (MM). Cu-Cu bond length is 3.29Å, Cu-O 1.9
Å, Cu-N 1.9 Å, angle Cu-O-Cu is 120◦.
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FIG. 8. Majority and minority density of states for
the {Cu3O} molecular magnet (MM). Inset figure inset
shows the density of states close to the HOMO-LUMO.

Fig. 7). The superexchange interaction depends
both of the O bridging atom and Cu-O-Cu angle. It
has been shown that manipulation of the Cu-O-Cu
angle produces transitions from antiferromagnetic to
ferromagnetic exchange.25 It also has been demon-
strated that the more flatted the {Cu3O} bridge,
i.e., Cu-O-Cu angle ≈ 120◦, the stronger the mag-
netic interaction is.24,26

C. V15

The chemical composition of the {V15} molecular
magnet (MM), synthesized by Gatteschi et al Ref.
11, is K6[V15As6O42(H2O)]8H2O. It has 15 spin s =
1/2 transition metal atom V as shown in Fig. 9(a),
which are the magnetic centers of the molecule.
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(a)

(b)

FIG. 9. (Color online) Spin structure of the {V15} molec-
ular magnet (MM). Three V atoms are placed in a central
triangle sandwiched by two distorted hexagons.

As shown in Fig. 9(b), {V15} MM has three V
atoms at the central region forming an equilateral
triangle (red balls). The rest of the 12 atoms form
two hexagons, one above and one below the trian-
gle. However, the hexagons are slightly distorted.
Let us consider the upper hexagon. Three of the
atoms (blue upper balls), lay down in a triangular
plane slightly below the other three atoms of the
hexagon (green upper balls). The same applies to
the lower hexagon. {V15}MM does not have σh sym-
metry operation but the atoms in the upper hexagon
are related to the corresponding atoms in the lower
hexagon by S3 symmetry. Thus, {V15} has D3 sym-
metry.

Although {V15} has fifteen V atoms, it can be
viewed as a combination of three pentanuclear sub-
systems. Each system consists of one V atom in the
central belt and two pairs V-V from the upper and
lower hexagons. For example, in Fig. 9(b), a sub-
system consists of the balls numbered as 2, 5, 6, 14
and 15. The atoms of this pentanuclear subsystem
are connected by a black line.
At low temperatures, the total magnetic moment

of the ions on the hexagons are quenched due to the
strong antiferromagnetic coupling between them.
Thus, only the spin of the V in the central belt is
active and it determines the spin of the whole sub-
system. Therefore, the subsystem can be considered
as an effective quasi-particle of spin s = 1/2 placed
on the corner of a central triangle (ball number 2
for the subsystem connected by black lines). As a
consequence, the entire molecule can be viewed as
a an effective trinuclear system of spins s = 1/2.13

This model of an effective three magnetic sites makes
{V15} a perfect candidate for spin-electric coupling
just as {Cu3}, {V3} and {Cu3O} MMs.
Note that although the magnetic ions on the

hexagons do not contribute to the magnetic moment
of the molecule, they are involved in the superex-
change path between subsystems. Similarly, the con-
struction of the chiral ground states of this molecule,
which is necessary for spin-electric coupling, involves
all of them (see Sec. II).

IV. RESULTS AND DISCUSSION

The ab-initio calculations of exchange parameters
and strength of spin-electric coupling for different
triangular molecular magnets investigated in this
work is summarized in Table I.

Mol dis J d Maj Min

(Å) (meV) (a.u.) HL (eV) HL (eV)

{Cu3O} 3.29 9.3 9.78×10−3 1.02 0.53

{Cu3} 4.88 3.7 2.56×10−4 0.72 0.69

{V3} 5.70 1.3 3.56×10−2 0.21 0.17

{V15} 7.00 1 4.07×10−3 1.12 1.11

TABLE I. Exchange constant J , dipole d, distance be-
tween magnetic centers dis, Majority HOMO-LUMO gap
and minority HOMO-LUMO gap for several molecular
magnets (MMs).

We can note from Table I that the exchange con-
stants of these molecular magnets (MMs), as ex-
pected, decreases exponentially as the distance be-
tween the magnetic centers increases. Shorter su-
perexchange path between Cu atoms in {Cu3O}



8

results in strongest exchange coupling among the
molecules investigated in this work.

FIG. 10. Cartoon of the spin induced dipole moment in
triangular molecular magnets.

The differences in spin-electric coupling between
different molecules, as discussed in section II, de-
pends on the spin induced dipole moments of the
three spin configurations associated with Sz = 1/2.
Their magnitudes are same due to symmetry. When
the molecule is in the Sz = 3/2 configuration, the
center of the positive and the negative charges coin-
cide, resulting in zero dipole moment. On the other
hand, if one of the spins is flipped, charges are re-
distributed which gives rise to a net displacement
of positive and negative charge centers as shown in
Fig. 10. Therefore, the average charge at a site may
be different from 1.
We have carried out a calculation of the charge

density of the uuu and duu spin configurations for
the {Cu3}, {V3} and {Cu3O} molecules (see Fig.
11). First, we calculated the uuu total charge den-
sity, q(uuu). Then, we flipped one spin (Up to Down
in Fig. 11) and calculated the duu total charge den-
sity, q(duu). Finally, we calculated the difference

δq = q(uuu)− q(duu) (11)

Our results show a charge redistribution when one
spin is flipped. This leads to the appearance of a
spin − induced dipole moment. In Fig. 11 blue
(red) color corresponds to excess (lack) of charge.
From Fig. 11c) and d), we can see that for the {V3}
MM there is much more concentration of blue re-
gions, where excess of charge exists. This visible
charge redistribution leads to a stronger dipole mo-
ment on {V3} MM. It is also interesting to notice
that the colorful charge redistribution shows the su-
perexchange path of the molecule (see yellow path
in Fig. 5(a) and 11). Therefore, this simple model
could be used to calculate superexchange paths and
more importantly to predict which molecules have
stronger spin-electric coupling.
The microscopic origin of charge redistribution

and appearance of dipole moment in triangular 1/2-

(a){Cu3} side view (b){Cu3} top view

(c){V3} side view (d){V3} top view

(e){Cu3O} top view

FIG. 11. (Color online) Charge redistribution of the
{Cu3}, {Cu3} and triangular molecular magnets (MMs).
Once one spin up from the uuu spin configuration is
flipped, a charge redistribution occurs. Blue (red) color
corresponds to excess (lack) of charge.

spin molecules can be understood from the Hubbard
model. As shown by Bulaevskii et al27 and Khomskii
et al28,29, the charge redistribution at a magnetic site
i of a triangular molecule is related to the Hubbard
model parameters by

δqi = 8

(
t

U

)3

[Si ·(Si+1+Si+2)−2Si+1 ·Si+2] (12)

where U is on-site interaction energy, t is the hop-
ping parameter of the Hubbard model and Si is the
spin operator on site i. The spin induced dipole mo-
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ment is given by

px = 12ea

(
t

U

)3

S1 · (S2 − S3)

py = 4
√
3ea

(
t

U

)3

(S1 · (S2 + S3)− 2S2 · S3)(13)

Clearly, the charge redistribution and thus, the
spin induced dipole moment depend on the ratio,
t/U. The result is consistent with the dipole coupling
between two chiral states obtained by Trif et al.30

An approximate approach to extract these Hub-
bard model parameters by ab-initio methods is dis-
cussed in the appendix. Using this approach we have
calculated the parameters U{Cu3} = 9.06 eV, t{Cu3}

= 50 meV, U{V3} = 1 eV, t{V3} = 53 meV. The cor-

responding dipole coupling are d{Cu3} = 3.48×10−5

au and d{V3} = 3.93× 10−3 au for {Cu3} and {V3}
MMs, respectively. The coupling strength obtained
from Hubbard model parameters is about one or-
der of magnitude smaller than that obtained directly
from ab-initio calculations. However, we note that
the ratio of the coupling strengths is same in both
cases. The difference in the strength is probably due
to approximate nature of these calculations.
While we have not calculated coupling strength of

{V15} MM from Hubburd model, our DFT calcula-
tions show that spin-electric coupling is weaker in
{V15} compared to {V3}. As shown in table I, the
distance between V atoms in {V15} is larger com-
pared to the same atoms in {V3}, resulting in weaker
hopping parameter, t. Since U parameter is not ex-
pected to be different, we can conclude from Eqs. 13
that coupling is weaker in {V15}.

V. SUMMARY

In this work we have calculated the spin-electric
coupling strength for different triangular molecular
magnets (MMs), such as {Cu3O}, {V3} and {V15}
using first-principles method. Among these MMs,
{V3} has the largest spin-electric coupling constant,
d. Our results show that spin-electric coupling in
{V3} is two order and in {V15} and {Cu3O} are one
order of magnitude larger than {Cu3}.
In these triangular systems an electric field can

couple states of opposite chirality but of same spin.
While construction of chiral states in {V3} and in
{Cu3O} is rather straightforward as only three spin
configurations are involve, the construction of chiral
states in {V15} is more complicated due to fifteen
magnetic centers present in this MM. In this work
we have generalized the construction of chiral states
for {V15} that hasD3 symmetry. We have calculated

the effect of the chiral operator on these states and
have also showed how the generalized chiral states
are coupled by an external electric field.
We have carried out calculations of the charge re-

distribution in triangular MMs. This charge redistri-
bution occurs when one spin is flipped in a triangular
MM to form a total S=1/2 state. We have shown
that a simple method of calculating the charge re-
distribution could lead to the determination of the
superexchange path in such systems. This method
also could be used as a fingerprint in the search of
MMs with strong spin-electric coupling.

Appendix: Hubbard Model Parameters

Here we discuss the method employed to ex-
tract Hubbard model parameters from ab-initio
calculations.?

1. Calculation of the Hubbard U

The most common approach for calculating U in-
volves calculation of energy, E, of the molecule with
N , N +1 and N − 1 electron and extracting U from
the equation below,

U = E(N + 1) + E(N − 1)− 2E(N)

= [E(N + 1)− E(N)]− [E(N)− E(N − 1)]

= A− I . (A.1)

In the above equation A is (minus) the electron
affinity31 and I is the ionization energy. For systems
that are not closed shell, such as those considered
here, the U value is essentially the second derivative
of energy with respect to charge and it is possible to
determine U by calculating the energy as a function
of charge.
For the single-band Hubbard-model correspond-

ing to the the molecules studied here, we are inter-
ested in obtaining energies for the charge-transfer
excitations involving the transfer of a localized d-
electron on one ion site to a localized d-electron on
another site. Specifically we wish to know the en-
ergy of |X〉 = |↑a↓a↑c〉 relative to |↑a↓b↑c〉. There
are a total of twelve charge-transfer excitations that
can be made with one-site doubly occupied and one
electron on one of the other sites. For the half-filled
case of interest here, the energy difference depends
upon the electron affinity of the state on site a, the
ionization energy of the state on site b and the resid-
ual long-range coulomb interaction between the neg-
atively charged electron added to site a and the posi-
tively charged hole that is left behind on site b. Since
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site b and site a are equivalent, it follows that we sim-
ply need to calculate U for any one of the magnetic
sites in the half filled case.
For the molecules investigated in this work, we

have chosen to calculate U quasi-analytically by
gradually adding (or subtracting) a small fraction of
electronic charge δq to one of the half-filled magnetic
d-states. The energy of the {V3} molecular magnet
as a function of δq is shown in Fig. 12. We can see
that it can be well reproduced by a quadratic fitting
curve. The figure show that, upon adding a frac-
tional charge to a localized orbital, the total energy
initially decreases, since the orbital energy is nega-
tive. Eventually, however, the competing Coulomb
repulsion takes over and the net change in total en-
ergy for adding one electron to a localized orbital
is positive. In contrast, with one extra electron de-
localized throughout the molecule the total energy
is usually smaller than the energy of the neutral
molecule.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

δ q

E
−

E
0 (

eV
)

 

 

   NRLMOL
   Fit

FIG. 12. Dependence of the total energy on added frac-
tional charge δq for {V3} molecular magnet. The (blue)
circle represent the results of NRLMOL calculations and
the dashed (red) line represents a quadratic fit.

The difference in the energy of the system before
and after adding a fraction of electronic charge δq is
given by ∆E = Ueff = Uδq2−e2δq2/RCu-Cu, where
U = ∂2E(q)/∂q2. We have calculated the effective
parameter Ueff by setting δq = 1:

Ueff = δq2
(
∂2E(q)

∂q2
− e2

RCu-Cu

)

(A.2)

where E(q) = E0 + (U/2)(q − q0)
2 with E0 being a

constant.

2. Calculation of t

The Hubbard model approach is based on al-
lowing the localized electrons to hop to its nearest

neighbor sites and in the present work these local-
ized electrons are d electrons. Therefore, for cal-
culating hopping parameter t, the relevant states
are those d electron states that lie close to the
Fermi level. Let |K,α〉 be the three relevant Kohn-
Sham eigenstates calculated from NRLMOL. We can
write them as a linear combination of the localized
atomic orbitals, centered at the three magnetic sites,
{|φa〉 , |φb〉 , |φc〉}⊗|χα〉, with α =↑, ↓ for spin up and
down, respectively:

|K,α〉 =
∑

i

Ci
Kα |φi〉 |χα〉 . (A.3)

where Ci
Kα is the weight of the localized |φi〉 |χα〉

wavefunction.

For the |↑↑↑〉 spin configuration the relevant three
levels around the Fermi level are doubly and singly
degenerate. These levels are sketched in Fig. 13

FIG. 13. Schematic diagram of the Kohn-Sham energy
levels around the Fermi level

We obtain the level structure by diagonalizing the
three-site Hamiltonian:

H0 = ε0
∑

i

|φi〉 〈φi| − t
∑

i6=j

|φi〉 〈φj | , (A.4)

where ε0 is the on-site energy, t is the hopping term
and i, j = a, b, c represent the copper sites. We get
the eigenvalues ε0+t and ε0−2t for the two-fold and
one-fold degenerate states, respectively. The Kohn-
Sham eigenvectors can be defined as a linear combi-
nation of the localized wavefunctions,

|E1, ↑〉 =
1√
2
(|φa〉 − |φb〉) |↑〉 ,

|E2, ↑〉 =
1√
6
(|φa〉+ |φb〉 − 2 |φc〉) |↑〉 , (A.5)

|A, ↑〉 = 1√
3
(|φa〉+ |φb〉+ |φc〉) |↑〉 .

Now the localized states can be written in term of
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the Kohn-Sham functions

|φa〉 |↑〉 =
|A, ↑〉√

3
+

|E1, ↑〉√
2

+
|E2, ↑〉√

6
,

|φb〉 |↑〉 =
|A, ↑〉√

3
− |E1, ↑〉√

2
+

|E2, ↑〉√
6

, (A.6)

|φc〉 |↑〉 =
|A, ↑〉√

3
− 2

|E2, ↑〉√
6

.

Our calculations showed that these states are pri-
marily localized on the V and Cu atoms and have
d character. We have obtained the Kohn-Sham
eigenenergies for the one-fold and two-fold degen-

erate states

〈E1, ↑|H0 |E1, ↑〉 =
1

2
(〈φa| − 〈φb|)H0 (|φa〉 − |φb〉)

= ε0 + t ,

〈A, ↑|H0 |A, ↑〉 =
1

3
(〈φa|+ 〈φb|+ 〈φc|)H0

(|φa〉+ |φb〉+ |φc〉)
= ε0 − 2t . (A.7)

From Eqs. (A.7) we can finally evaluate the value
of the parameter t as:

t =
1

3
(〈E1, ↑|H0 |E1, ↑〉 − 〈A, ↑|H0 |A, ↑〉) . (A.8)
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Using first-principles methods we study theoretically the properties of an individual {Fe4} single-
molecule magnet (SMM) attached to metallic leads in a single-electron transistor geometry. We show
that the conductive leads do not affect the spin ordering and magnetic anisotropy of the neutral
SMM. On the other hand, the leads have a strong effect on the anisotropy of the charged states of
the molecule, which are probed in Coulomb blockade transport. Furthermore, we demonstrate that
an external electric potential, modeling a gate electrode, can be used to manipulate the magnetic
properties of the system. For a charged molecule, by localizing the extra charge with the gate
voltage closer to the magnetic core, the anisotropy magnitude and spin ordering converges to the
values found for the isolated {Fe4} SMM. We compare these findings with the results of recent
quantum transport experiments in three-terminal devices.

I. INTRODUCTION

In recent years molecular spintronics has emerged
as one of the most active areas of research within
magnetism at the atomic scale.1–6 Progress in the
field is driven in part by advances in chemical de-
sign and synthesis, which allow the realization of in-
teresting magnetic molecules with desired electronic
and magnetic properties. A second essential feature
of ongoing research is the improved ability of in-
tegrating individual magnetic molecules into solid-
state nano-electronic devices.
Typically magnetic molecules have long spin-

relaxation times, which can be utilized in high-
density information storage. They are also usually
characterized by a weak hyperfine interaction with
the environment, resulting in long spin coherence
times, which is an essential property for applications
in quantum information processing. Single-molecule
magnets (SMMs) are a special class of spin-ordered
and/or magnetically active molecules characterized
by a relatively high molecular spin and large mag-
netic anisotropy energy.7 The latter lifts the spin
degeneracy even at zero magnetic field, and favors
one particular alignment of the spin, making the
molecule a nanoscale magnet.
One of the goals of molecular spintronics is to

address the magnetic states of individual magnetic
molecules with electric fields and electric currents.
In the last six years experimental efforts toward this
goal have considered different classes of magnetic
molecules and strategies to incorporate them into
electric nano-circuits. A particularly interesting di-
rection focuses on quantum transport in a single-

electron transistor (SET), a three-terminal device
where a SMM bridges the nanogap between two con-
ducting nano-leads, and can further be electrically
manipulated by the gate voltage of a third nearby
electrode. In the regime of weak coupling to the
leads, the electric charge on the central SMM is
quantized and can be controlled by the external gate.
When Coulomb blockade is lifted by either gate or
bias voltages, transport occurs via tunneling of sin-
gle electrons in and out of the SMM. Therefore a
study of transport in this geometry can provide de-
tailed information on the magnetic properties of in-
dividual SMMs, both when the molecule is neutral
and when it is electrically charged.

Early SET experiments on SMMs8,9 focused on
the archetypal SMM {Mn12}-acetate7,10, character-
ized by the ground-state spin S = 10 and a large
magnetic anisotropy barrier of approximately 50 K.
Unfortunately these experiments and studies of self-
assembled molecules on gold surfaces11 have shown
that the magnetic properties of {Mn12} complexes
are extremely fragile and easily disrupted when the
molecule is attached to metallic leads or surfaces.

More recently, another class of SMMs, namely the
tetranuclear {Fe4} molecule, has emerged as a can-
didate in molecular spintronics that does not suf-
fer the drawbacks of {Mn12}. The properties of
{Fe4} in its neutral state are well studied in the
crystal phase12,13, and include a molecular ground-
state spin S = 5 and an intermediate magnetic
anisotropy barrier ≈ 15 K. In contrast to what hap-
pens with {Mn12}, these magnetic characteristics
remain stable when the molecule is deposited on a
gold surface.14,15 Furthermore, its tripodal ligands
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are shown to be advantageous for the preparation
of single-molecule electronic devices. Indeed, recent
three-terminal quantum transport experiments16–18,
with {Fe4} as the central island of a SET, show that
this molecule behaves indeed as a nanoscale magnet,
even when it is wired to metallic leads. The mag-
netic anisotropy is significantly affected by adding
or subtracting single charges to the molecule16, an
operation that can be performed reversibly with the
gate voltage. More refined techniques18 allow the
extraction of the magnetic anisotropy of the neutral
and charged molecule from the transport measure-
ments with unprecedented accuracy.

In this paper we carry out density functional the-
ory (DFT) calculations to evaluate the magnetic
properties of a {Fe4} connected to gold electrodes
and under the effect of an external electric field rep-
resenting a gate voltage. The geometry considered
here is supposed to model the typical situation real-
ized in current SET experiments, although some de-
tails might be different. The main aim of our work
is to investigate theoretically how the spin order-
ing and the magnetic anisotropy of {Fe4} are af-
fected by weak coupling to the leads, both when the
molecule is in its neutral state and when a single
charge is added to or subtracted from the device. A
second important objective of the paper is a theo-
retical analysis of how these magnetic properties can
be modified and controlled by means of an external
electric potential representing a gate electrode.

Although a full-fledged first-principles study of
quantum transport is beyond the scope of the
present paper, as we explain below, we believe that
our analysis of the charged states under the effect of
an external electric field is useful to develop meth-
ods to compute the tunneling conductance within
a master equation formalism. Ref. 19 introduced a
DFT description of the neutral and charged states
of an isolated {Mn12} SMM, which were then used
in a master equation formalism for quantum trans-
port. Here the coupling to the leads was treated with
phenomenological tunneling amplitudes taken form
experiment. In Ref. 20 charge transport was studied
by means of a non-equilibrium Green’s function ap-
proach, which included the presence of metallic leads
in the regime of strong coupling. Transport calcula-
tions carried out in the same transport regime but
based on microscopic tight-binding models have also
been considered.21 This approach has the drawback
that charging effects, essential for the description
of SET experiments, cannot be adequately incorpo-
rated.

In this sense the present paper is a further contri-
bution to these early attempts to use first-principles
methods based on DFT to investigate quantum

transport in a SET with a SMM. We are aware
that the use of DFT can be problematic when it
comes to describing the electronic structure and
Fermi level alignment of molecules coupled to exter-
nal electrodes, particularly when charged states are
involved. Assessing the limitations of DFT in this
context is also a technical aim of the present pa-
per. In this regard, we discuss potential uncertain-
ties in the relative level alignment of the electrode
and molecular states.
The main findings of our analysis are the follow-

ing. The SMM {Fe4} in its neutral state is indeed
quite robust against the presence of metallic leads:
both spin ordering and magnetic anisotropy are es-
sentially identical to the one of the isolated molecule.
For the case of a charged molecule, the effect of the
leads is more complex. Our calculations show that
the extra charge tend to reside primarily on the lig-
ands between molecule and metallic leads, and only
minimally on the magnetic core. As a result the ad-
dition of electrons affects the magnetism of molecule
(specifically the magnetic anisotropy) considerably
less than when the molecule is isolated. We find
that an external gate voltage can be used to localize
the extra charge closer to the central magnetic core,
and in this case the magnetic characteristics of the
device converge to the ones of the isolated {Fe4}
SMM.
The organization of this paper is as follows. In

Sec. II we present an overview of the theoretical
and computational approach employed in this work.
The electronic and magnetic properties of different
charge states of the isolated {Fe4} SMM is discussed
in Sec. III. The effects of the metallic leads on the
properties of the molecule are discussed in Sec. IV.
In Sec. V we discuss how a confining electric poten-
tial affects the magnetic properties of the molecule.
In Sec. VI we compare the results of our calculations
with recent SET transport experiments. Finally in
Sec. VII we summarize our results.

II. THEORETICAL BACKGROUND

A. Spin Hamiltonian and the giant-spin model

In a first approximation, the exchange interaction
between the magnetic ions of a molecular magnet
can be described by an isotropic Heisenberg model

H =
∑

ij

Jijsi · sj , (1)

where si is the spin of the magnetic ion i and the
constants Jij describe the super-exchange coupling
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between ions i and j. Clearly, the validity of Eq. (1)
relies crucially on the assumption that each mag-
netic ion is characterized by a well-defined quantum
spin, localized at the ion position. There might be
cases where the spin-polarization of the molecule is
delocalized, where this assumption may break down.
Such cases are especially probable when an excess
tunneling electron is present. Once the exchange
constants are known, the Hamiltonian can be diag-
onalized. Since H is a sum of scalars in spin space,
it commutes with the total spin S. Therefore the
eigenvalues of S2 and Sz can be used to label the
eigenstates of H .
In the case of single-molecule magnets, the ground

state (GS) of Eq. (1) is characterized by a relatively
large spin S, and it is separated by a fairly large
energy ∆J ≡ Max{ij}

[
Jij

]
from excited states with

different total spins. Thus, at low energies < ∆J the
magnetic molecule behaves effectively as an atom
with a relatively large spin S, known as ‘giant spin’.
The approximation of restricting to the lowest spin
multiplet is known as giant-spin model. According
to Eq. (1), each spin multiplet is degenerate. In the
next section we will discuss how spin-orbit interac-
tion lifts this degeneracy, splitting the 2S + 1 states
of the GS multiplet.
Note that the ground-state spin S is not always

the maximum value Smax allowed by Eq. (1). Due
to the presence of antiferromagnetic components,
the most common situation encountered in SMMs
is an intermediate value 1 < S < Smax, which quasi-
classically corresponds to a ferrimagnetic spin con-
figuration. Below we will show how all the physical
quantities entering in the spin Hamiltonian of Eq. (1)
and the value of the giant spin S can be calculated
within DFT.

B. Spin-orbit interaction and magnetic

anisotropy barrier

Spin-orbit interaction introduces terms to Eq. (1)
that break rotational invariance in spin space. Up
to second-order perturbation theory, these terms,
besides anisotropic corrections to the Heisenberg
model, include the antisymmetric Dzyaloshinskii-
Moriya spin exchange, and the single-ion magnetic
anisotropy Hia = −

∑

i(di · si)2. Because of these
terms, the total spin is no longer a good quantum
number. Within the giant-spin model of SMMs,
where the isotropic exchange is the dominant mag-
netic interaction, the main effect of the spin-orbit
interaction is to lift the spin degeneracy of the GS
multiplet. To second-order perturbation theory, this
can be described by the following anisotropy Hamil-

tonian for the giant spin operator S = (Sx, Sy, Sz)

H = DS2
z + E(S2

x − S2
y) . (2)

The parametersD and E specify the axial and trans-
verse magnetic anisotropy, respectively. If D < 0
and |D| >> |E|, which are defining properties for
SMMs, the system exhibits an easy axis in the z-
direction. In the absence of magnetic field, and ne-
glecting the small transverse anisotropy term, the
GS of Eq. (2) is doubly degenerate and it corre-
sponds to the eigenstates of Sz with eigenvalues ±S.
To go from the state Sz = +S to the state Sz = −S
the system has to surmount a magnetic anisotropy
energy barrier ∆E = |D|S2. In addition, transitions
which change the axial quantum numbers require
some type of carrier to balance the change in spin.
When the transverse term is not negligible and Sz is
not a good quantum number, we can still define an
anisotropy barrier separating the two (degenerate)
lowest energy levels as the energy difference between
GS energy and the energy of the highest excited
state. If D > 0 the systems has a quasi-easy plane
perpendicular to the z-axis without energy barrier.
The anisotropy parameters D and E can be

calculated within a self-consistent-field (SCF) one-
particle theory (e.g. DFT or Hartree Fock), by in-
cluding the contribution of the spin-orbit interac-
tion. Here we summarize the main steps of the pro-
cedure originally introduced in Ref. 22. (For more
recent reviews see Refs. 23 and 24.)
The starting point are the matrix elements of the

spin-orbit interaction (SOI) operator

U(r,p, s) = − 1

2c2
s · p×∇Φ(r) (3)

(p is the momentum operator; s is the electron
spin operator; Φ is the Coulomb potential and c
is the speed of light), taken with respect to the
unperturbed single-particle spinor wave functions
|ψkσ〉 = |φkσ〉|χσ〉, which are solutions of the SCF-
approximation Schrödinger equation

H |ψkσ〉 = ǫkσ|ψkσ〉 (4)

Here φkσ(r) ≡ 〈r||φkσ〉 is the orbital part of the
wavefunction; the two-component spinors |χσ〉, σ =
(1, 2) are the eigenstates of s·n̂, where the unit vector
n̂ = n̂(θ, ϕ) is an arbitrary quantization axis.
The matrix elements can be written as22

Ukσ,k′σ′ = 〈ψkσ |U(r,p, s) |ψk′σ′〉
= −i

∑

i

〈φkσ |Vi |φk′σ′〉 〈χσ| si |χσ′〉 , (5)
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where the matrix elements of the operator V =
(Vx, Vy, Vz) are defined as

〈φkσ |Vx |φk′σ′〉 =
1

2c2

(〈
∂φkσ
∂z

∣
∣
∣
∣
Φ

∣
∣
∣
∣

∂φk′σ′

∂y

〉

−
〈
∂φkσ
∂y

∣
∣
∣
∣
Φ

∣
∣
∣
∣

∂φk′σ′

∂z

〉)

,(6)

and cyclical. Note that Eq. (6) avoids the
time-consuming calculation of the gradient of the
Coulomb potential, replacing it with the calculation
of the gradient of the basis functions in which φ(r)
is expanded. The above representation of the spin-
orbit interaction arises by an integration by parts of
the matrix element defined in Eq. (6). It is similar
to the form of spin-orbit interaction that comes out
of the Dirac equation.
In the absence of an external magnetic field, the

first-order perturbation-theory correction to the to-
tal GS energy cause by the SOI is zero because of
time-reversal symmetry. The second-order correc-
tion is nonzero and can be written as

∆2 =
∑

σσ′

∑

i,j

Mσσ′

ij sσσ
′

i sσ
′σ

j , (7)

where

sσσ
′

i ≡ 〈χσ|si|χσ′〉 , (8)

and

Mσσ′

ij ≡ −
∑

k=occ

∑

k′=unocc

〈φkσ |Vi|φk′σ′〉〈φk′σ′ |Vj |φkσ〉
ǫkσ − ǫk′σ′

,

(9)
where the sums over k and k′ involve occupied and
unoccupied states, respectively.
Eq. (7) is the central equation in the study of

the magnetic anisotropy. Since the spin matrix el-
ements sσσ

′

i depend on the orientation of the arbi-
trary axis of quantization n̂, so does also the total
energy shift. This is precisely the origin of the mag-
netic anisotropy brought about by SOI.
We now consider the case of a closed-shell

molecule, a system with a well defined HOMO-
LUMO gap in order to avoid problems with partial
occupancy, with ∆N excess of majority spin elec-
trons.
We have the important relation

〈χ1| si |χ1〉 = −〈χ2| si |χ2〉 =
〈Si〉
∆N

(10)

where 〈Si〉 is the GS expectation value of the ith-
component of the total spin of the system for the
given choice of the quantization axis. On the basis
of our discussion of the giant-spin model, 〈Si〉 can

be re-interpreted as the expectation values of the
components of the giant-spin operator S for the spin-
coherent state |S, n̂〉 with S = ∆N/2.
Using the resolution of the identity in spin space,

∑

σ |χσ〉 〈χσ| = 1, we can write

〈χ1| si |χ2〉 〈χ2| sj |χ1〉 =
〈χ1| sisj |χ1〉 − 〈χ1| si |χ1〉 〈χ1| sj |χ1〉

= 〈χ1| sisj |χ1〉 −
〈Si〉 〈Sj〉
(∆N)2

(11)

and a similar expression for 〈χ2| si |χ1〉 〈χ1| sj |χ2〉.
With the help of Eqs. (10), (11) and

〈χσ| (si)2 |χσ〉 = 1/4, Eq. (7) takes the form

∆2 = α+
∑

ij

γij 〈Si〉 〈Sj〉 , (12)

where α =
∑

ij(M
12
ii +M21

ii ) is a constant indepen-
dent of the quantization axis. The anisotropy tensor
γij is given by

γij =
1

(∆N)2

∑

ij

(M12
ij +M22

ij −M12
ij −M21

ij ) (13)

The tensor γij can now be diagonalized by a unitary
transformation and ∆2 becomes

∆2 = α+A(〈S′
x〉)2 +B(

〈
S′
y

〉
)2 + C(〈S′

z〉)2 (14)

= α+A
〈
(S′

x)
2
〉
+B

〈
(S′

y)
2
〉
+ C

〈
(S′

z)
2
〉
,(15)

where A,B,C are the eigenvalues of γij and the S′
i

are the three spin components rotated along its three
principal axis (Eq. (15) follows from Eq. (14) thanks
to the properties of spin coherent states).
This expression for ∆2 is exactly the expectation

value 〈S, n̂| H |S, n̂〉 of the quantum spin Hamilto-
nian

H = α+A(S′
x)

2 +B(S′
y)

2 + C(S′
z)

2 , (16)

in the spin coherent state |S, n̂〉. Eq. (16) is equiva-
lent to Eq. (2) up to an irrelevant constant.
The perturbative method described here works

well for systems with a large HOMO-LUMO gap.
However, for systems that have nearly degenerate
and not fully occupied HOMO levels, which of-
ten is the case for charged molecules, the pertur-
bative approach breaks down, since some of the
energy denominators in Eq. (9) vanish. To avoid
this problem the magnetic anisotropy can alter-
natively be calculated by an exact diagonalization
method. In this approach, the solutions of the one-
particle Schrödinger equation in the SCF approxi-
mation (which does not include SOI), are used to
construct a finite matrix representation of the SOI,
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which is then diagonalized exactly. The matrix is
then diagonalized subject to the constraint that the
resulting spin is aligned along a give choice of the
quantization axis. The resulting single-particle so-
lutions {ǫ′k, |ψ′

k〉 =
∑

σ |φ′kσ〉|χσ〉} are used to com-
pute the trace of the system as a function of direction
of the quantization axis (or average direction of the
magnetization). In Ref.25, a discussion of the rela-
tionship between the second-order variation in the
trace and the self-consistent second-order variation
of total energy is presented.

Once one has obtained the trace as a function of
axis of quantization, one can use relatively standard
techniques to decompose the trace into a spheri-
cal harmonic representation and then determine the
magnetic principal axes. Alternatively by choos-
ing magnetic principal axes that are equivalent to
those predicted from the second-order expressions,
it is always possible to directly compare exact-
diagonalization results with the second-order results.
Using exact diagonalization, One can further extract
parts of the fourth- and higher-order anisotropy
terms as well. However, since self-consistency and
other terms also affect the magnetic anisotropy at
fourth-order and beyond, the exact diagonalization
results are primarily used to determined whether
the second-order results are expected to be stable
and a good approximation to experiment. In cases
where near degeneracies occur at the Fermi level,
the second-order and exact-diagonalization results
can be very different especially if the states near the
Fermi level are coupled by the spin-orbit interaction.
For such cases, a much more careful analysis of re-
sults is needed and it is reasonable to expect that
some degree of self-consistency with non-collinear
capabilities will be needed.

For electronic-structure methods, such as NRL-
MOL, where the wavefunctions are expanded in
terms of atom-centered localized basis functions
the second-order perturbative method allows one to
further analyze the anisotropy Hamiltonian on an
atom-by-atom basis. By expanding the Kohn-Sham
orbitals (|φkσ〉) in Eq. (9) in terms of the atom-
centered basis, the second-order expression (Eq. (7))
can be decomposed into a sum over four centers.26

The super-diagonal terms (all center indices the
same) can then be used to determine an anisotropy
Hamiltonian associated with each atom. In Ref.26,
this decomposition has been used to verify the per-
pendicular hard-axis alignment model in the Co4
easy-plane magnetic molecule. In Ref.27, Baruah’s
method was used to demonstrate that essentially all
of the magnetism in Mn12-acetate was due to the
outer eight S=2 crown Mn ions, and that the sum
of the single-ion anisotropies was very close to the

total anisotropy. Further the degree to which non-
additivity occurred was explained by a canting of
the atom projected anisotropy axes relative to the
global anisotropy axis.
To complete the discussion about second-order

anisotropy Hamiltonians, derived either perturba-
tively or via exact diagonalization, it is important
to note a contribution to van Wullen and cowork-
ers.28,29. Van Wullen noted that once a method is
used to determine the spin-orbit energy as a function
of axis of quantization that an additional quantum
correction is needed to determine the parameter’s D
and E in the anisotropy Hamiltonian. For example,
the Ms = 0 eigenstate is not aligned with an axis
of quantization along the x-axis, the y-axis or any
other axis. Therefore more care must be taken to
determine D once the classical energy as a function
of expectation value of S is known. Accounting for
this correction changes the definition of D, as origi-
nally derived by Pederson and Khanna, by a factor
of (S+1/2)/S. While this correction is small in the
large S limit, it can be important for systems with
lower spin.

C. Computational details

In this paper we use a self-consistent field approx-
imation based on density-functional theory (DFT).
A review of this approach in the study of molecular
magnets can be found in Ref.24. Here we remind
a few key features that are relevant for the present
work.
In a DFT calculation of a magnetic molecule,

we obtain the total energy of the system for spe-
cially prepared spin symmetry-breaking metastable
states. In many cases these are ferrimagnetic spin
configurations, suggested by experiment. The en-
ergies of these different metastable states can then
be compared and the lowest-energy spin configura-
tion determined. Alternatively, it is also possible to
impose a fixed spin configuration, which in princi-
ple would not remain stable after convergence. In
all these symmetry-breaking calculations the state
with a given spin configuration is represented by a
single Slater determinant of occupied single-particle
states, constructed in terms of self-consistent Kohn-
Sham eigenvectors. In the absence of SOI, the Kohn-
Sham wavefunctions have a well-defined spin charac-
ter, majority or minority spin. Therefore, the single
Slater determinant, representing a given spin con-
figuration, is an eigenstate of the component of the
total spin S in the direction of the quantization axis
n̂, which is the magnetization direction. In general
this single Slater determinant is not an eigenstate
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of S2, but in many cases it will have a large over-
lap with the eigenstate of S2 with S equal to the
eigenvalue of S · n̂. The GS total spin S of the
molecule (in the absence of SOI) is taken to be equal
to one half of the excess of majority spin electrons,
S = ∆N/2 = (Nmaj − Nmin)/2, for the metastable
spin configuration with the lowest total energy. The
spin magnetic moment of the system in units of the
Bohr magneton µB is then µS = ∆NµB = 2SµB.
In the DFT study of SMMs the possible presence
of fractional occupancy of some of the KS wavefunc-
tions close to the Fermi energy might result in nonin-
teger values of Nmaj−Nmin. Typically this happens
when the HOMO-LUMO gap is very small or van-
ishing. We will encounter examples of this difficulty
in the study of the charged states of {Fe4}. The ex-
istence of this general problem was first discussed by
Janak et al30 in reference to near degeneracies be-
tween 3d and 4s electrons in neutral isolated atoms.
In Ref.31 a set of equations are derived which, while
cumbersome to solve, allow one to variationally de-
termine the electronic occupations that satisfy the
conditions proposed by Janak in Ref.30.

DFT can be used to extract the parameters defin-
ing the spin Hamiltonian that is supposed to de-
scribe the exchange interaction between the mag-
netic ions of the molecule. First of all DFT can be
used to ascertain whether or not there is a localized
spin at each magnetic ion, by calculating the total
spin polarization inside a sphere centered about a
given atom. For typical SMMs, including the one
considered in this paper, while the magnetization
density is not localized entirely on the magnetic ions,
the assumption of a well-defined quantum spin often
turns out to be quite reasonable. Once this is estab-
lished, the calculation of the total energy for a few
spin configurations permits the computation of the
exchange constants of Eq. (1). We will see an exam-
ple of this in the next section.

The DFT calculations discussed herein are per-
formed with the Gaussian-orbital-based NRLMOL
program.32,33 All calculations employ the Perdew-
Burke-Ernzerhof34 (PBE) generalized-gradient ap-
proximation for the density functional. A large basis
set is employed in which the exponents for the single
Gaussians have been fully optimized for DFT calcu-
lations. The NRLMOL code employs a variational
mesh for numerically precise integration and an an-
alytic solution of Poisson’s equation.

All-electron calculations are performed for all el-
ements of the {Fe4} SMM except for the Au atoms
that are used to construct the leads attached to the
molecule, for which we have used pseudo potentials.
All the electronic and magnetic properties are cal-
culated using an optimized geometry.

III. ELECTRONIC AND MAGNETIC

PROPERTIES OF ISOLATED {Fe4} SMM

The chemical composition of the molecule used in
this work is Fe4C76H132O18.

35 The four Fe atoms in
{Fe4} SMM form an equilateral triangle, as shown
in Fig. 1. The molecule has idealized D3 symme-
try with the C2 axis passing through the central
atom and one of the peripheral atoms. Using first-
principles methods we have calculated, in detail, the
electronic and the magnetic properties of the {Fe4}
SMM.

FIG. 1. (Color online) Ball-stick top view of an isolated
{Fe4} SMM. Red, green, blue and purple balls corre-
spond to iron, carbon, hydrogen and oxygen atoms, re-
spectively

In the ground state, the central Fe atom is coupled
anti-ferromagnetically with three peripheral atoms,
whereas the three peripheral atoms are coupled fer-
romagnetically with each other, as shown in Fig. 2.
Each of the four Fe atoms has spin SFe = 5/2, thus
the total spin of the ground state is S = 5. The
magnetic interactions between these atoms can be
described by the Heisenberg spin Hamiltonian (Eq.
(2)),

H = J(s1 · s2 + s1 · s3 + s1 · s4)
+J ′(s2 · s3 + s3 · s4 + s4 · s2) . (17)

The two exchange parameters J and J ′ can be
written in terms of the expectation values of the
Hamiltonian of Eq. (17), for different spin config-
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FIG. 2. Exchange interaction constants between four Fe
atoms in {Fe4} SMM.

urations.

J = − 2

75
(Eduuu − Euuuu) ,

J ′ =
1

75
(2Eduuu − 3Euudd + Euuuu) . (18)

Here, Eduuu, Edduu and Euuuu are the energies of
the molecule where the spin orientations at their
respective atomic positions (1,2,3,4) are labeled as
d = down or u = up. Using NRLMOL we have
calculated the energies of different spin configura-
tion and upon substitution in Eq. (17), we obtain
J = 9.94 meV and J ′ = 0.64 meV. DFT calcula-
tions overestimates J and J ′ since estimated values
from susceptibility measurements36 are 2.62 meV
and 0.14 meV, respectively. However, we note that
the ratio of these two parameters agrees quite well
for both theory and experiment. These values of
the exchange constants ensure that the GS of the
spin Hamiltonian Eq. (18) has indeed a total spin
S = 5/2, well separated from excited states charac-
terized by other values of S.
Using first-principles methods we have calculated

the electronic and magnetic properties of {Fe4}
SMM for the neutral (Q = 0) and two charged
states, namely, the anion (Q = −1) and the cation
(Q = +1). (We will refer to the value Q as the
extra charge added to the system.) A summary of
the results is shown in Table I. These results can
be understood with the help of the structure of the
single-particle energy levels around the Fermi level
in the absence of SOI, plotted in Fig. 3 for the three
charge states Q = 0,±1.
The neutral molecule has a stable S = 5/2 GS, as

anticipated. The HOMO-LUMO gap of the neutral
isolated Fe4 molecule is is about 0.85 eV, where both
HOMO and LUMO levels are minority (down) spin

TABLE I. Properties of the isolated {Fe4} SMM for the
three different charge states. *Note that the energy gap
reported for the cation refers to the energy difference
between the half-filled HOMO and empty LUMO. See
Fig. 3(c).

Charge Spin magnetic HOMO-LUMO Anisotropy
state moment µS(µB) energy gap (eV) barrier (K)
Q=0 10.0 0.85 16.05

Q=+1 9.3 0.80∗ 53.42
Q=-1 9.0 0.06 1.88

FIG. 3. Energy levels (eV) of different charge states of
isolated the {Fe4} SMM without spin-orbit coupling. Ef

represents the Fermi level. The numbers on the right of
the HOMO and HOMO-1 levels in (c) are the fractional
occupancies of the corresponding level.

states, see Fig. 3(b). Apart from a small swapping
of two levels below the HOMO, the level structure
for the Q = −1 charge state can be obtained from
the the energy levels of the neutral system simply
by filling the neutral LUMO with a spin-down elec-
tron, see Fig. 3(a). As a result the total spin of the
anion is S = 9/2. Note also that the HOMO-LUMO
gap of the anion is now reduced to 0.06 eV com-
pared to the neutral molecule. The electronic states
changes significantly for the Q = +1 charge (cation)
state: the two doubly degenerate spin-up HOMO-1
and spin-down HOMO states of the neutral molecule
swap place, see Fig. 3(c). Furthermore, since there
is now one fewer electron, the new HOMO is now
half-filled. This implies that the total spin of the
cation is again reduced with respect to the neutral
molecule by 1/2, that is, S = 9/2. The fractional oc-
cupancy of the HOMO plays important role in the
enhancement of the magnetic anisotropy, discussed
below. Our DFT calculations yield values of the to-
tal spin S in agreement with the level structure of
Fig. 3. In particular for the charged states Q = ±1,
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even when the initial spin configuration is set to be
S = 11/2, the system converges eventually to the
value S = 9/2.

For the neutral molecule, the magnetic anisotropy
landscape is characterized by an easy axis in the di-
rection perpendicular to the plane containing the
four Fe atoms (the z-axis). As shown in Table I,
we find that the anisotropy barrier for this case is
about 16 K, which is in agreement with previous
calculations37 (In Ref37, the authors have used two
different {Fe4} complexes. The molecular symme-
try for one of these complexes is C2, whereas the
the other one has D3 symmetry. Our calculations
agree well with the one that has D3 symmetry.).
Note that a well-defined energy gap between occu-
pied and unoccupied states (regardless of the spin),
ensures that the perturbative and exact calculation
of the anisotropy coincide.

The magnetic anisotropy of the Q = +1 charge
state has also uniaxial character in the z-direction,
with a barrier of about 53 K, significantly larger than
that obtained for the neutral molecule. On the other
hand for the Q = −1 charge state the anisotropy is
reduced to about 1.9 K, with an easy axis in the
XY -plane of the Fe atoms. The large change in the
anisotropy for the two charged states has a very dif-
ferent origin for the two cases and can be understood
in the following way.

For the Q = −1 case, the small gap between
the like-spin HOMO and LUMO states might at
first suggest a breakdown of the perturbative treat-
ment. In fact, these two states are coupled only
minimally by SOI. The most important coupling oc-
curs between the spin-down HOMO and the spin-
up LUMO+1 states. The energy difference between
these two states is ≈ 0.25 eV. This value and the
corresponding energy denominator in Eq. (9) is large
enough for perturbation theory to work (as a com-
parison with the exact approach clearly shows) and,
at the same time, small enough for this individual
transition to completely determine the main features
of the anisotropy landscape. In particular, it turns
out that this term in Eq. (9) favors an easy axis
along a direction in the XY -plane of the Fe atoms.
Since this magnetization direction is unfavorable for
other terms in Eq. (9) (which prefer the z-direction),
there are positive and negative contributions in the
total energy difference for the two magnetization di-
rections (calculated with Eq. (7)), which in the end
lead to a reduced anisotropy barrier.

The large enhancement of the magnetic anisotropy
barrier found for the Q = +1 state can also be un-
derstood with the help of single-particle energy dia-
gram shown in Fig. 3(c). We observe that the half-
filled doubly-degenerate spin-up HOMO level lies

just above a (close-to-100%) filled doubly degenerate
spin-down HOMO-1 level. The term involving tran-
sitions between these two occupied and unoccupied
levels totally dominate Eq.(9). In fact, the small-
ness of the corresponding energy denominator (a few
meV) renders the perturbative approach inadequate.
This is a classical example of a quasi-degeneracy at
the Fermi level, where the exact treatment of SOI
is necessary. As it is often the case, the inclusion of
SOI lifts the quasi-degeneracy for a particular direc-
tion of the magnetization, leading to a substantial
decrease of the total energy for that direction and,
consequently, to a large anisotropy energy barrier.

IV. {Fe4} SMM ATTACHED TO METALLIC

LEADS

In this section we investigate how the electronic
and magnetic properties of the {Fe4} SMM change
when the molecule is attached to metallic leads, as
in transport experiments. The system that we have
in mind is a single-electron transistor device, where
metallic nano-leads, separated by a nanogap created
by either break junction or electric migration, are
bridged by a molecule functionalized with convenient
chemical ligands. In our theoretical modeling, we
are forced to find a convenient finite representation
of otherwise semi-infinite leads in the form of finite
clusters. For the calculations reported in this paper
we have chosen to model a metallic nano-lead with a
finite cluster of 20 gold (79Au) atoms, arranged in a
special tetrahedral structure, which can be viewed as
a fragment of the face-centered cubic lattice of bulk
Au (see Fig. 4). This metal cluster, Au20, has been
previously investigated by by Li et al. in Ref. 38,
where it was shown that 20 Au atoms arranged in
this geometric configuration form a very stable sys-
tem. Its very large HOMO-LUMO gap (1.77 eV)
makes Au20 chemically very inert. What is also
important is that its unique tetrahedral structure
makes this cluster an ideal model for Au surfaces at
the nanoscale. Our rational for using this cluster to
model metal leads is that during the fabrication of
the nanometer-spaced electrodes, via self-breaking
by electro-migration for example, the ensuing Au
nano-leads will relax into the most stable configu-
ration which might be well described by tetrahedral
Au20. In a way, the tetrahedral Au20 is the best
representation of bulk Au at the nanoscale.
Secondly, since ultimately we would like to inves-

tigate transport properties of this system in coulomb
blockade regime, it is essential that coupling between
the leads and molecule is weak.
After constructing the two leads in the form of
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two Au20 clusters, we have connected the molecule
via phenyl groups, as shown in Fig. 4. The function-
alization of the ligands of {Fe4} SMM by means of
phenyl groups is well-known and suitable to attach
the molecule to Au surfaces12,15.
A similar way of connecting the {Fe4} SMM to

Au leads is employed in SET experiments in the
Coulomb blockade regime16–18, and it ensures that
the electronic coupling between the molecule and
electrodes is weak. To maintain proper bonding and
ionic neutrality of the entire cluster we have further
removed one hydrogen (H) atom from the molecule
close to the contact point and have added it to the
chain part of the cluster. We have considered two
different ways of doing this. In the first case (here-
after called Type-1 lead) we have added the H atom
to the sulfur (S) atom near the Au cluster. In the
second case (hereafter called Type-2 lead) we have
added H to the carbon (C) atom near the contact
point as shown in Fig. 4. After connecting the leads
with the molecule we have relaxed the entire sys-
tem again. Typically we find that the system with
Type-2 leads is more stable, that is, its energy is
approximately 0.6 eV lower than the energy of the
system with Type-1 leads. We will nevertheless re-
port results for both cases unless otherwise specified.

FIG. 4. {Fe4} SMM connected to Au20 leads. Two types
of leads are used in these calculations. In Type-1 lead a
H atom is added to the S atom near the gold lead (top
figure). In Type-2 lead a H atom is added to a C atom
in the phenyl group near the {Fe4} molecule (bottom
figure).

A summary of the magnetic properties of the neu-
tral molecule attached to A20 leads is shown in Ta-
ble II. We can see that the combined molecule plus
leads system maintains a sizable HOMO-LUMO gap
of about 0.75 eV. The first important result is that
coupling the leads does not cause a change of the
spin of the molecule, which remains equal to the

value of the isolated neutral {Fe4}, S = 5. Sec-
ondly, the leads have a very small effect also on the
magnetic anisotropy of the system: the magnetic
anisotropy landscape has still an easy axis along the
same z-direction (see white arrow in Fig. 4), with an
energy barrier quite close to the 16 K of the isolated
molecule.

TABLE II. Properties of neutral {Fe4} SMM attached
to A20 leads, compared to the properties of the isolated
molecule (first row). Type-1 and Type 2 (called in the
paper also Type-1 lead and Type-2 lead) refer to the
two different choices to place an Hydrogen atom to the
ligand, See Fig. 4

Spin magnetic HOMO-LUMO Anisotropy
moment µS(µB) gap (eV) barrier (K)

{Fe4} 10 0.85 16.05
{Fe4}+Type 1 10 0.87 15.99
{Fe4}+Type 2 10 0.57 15.47

FIG. 5. Shifts in the energy levels (eV) of neutral {Fe4}
SMM when connected to two Au20 leads (of Type-2).
(a) Isolated Au lead (b) Leads+{Fe4}+phenyl and (c)
{Fe4}+phenyl. The labels Aud and Phenyl Cp in (b)
indicate that the main contribution to those levels comes
from d levels of the Au leads and p levels of C in the
phenyl ligands respectively.

We can gain some insight about the robustness
of the magnetic structure of {Fe4} SMM under the
influence of metallic contacts by investigating the
changes in the single-particle energy levels and level
alignment and occurring when the leads are con-
nected to the molecule. We have calculated sep-
arately the energy levels of the isolated Au lead(s)
and the {Fe4} + phenyl group, along with the levels
of the combined system [Au leads + {Fe4} + phenyl
group]. The results are shown in Fig. 5. The states
at and near the Fermi level of the two subsystems are
dominated by the d-levels of Au atoms and the p lev-
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(a)Homo-neutral

(b)Lumo-neutral

FIG. 6. HOMO and LUMO of the neutral molecule.

els of the C atoms of the phenyl group. Thus, when
the two systems are combined, the charge transfer
taking place to align the Fermi energies of the two
subsystems is restricted only within the contact re-
gion, leaving the magnetic properties of the {Fe4}
inner core unchanged. Fig. 5(b) shows that the en-
ergy levels of the combined system around at the
Fermi level correspond primarily to states remote
from the magnetic core. This is also supported by
Fig. 6, where we plot the probability density for the
HOMO and LUMO states of the {Fe4} + leads sys-
tem. Both states have negligible contributions on Fe
atoms or atoms immediately nearby to these. As we
will see below, this implies that the magnetic prop-
erties will remain unchanged even when extra charge
is added to (or subtracted form) the system.

Fig. 5(b) shows that both the non-degenerate
spin-down HOMO and the non-degenerate spin-
down LUMO of the neutral system lie quite close
in energy to degenerate levels (occupied and non-
occupied respectively). Therefore we can expect
that subtle energy-level swaps may occur when one
electron is added to or subtracted from the system.
As it is evident from Fig. 7, this is exactly what
the calculations show. For the case of leads of Type
2, the HOMO of the anion (Q = −1) is now a half-
occupied doubly-degenerate spin-up level, lying very
close to a non-degenerate spin-down LUMO. This
leads to a GS spin S = 11/2, and to a spin mag-
netic moment close to µs = 11µB (See Table III).39

A similar situation occurs for the Q = +1 charge
state, which has a GS spin S = 11/2. We find
that this state is however almost degenerate with
another state with S = 9/2. For leads of Type-

FIG. 7. Energy levels (eV) for the three charge states
Q = 0,±1 for the {Fe4} SMM connected to two Au20

leads (of Type-2). (a) Anion. (b) Neutral (same as in
Fig. 5(b)). (c) Cation. The labels Aud and Phenyl Cp

in (b) indicate that the main contribution to those levels
comes from d levels of the Au leads and p levels of C in
the phenyl ligands respectively.

1 (which are less stable), the spin configurations
S = 11/2 and S = 9/2 are almost degenerate for
both charged states, Q = ±1. Note that the spin
magnetic moment of the Q= -1 charge state is now
closer to µS = 9µB. The quasi-degeneracy of two
different spin configurations is a situation where the
assumption of the existence of a well-defined giant-
spin model may not be entirely adequate.

TABLE III. Magnetic properties of the three charge
states when the {Fe4} SMM is attached to Au leads
as in Fig. 4.

Charge Spin magnetic Anisotropy
state moment µS(µB) barrier (K)

Type 1 Type 2 Type 1 Type 2
Q=0 10.0 10.0 15.99 15.47

Q=+1 9.0 10.95 17.73 14.74
Q=-1 9.6 10.65 11.23 16.97

As shown in the Table III, in contrast to the case
of the isolated {Fe4} SMM where the anisotropy
of the charged states are significantly different from
that of the neutral molecule, when the leads are at-
tached to the molecule the anisotropy barrier of the
charged states remains close to the value of the neu-
tral system. We also note that magnetic properties
of the charge states have some dependence on type
of the lead attached to the molecule.
As anticipated above, an explanation of this be-
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(a)

(b)

FIG. 8. (Color online) Evaluation of the fraction of extra
charge for the anion state (Q = −1, one extra electron
added) with respect to the neutral state, contained in
different regions of the {Fe4} molecule plus leads and
phenyl groups. In (a) each yellow sphere surrounding
the lead and the phenyl group contains about 40% of
an electron charge. In (b) each yellow sphere, surround-
ing only the Au lead, contains 21% of electron charge.
Therefore, the amount of charge transferred to the leads
is about 42% and to the phenyl groups is 38%. The rest
of the extra charge ≈ 20% is in the {Fe4} region.

havior is already suggested by the energy diagram of
Fig. 5(b) and the plots of Fig. 6 demonstrating that
both the HOMO and the LUMO of the neutral sys-
tem are states predominately localized around the
Au leads and within the phenyl group respectively.
Therefore, we expect that when we add or remove
an electron from the system it largely resides in the
lead and phenyl group, leaving the magnetic states
in {Fe4} molecule relatively unchanged. The easy
axis, in all cases, points perpendicularly to the Fe4
plane, as shown in Fig. 4, except for Q = −1 charge
state of Type-1 lead, which is in the plane.

Further support to this picture is provided by cal-
culating the real-space location of the extra charge
when an electron is added or subtracted to the sys-
tem. As an example, we consider here the case of
the anion, where one electron is added to the system.
Since part of this extra charge might end up in inter-
stitial regions between atoms (this is the case for the
extra charge on the Au leads), particular care must
be taken in drawing conclusions based only on the
atomic-position plot of the HOMO states, shown in
Fig. 9, which might miss this contribution. To cap-

(a)HOMO 1

(b)HOMO 2

(c)LUMO

FIG. 9. The two quasi-degenerate HOMOs and the
LUMO of the anion charge state. Approximately 20%
of the HOMO wave functions reside on the Au leads,
primarily on the interstitial space between Au atoms.
See Fig. 8. This contribution is not visible on the scale
of this plot.

ture the interstitial contribution, we draw instead
a large sphere enclosing a given region of the sys-
tem. NRLMOL is able to calculate the extra charge
contained globally in that region, including intersti-
tial contribution. By repeating the same calculation
with different spheres centered at different locations,
we can eventually determine the amount of extra
charge in different relevant parts of the system.

In Fig. 8(a) we consider a sphere (yellow color)
containing both the lead and the phenyl group
linker. We find that the amount of extra charge con-
tained in this region is 40% of one electronic charge.
The remaining 20% is located on atoms in the near-
est surrounding of the {Fe4} core. In Fig. 8(b) the
sphere encloses only the Au lead but no linker. For
this case we find that each Au leads contains 21%
of extra electronic charge. We conclude that when
one electron is added to the system, a total of 42%
of the extra charge resides on the leads, 38% on the
ligands and only 20% is around the magnetic core
of {Fe4}. This 20% of added charge in not directly
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on the Fe atoms and therefore does not change the
magnetic properties of {Fe4} significantly.

−3.883 −3.849 −3.815 −3.781 −3.747

−1

0

1

Spin magnetic moment

C
h
a
rg

e
 s

ta
te

 Q

   Isolated Fe
4

   Type 1 lead

   Type 2 lead

(a)Central Fe atom

3.8 3.85 3.9 3.95

−1

0

1

Spin magnetic moment

C
h
a
rg

e
 s

ta
te

 Q

   Isolated Fe
4

   Type 1 lead

   Type 2 lead

(b)Vertex Fe atoms

FIG. 10. Local magnetic moments of Fe atoms. The neg-
ative and the positive moments in the two figures imply
that moments of central and vertex atoms are opposite
to each other.

Further evidence of this important conclusion is
provided by the comparison of the calculated lo-
cal spin magnetic moments of the Fe atoms for
the isolated {Fe4} molecule and for molecule-plus-
lead system, for different charge states. The re-
sults are shown in Fig 10. We note from the fig-
ure that for the isolated molecule the magnetic mo-
ments change considerably for the charged states,
whereas for molecule plus lead system, the corre-
sponding change is very small. Clearly, when the
molecule is attached to the Au leads, adding or re-
moving one unit charge affects the magnetic states
of the {Fe4} minimally, which is also why we do not
see a large change in magnetic anisotropy for differ-
ent charge states.
We conclude this section with a few comments on

the important issues of the nature of the charged
states and the character of the coupling molecule-
leads, as evinced by the DFT calculations. Firstly,
we have seen that when one electron is added or
subtracted to the system {Fe4} + (finite) leads, the
extra charge is predominantly localized on the lig-
ands (≈ 40%) and on the leads ( ≈ 40%). If we
could increase the size of the leads, a larger fraction
of the extra charge would be likely to spread on the

metallic leads. Therefore one could argue that the
charged states Q = ±1 investigated above are not a
fully adequate description of the charged states in-
volved in the sequential tunneling processes taking
place in a SET, where the additional charge should
be essentially localized on the central island. Sec-
ondly, and partly connected to this issue, the non-
zero amplitude of the LUMO wavefunction of the
neutral system (which is quite close to the HOMO
wavefunction of the anion) seems to indicate that
the ligands considered here do not behave as tun-
nel barriers of a SET, but rather model an exam-
ple of strong coupling between molecule and leads40

Both these features could be due to limitations of the
DFT approach considered here, which tends to over-
delocalize any added charge. Such drawbacks can
possibly be improved by more refined DFT treat-
ments, involving, for example, self-inter corrections.
While we believe that these refinements are impor-
tant and should be further investigated, the goal
and strategy of the present paper is to simulate with
DFT a realistic example of SMM attached to leads,
being aware of these limitations.

V. EFFECT OF AN EXTERNAL ELECTRIC

POTENTIAL

In SET devices the charge of the central island
weakly coupled to metallic electrodes can be varied
experimentally one by one by applying an external
electric field via a third gate electrode, which over-
comes the charging energy e2/C of the island. Here
we investigate the effect of an external gate elec-
trode, whose electric potential tends to confine the
extra charge closer to the molecule. Note that in
phenomenological studies of SETs based on model
Hamiltonians, a gate voltage only shifts the energies
of the isolated “quantum dot” without affecting its
wavefunctions. As we show below, in our case the
gate voltage can be used to localize a wavefunction
closer to the molecule and modify its coupling to the
leads. The resulting charged states should be a bet-
ter representation of the states involved in tunneling
transport in SET when Coulomb blockade is lifted.
We model the external potential by a simple Gaus-

sian confining potential of the form

U = V0e
−αx(x−x0)

2−αy(y−y0)
2−αz(z−z0)

2

. (19)

Here V0 is magnitude of the potential centered at
(x0,y0,z0), which in our case is the position of the
central Fe atom of the {Fe4}. The constants α’s are
the width of the potential along the corresponding
directions and are chosen so that the potential drops
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quickly at distances larger than {Fe4}. The sign
of V0 determines whether the extra electron will be
confined into or repelled from the {Fe4} molecule.
Thus for the anion case a negative V0 will attract
the electron whereas for the cation case a positive
V0 will attract the “hole” inside the molecule.
We start by looking at the effect of the gate volt-

age on the anisotropy of the isolated {Fe4} SMM.
We have first considered a gate voltage that depends
only on the variable z. The resulting electric field
points along the the z-axis, which is the easy axis of
the molecule.
From Fig 11 we note that in the anion case a con-

fining potential for the extra electron (V0 < 0) re-
duces the anisotropy barrier; whereas repelling the
extra charge away from the molecule increases the
anisotropy. The neutral molecule displays an op-
posite behavior as a function of V0. In both cases
the the behavior of the anisotropy is close to a linear
function of V0 < 0. As expected, the variation of the
barrier for the neutral molecule is limited, less than
10 % for the largest applied voltage. The cation is
special. We have seen that at zero voltage, the sys-
tem has a large anisotropy barrier (see Table I). due
to a quasi-degeneracy at the Fermi level. The exter-
nal potential lifts this degeneracy and the anisotropy
barrier decreases sharply for both signs of V0.

1.3

2

3

15.3

16

16.7

A
N

IS
O

T
R

O
P

Y
 (

K
)

−5 −2.5 0 2.5 5
0

25

50

V
0
(eV)

Anion

Neutral

Cation

FIG. 11. Variation of the magnetic anisotropy barrier as
a function of a confining potential V0 applied along C3

axis (perpendicular to the plane of the {Fe4} triangle)
of an isolated {Fe4} SMM.

The confining potential that we have applied
above does not break the C3 symmetry of the sys-
tem and hence the parameter E in Eq. (2), charac-
terizing the transverse component of the magnetic
anisotropy, is zero. However, the symmetry can be
broken by applying an electric field along directions
other than the easy axis. Table IV shows the effect
of this broken symmetry on the anisotropy of the
isolated {Fe4} SMM.

TABLE IV. The effects of confining potential on neutral
{Fe4} SMM. ∆ is the anisotropy barrier and D and E
are the parameters of the Hamiltonian Eq. (2), all in
units of K.

V0 αx αy αz ANISOTROPY
(eV) ∆ (K) D (K) E (K)
0.0 0 0 0 16.06 -0.63 0.00
-5.0 0.01 0 0.01 17.00 -0.64 -0.03
-5.0 0.01 0 0 15.77 -0.60 -0.02

It is evident from Table IV that E is no longer zero
if the electric field is applied along directions other
than the easy axis. A non-zero E allows different
eigenstates of z-component of the giant spin to mix
with each other. a transverse component in principle
can cause quantum tunneling of the molecule giant
spin. Thus, this method can be used as electric con-
trol of magnetic properties. It can play a significant
role in transport, for example by modifying spin se-
lections rule and by opening alternative channels via
quantum tunneling of the magnetization.

We now discuss the effect of the applied gate volt-
age when the {Fe4} molecule is attached to Au
leads. In this case we have applied the field only
along the easy axis of the molecule attached to the
leads of Type 2, as shown in Fig. 4. We have seen in
the previous section that since HOMO and LUMO
states and states close in energy to these are primar-
ily localized on the Au leads and phenyl linker, an
added or removed electron leaves {Fe4} largely un-
affected. But the presence of a confining potential
(V0 < 0 for electrons), applied only on {Fe4} part of
the system, brings the states localized within {Fe4}
SMM closer to LUMO levels. Thus, when an elec-
tron is added to the system, the fraction of this extra
charge that goes inside the molecule increases as we
increase the confining potential. Similarly, when an
electron is subtracted from the system, an applied
positive gate voltage (V0 > 0), tends to localize a
fraction of the positive extra charge (a hole) closer
to the molecule.

As an example, we consider the effect of a con-
fining potential for the anion case (Q = −1, one
electron added to the system). Fig. 12 shows the
change in fractional charge that enters into the
{Fe4} molecule as the strength of confining poten-
tial is increased, and the corresponding change in
magnetic anisotropy barrier of the system. Clearly,
as the voltage is increased, more of the added elec-
tron is pushed inside the molecule. As the charge
fraction approaches unity, the anisotropy decreases
and converges to the value obtained for the anionic
state of the isolated {Fe4} SMM.

It turns out that not only the anisotropy barrier
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FIG. 12. (Color online) Fraction of the added charge
(blue circles) confined inside {Fe4}, as a function the
confining potential strength, and corresponding change
in the magnetic anisotropy (black diamonds) of the leads
plus molecule system in the anion state, Q = −1. The
external potential corresponds to an electric field along
the z-direction. See Fig. 4.

but other magnetic properties converge to the prop-
erties of the anion state of the isolated {Fe4} as the
extra charge, under the effect of the external po-
tential, moves closer to the center of the molecule.
The easy axis of the system, which in zero potential
points perpendicular to the plane of the Fe4 triangle
and towards the leads, eventually rotates into the
plane of the Fe4 triangle, exactly as in the case of
the anion state of the isolated {Fe4} SMM. Sim-
ilarly, as the added charge moves inside the inner
magnetic core of {Fe4}, the total spin of the system
is reduced from S = 11/2 to the value of the anion
state of the isolated molecule, S = 9/2.

Similar results are obtained for the cation. As we
apply an increasingly positive voltage, a larger frac-
tion of a (negative) electron charge is pushed outside
{Fe4}, or equivalently, a larger fraction of (positive)
hole is attracted inside the {Fe4}. As a result, the
anisotropy barrier increases and it reaches a value of
22.8 K for V0 = 5 eV, with more than half of the
extra (positive) charge now inside {Fe4}. Similarly,
the spin also switches from S = 11/2 at V0 = 0 to
S = 9/2 at V0 = 5 eV. Again, this is consistent with
both the spin and the anisotropy converging towards
the corresponding values of the isolated cation state.

A summary of the dependence of the anisotropy
barrier as a function of the external potential for all
three charge state in shown in Fig. 13. While the
anisotropy of neutral state displays a weak depen-
dence on the field, the anisotropy of the two charged
states is significantly affected. These calculations
demonstrate that, for a SET with a {Fe4} SMM as
a central island, by manipulating the position of the
additional charge with a gate voltage, it is possible

to modify the magnetic properties of the SMM. This
in turn can have important effects on the tunneling
transport of the device.
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FIG. 13. Magnetic anisotropy as a function of a con-
fining field for the molecule plus leads (Type 2) system,
for the three charge states. The field is applied along
the easy axis, that is, perpendicular to the plane of the
molecule. The anisotropy for the the three charge states
for the isolated molecule is included as a comparison (see
diamond, circle and triangle symbols).

VI. COMPARISON WITH SET

EXPERIMENTS

Recent SET experiments16,18 have permitted the
first measurements of the magnetic characteristics
of the {Fe4} SMM weakly coupled to Au leads,
for both neutral and charged states. Comparison
with our theoretical results has be done with cau-
tion, since important details (e.g., the type of linker
used, see below) might differ in the two cases. In
a first study Zyazin et al.16 have studied quantum
transport in the inelastic cotunneling regime. By
measuring the zero-field splitting of magnetic exci-
tations and their dependence on the magnetic field,
it was possible, with help of the model Hamilto-
nian of Eq. (2), to extract values of the giant spin
S and the magnetic anisotropy barrier ∆ = DS2

for three adjacent charge states, N (neutral), N +1
(anion) and N − 1 (cation). For the neutral state,
the spin of the molecule was found to be equal to
expected value SN = 5 and the anisotropy bar-
rier to be consistent with the value in the bulk
phase, ∆N = 1.4meV = 16.24K. These results are
in good agreement with our theoretical estimate for
the Q = 0 charge state, see Table III.
For the charged states, the situation is more com-

plicated. For the reduced molecule (anion state,
one electron added) the experimental measurements
gave SN+1 = 11/2 for the spin and ∆N+1 =
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2.7meV = 31.30K for the anisotropy. For the oxi-
dized molecule (cation state, one electron removed),
the measurements gave SN−1 = 9/2 and ∆N−1 =
1.8meV = 20.90 K respectively. Comparing these
findings with the results of our calculations (see Ta-
ble III)) we can see that, for a given choice of lead
type (Type 1 or Type 2), the theoretical value of the
spin is consistent with the experimental one for ei-
ther cation or anion, but not for both. We can also
conclude that the experiment typically finds larger
values for the anisotropy barrier, for both reduced
and oxidized states, than the values predicted by
theory.

Several reasons can be responsible for these dis-
crepancies. First, the functionalization of the
molecule used in the experiment is slightly different
from the one used in the calculations. In fact, in the
experiments two different types of ligands were used.
In one case (labeled as sample A) the {Fe4} SMM
was connected to the Au lead the phenyl group. In
the second case, (labeled as sample B) the {Fe4}
was connected via a thiol group, C9S. The coupling
molecule-lead turns out to be weaker in sample A
than in sample B.41 As shown above, in all our calcu-
lations we have used a different type of linker, which
was combination of a phenyl group and a thiol group.

Secondly, in experiment different charge states are
achieved by adding or removing electrons to the cen-
tral region of SET via a gate voltage. In the theo-
retical calculations, the two relevant charged states
are constructing by adding or removing an electron
to a system consisting of the {Fe4} connected to fi-
nite leads. The extra charge is allowed to relax in
the self-consistent field, and it occupies regions away
from the {Fe4}, which affects the magnetic proper-
ties of the system. Indeed, confining on the SMM
with an external gate modifies the anisotropy bar-
rier.

Third, the evaluation of the magnetic properties
from experiment done in Ref. 16 relies on the use
of the model Hamiltonian of Eq. (2). The fitting of
the experimental results maintains a degree of un-
certainty and arbitrariness, and moreover it could
be problematic in cases of level degeneracy at the
Fermi level, not uncommon for charged states. In
this case, we have seen the the giant-spin model of
Eq. (2) might become inadequate.

Finally, the method of Ref. 16 relies on the mea-
surement of inelastic cotunneling excitations, which
is quite sensitive to the coupling between molecule
and leads, and therefore it is a procedure not im-
mune of uncertainties. Indeed, in a more recent pa-
per Burzuŕı et al.18 introduced a novel gate-voltage
spectroscopy technique which permits the measure-
ment of the anisotropy of an individual SMM in dif-

ferent charge states by tracking the dependence of
the charge degeneracy point as a function of mag-
netic field. This method is much more sensitive
and accurate than the method based on conven-
tional transport spectroscopy employed in Ref. 16.
The spin Hamiltonian provides a good fit of the
data if SN = 5, ∆N = 16.2K for the neutral state,
SN+1 = 9/2 and ∆N+1 = 16.0K for the reduced
state and SN−1 = 11/2 and ∆N−1 = 16.5K for the
oxides state. Furthermore, the orientation of the
easy axis is found to exhibit only small variations
among different charge states. Although some de-
tails might differ,42, these results are quite consistent
with the small variations in anisotropy magnitude
and the unchanged orientation of the easy axis that
we find for the three charge states in our theoretical
analysis. See Table III.

As we mentioned above, the small variation in
the anisotropy for different charged states found in
our calculations is related to the fact that any ex-
tra charge added to the molecule + leads system
tends not to reside directly on the magnetic atoms,
but mainly on the ligands and on the Au leads. We
pointed out that this could be, in part, an artificial
effect due to the way we constructed charged states
in our finite-size system and to the delocalizing char-
acter of our DFT approach. On the other hand, it
is interesting that our estimates for the magnetic
anisotropy are essentially consistent with the exper-
imental results of Ref. 18, which are obtained ex-
actly at charge degeneracy points. At these special
values of the external gate voltage the energy of two
adjacent charge states is the same. We can imag-
ine that at the degeneracy point the extra charge
can swap energy-free from the electrodes and the
molecule and might be localized primarily in region
where the molecule is connected to the leads. If
this were the case, the charge distribution shown
in Fig. 8 could be in fact a more realistic descrip-
tion of the charge states than previously anticipated.
We could also surmise that, exactly as it happens
in our calculations when we apply an external con-
fining potential, changing the gate voltage to move
away from the degeneracy point and make a given
charge state more stable could strongly affect the
the magnetic anisotropy. Indeed the results of the
the first experiment16, where the anisotropy was not
extracted at degeneracy points but in the middle of
a Coulomb blockade diamond, show a significantly
enhanced anisotropy for charged states. The two ex-
perimental results could simply indicate that in one
case the extra charge is localized closer to the SMM
than in the other, exactly as it happens in our the-
oretical modeling.



16

VII. CONCLUSIONS

In this paper we have studied the electronic and
magnetic properties of a {Fe4} SMM in a single-
electron transistor (SET) geometry, using DFT
as implemented in NRLMOL. We have modeled
the system by a {Fe4} functionalized with phenyl
groups attached to two metals leads described by
Au20 nanoclusters. Our calculations show that
the magnetic structure of the neutral {Fe4} SMM,
that is, its spin ordering and magnetic anisotropy,
remains stable in the presence of metallic leads.
Specifically the ground state spin is S = 5 and the
anisotropy barrier is of the order of 16K, like for
the isolated {Fe4}. This result is ascribed to the
fact that, when attaching leads to {Fe4}, any charge
transfer between the molecule and the metal leads
occurs primarily in the contact region and on the
ligands, but does involve the magnetic core of the
molecule.
Based on the properties of the HOMO and LUMO

of the neutral system, when an electron is added
or subtracted to the molecule-lead system, we find
that the added charge (Q = ∓1) is primarily lo-
cated on the ligands and on the leads. As a result,
while the total spin of this finite system changes
by ∆S = ±1/2, the magnetic anisotropy displays
small variations both in magnitude and orientation
with respect to the neutral state. In contrast, the
anisotropy of the anion and cation states of an iso-
lated {Fe4} is quite different from the values of neu-
tral molecule, since the added extra charge pene-
trates the region of the Fe atoms. The theoretical
study of charged states Q = ±1 for the molecule-
leads system is technically challenging, due to oc-
currence of small HOMO-LUMO gaps and conse-
quent fractional occupancies of the states around
the Fermi level. Furthermore, DFT tends to over-
delocalize any added charge in the peripheral parts
of the system. Nevertheless, the analysis of these
states presented here sheds light on the properties
of a {Fe4} SET when individual electrons are added
or subtracted to the “quantum dot” by overcoming
the Coulomb charging energy with a gate voltage.
We have shown that an external electric potential,

modeling a gate voltage, can be used to manipulate
the charge on the molecule-leads system and with
that the magnetic properties of the device. In par-
ticular, for the two charged states Q = ±1 when
the extra charge, under the effect of the potential, is
progressively removed from the ligands-leads region
into the magnetic core of the molecule, the magnetic
properties converge to the properties of the anion
and cation states of the isolated {Fe4}. This is an
example of the electric control of magnetism of a

SMM in a SET. The charged states of the molecule-
leads system in the presence of external fields stud-
ied in this paper can be used to construct the tran-
sition matrix elements entering a quantum master
equation describing tunneling transport in a SET.
With the limitations inherent to the DFT approach
mentioned above, these states incorporate charging
effects for the SMM weakly coupled to metal leads.

We have compared the results of our numer-
ical calculations with the results of two recent
experimental studies of tunneling transport in a
{Fe4} three-terminal device in the Coulomb block-
ade regime16,18. This comparison must be made
with caution since some important details (e.g., the
precise atomic and electronic structure of the lig-
ands) are different and might explain some of the
discrepancies between theory and experiment that
we find. Nevertheless, one of these experiments18

finds that the anisotropy for the two charged states
Q = ±1 displays only small variations in magni-
tude and orientation from the corresponding values
of the neutral states, in agreement with our theo-
retical findings. Interestingly enough, the experi-
mental values are extracted by tracking the depen-
dence of the charge degeneracy point between two
adjacent charged states as a function of the mag-
netic field. Our numerical calculations show that
the nearly-independence of the magnetic anisotropy
on the charged states is related to the position of the
added charge being far away from the magnetic core
of the molecule. Thus the agreement between theory
ad experiment might indicate that for a {Fe4} SET
the charge of a added (subtracted) electron close to a
charge-degeneracy point is primarily located on the
ligands and in the contact region with the leads. If
correct, this would be an example in which a mag-
netic property of SMM-based SET can provide in-
formation on the electronic properties of the charged
states.

For molecule-lead systems with finite gaps, we ex-
pect our results to provide accurate predictions of
experiment. However for those cases where HOMO-
LUMO gaps are very small and the electronic states
at the Fermi level are partially occupied, further
understanding will require variationally accounting
for the electronic occupations along the lines sug-
gested in Ref.31 Another point of view is that such
fractionally occupied solutions are also strongly af-
fected by self-interaction corrections and that ac-
counting for such corrections will often significantly
decrease the possibility of fractionally occupied so-
lutions. Self-interaction corrections are also likely
to provide a more complete understanding of the
nature of charged states investigate in this paper.
Addressing spin-dependent conductance in macro-
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molecular to meso-scale devices will require efficient
solutions to these problems and renewed efforts at
extracting quantitative model Hamiltonians for such
systems.
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The ground state of frustrated (antiferromagnetic) triangular molecular magnets is characterized
by two total-spin S = 1/2 doublets with opposite chirality. According to a group theory analysis
[M. Trif et al., Phys. Rev. Lett. 101, 217201 (2008)] an external electric field can efficiently
couple these two chiral spin states, even when the spin-orbit interaction (SOI) is absent. The
strength of this coupling, d, is determined by an off-diagonal matrix element of the dipole operator,
which can be calculated by ab-initio methods [M. F. Islam et al., Phys. Rev. B 82, 155446 (2010)].
In this work we propose that Coulomb-blockade transport experiments in the cotunneling regime
can provide a direct way to determine the spin-electric coupling strength. Indeed, an electric field
generates a d-dependent splitting of the ground state manifold, which can be detected in the inelastic
cotunneling conductance. Our theoretical analysis is supported by master-equation calculations of
quantum transport in the cotunneling regime. We employ a Hubbard-model approach to elucidate
the relationship between the Hubbard parameters t and U , and the spin-electric coupling constant
d. This allows us to predict the regime in which the coupling constant d can be extracted from
experiment.

I. INTRODUCTION

Molecular nano-magnets (NMs)1 represent a
rich playground for exploring quantum mechanics
at the nanoscale, and are intensively investigated
both in condensed matter physics and chemistry.
MMs, rationally designed and realized by chemical
engineering,2 are promising building blocks of elec-
tronic devices for molecular spintronics,3,4 and for
classical5 and quantum information processing.6–8

For applications in quantum computation, MMs
with frustrated antiferromagnetic coupling be-
tween spins are particularly promising, since at low
energies they behave effectively as magnetic two-
level systems with long spin coherent times, which
can be used as qbits to encode and manipulate
quantum information.2,8 One outstanding issue in
quantum information processing is the need of re-
alizing fast control and switching between quan-
tum spin states. Standard spin-control techniques
such as electron spin resonance (ESR), carried out
by time dependent magnetic fields, have limita-
tions, since in practice it is difficult to achieve
switching times of the order of nanoseconds for
large enough fields. The need to achieve spatial
resolutions of the order of 1 nm represents another
serious challenge for spin manipulations via mag-
netic fields. For these reasons, control via electric
fields seems to be a much more promising alterna-
tive, since strong electric fields can be switched on
and off fast, and applied selectively to nanoscale
regions.9–11

Electric control and manipulation of magnetic
properties is an important topic solid state physics,
presently studied in multiferroic materials, dilute

magnetic semiconductors and topological insula-
tors. The electric control of nanomagnets presents
both hard challenges and novel possibilities. Since
electric fields do not couple directly to spins, elec-
tric control can typically occur only indirectly, e.g.,
via a manipulation of the spin-orbit interaction
(SOI). Indeed, interesting spin-electric effects in-
duced solely by SOI have been realized in semi-
conductor quantum dots.12 The applicability of
this procedure in MMs on the other hand is much
harder, since the relative strength of the SOI scales
with the volume of the system, implying that im-
practically large electric fields are required for sys-
tems of the order of a few nanometers. There-
fore alternative schemes for efficient spin-electric
coupling in MMs have been proposed. One exam-
ple relies on the electric manipulation of the spin
exchange constant13,14 which can trigger various
level crossings between magnetic states of a differ-
ent total spin. Here we are interested in another
type of spin-electric coupling, made it possible in
certain antiferromagnetic MMs by the lack of in-
version symmetry, as proposed by Trif et al..15 It
turns out that in some of these antiferromagnetic
molecules, such as the triangular {Cu3} and {V3}
MMs,16,17 and other odd-spin rings, an electric
field can couple spin states through a combina-
tion of exchange and chirality of the spin-manifold
ground state. For triangular MMs this coupling is
nonzero even in the absence SOI.

The low-energy physics of a {Cu3} MM can
be described by three identical spin s = 1/2 Cu
cations, located at rj , j = 1, 2, 3, interacting via
an antiferromagnetic (Heisenberg) exchange cou-
pling (see Fig. 1). The ground state consists of two
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FIG. 1. Schematic representation of a triangular
molecule.

FIG. 2. The three independent spin configurations as-
sociated with total spin projection Sz = 1/2. The two
GS chiral states |E′

±
, Sz = 1/2〉 are linear combina-

tions of these states.

total-spin S = 1/2 doublets, |E′
±, Sz = ±1/2〉, of

opposite spin chirality, E′
±, which are degenerate

in the absence of spin-orbit interaction. (Here E′

refers to the two-dimensional irreducible represen-
tation (IR) of the D3h symmetry group of the tri-
angular MM, spanned by the two states, |E′

+, Sz〉
and |E′

−, Sz〉.) The states |E′
±, Sz = 1/2〉 can be

written as linear combinations of the three frus-
trated spin configurations shown in Fig. 2.
According to an analysis based on group

theory,15,18 the matrix elements of the components
of the operator R =

∑3
j=1 rj in the {Cu3} plane,

X± = ±X+ iY , between states of opposite chiral-
ity, do not vanish

e〈E′
+, Sz|X−|E′

−, Sz〉 = e〈E′
−, Sz|X+|E′

+, Sz〉 = 2id .
(1)

In Eq. 1 e is the electron charge, i =
√
−1, and the

real number d has the units of an electric dipole
moment. All the other matrix elements ofR in the
subspace spanned by {|E′

±, Sz = ±1/2〉} are zero.
The nonzero value of d is in fact related to the
existence of a nonzero electric dipole moment in
each of the three frustrated spin configurations of
Fig. 2 that compose the chiral ground states.19–22

An electric field εεε couples to the {Cu3} MM
via eεεε · R. Then the non-zero matrix elements
in Eq. 1 ensure that the amplitude of the spin-
electric coupling between chiral states is linear

in the field. Note that the electric-field–induced
transitions conserve the total spin. However, in
the presence of an additional small dc magnetic
field that mixes the spin states, this spin-electric
coupling can generate efficient electric transitions
from one spin state to another.

The relevance of this spin-electric mechanism
for qubit manipulation and qbits coupling clearly
depends on the value of the electric dipole mo-
ment d. It has been proposed15 that an experi-
mental estimate of d can in principle be provided
by ESR measurements in static electric fields.
Nuclear magnetic resonance, magnetization and
specific heat measurements have also been pro-
posed to determine the strength of the coupling
experimentally.18 As far as we know these mea-
surements have not yet been performed. Theoret-
ically, a Hubbard model approach can provide un-
derstanding and a rough estimate of d in terms of
a small number of Hubbard model parameters.18

In practice, a microscopic evaluation of d can
only be provided by first-principles calculations.
In fact, in Ref. 21 we have carried out Density
Functional Theory (DFT) studies of a {Cu3} MM,
and shown that d is of the order of e10−4a, where
a is the Cu separation. At electric fields of the
order of 108 V/m, easily accessible in the vicinity
of a scanning tunneling spectroscope (STM) tip,
a d of this size would ensure transition times of
the order of 1 ns. More recent DFT calculations23

have shown that the value of d in other triangular
molecules, such as {V3} {Cu3O3} and {V15}, can
be one or two orders of magnitude larger than in
{Cu3}.
In this paper we carry out a theoretical study

of quantum transport through an individual trian-
gular antiferromagnetic MM displaying the spin-
electric coupling, arranged in a single-electron
transistor (SET) geometry. The main motivation
of this work is to investigate whether the coher-
ent coupling of the two spin chiral states induced
and controlled by an electric field has detectable
consequences on the transport properties of the
MM. Our conclusion is that, in the cotunneling
regime of Coulomb blockade transport, the GS en-
ergy splitting induced by the electric field should
be easily accessible and should provide a direct
estimate of the strength of the electric dipole mo-
ment parameter d. In this coherent regime, higher
excited states of the MM could add as additional
auxiliary states that can be exploited to perform
quantum gates.15 We also show that similar results
could be obtained by performing inelastic electron
tunneling spectroscopy through the MM adsorbed
on surface by means of STM techniques. For the
modeling of the MM we use the Hubbard model
approach introduced in Ref. 18. This approach is
quite convenient and transparent to address the
effect of an applied electric field on the molecu-
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lar orbitals of the molecule leading to the spin-
electric coupling. The parameters of the model are
extracted from our previous first-principles calcu-
lations on {Cu3}. Quantum transport is studied
by means of a quantum master equation includ-
ing both sequential and cotunneling contributions.
Transport studies on triangular systems using a
similar formalism have been done recently.24–28

But our motivation is different and an analysis of
the spin-electric effect in this system has not been
considered so far.
The paper is divided into the following. four sec-

tions. In Sec. II we introduce a Hubbard approach
to model the effect of the electric field leading to
the spin-electric coupling in terms of a few free pa-
rameters. In Sec. III we introduce the model and
the formalism to study quantum transport and cal-
culate the conductance in the sequential tunneling
and cotunneling regime. In Sec. IV we present
transport results. Finally, we summarize the con-
clusions of our work in Sec. V

II. HUBBARD MODEL APPROACH TO

THE SPIN-ELECTRIC COUPLING

In this section we introduce the Hubbard model
approach developed in Ref. 18 to analyze the spin-
electric coupling. This approach is very useful for
three reasons. Firstly, it describes the effect of
the applied electric field on the orbital degrees of
freedom of the MM, and therefore it elucidates
the emergence of the spin-electric coupling at the
microscopic level. Secondly, it permits the de-
scription of the spin-electric coupling in terms of
a few parameters that can be evaluated by first-
principles methods. Last but not least, it provides
the natural framework to study later on quantum
transport.
Before we introduce the Hubbard model, it is

convenient to summarize the main results of the
spin-electric coupling using the language of a spin
Hamiltonian,15 in part already anticipated in the
introduction, which will then emerge again from
the Hubbard model.
The ground-state manifold of a three-site spin

s = 1/2 Heisenberg antiferromagnet, with
isotropic exchange constant J , is given by the two
doubly-degenerate chiral doublets

|E′
±, Sz =

1

2
〉 = 1√

3

(
| ↓↑↑〉+ ǫ±| ↑↓↑〉+ ǫ∓| ↑↑↓〉

)
,

(2)
where ǫ± = exp (±2πi/3). These states are eigen-
states of the total spin S2 with eigenvalue S = 1/2,
and of the total z component Sz, with eigenvalue
1/2. The three spin configurations of Eq. 2 are
shown in Fig. 2). Similar linear combinations can
be written for the 2 eigenstates of Sz with eigen-

value 1/2. These states are also eigenstates of the
z-component of the chiral spin operator

Cz =
4√
3
s1 · s2 × s3 , (3)

with eigenvalue ±1. (The ± in E′
± refers to this

quantum number.)
The lowest excited state, separated from the GS

by an energy of order J , is the fourfold degen-
erate eigenstate of S2, with eigenvalue 3/2. The
element of this quartet that is an eigenstate of Sz

with eigenvalue 1/2, is written in terms of the same
three spin configurations of Fig. 2 as

|A′
1, Sz =

1

2
〉 = 1√

3

(
| ↓↑↑〉+ | ↑↓↑〉+ | ↑↑↓〉

)
. (4)

The four states |A′
1, Sz〉 form four A′

1 onedimen-
sional IR of the symmetry group D3h. Note that
the expectation value of Cz for the states |A′

1, Sz〉
vanishes.
The SOI-induced Dzyaloshinskii-Moriya (DM)

interaction splits the chiral GS manifold into two
two-dimensional subspaces. As we discussed in the
introduction, an electric field couples states of op-
posite chirality. These two interactions can be rep-
resented by the following low-energy effective spin
Hamiltonian15

Hspin
eff = ∆SOICz Sz + dεεε ·C‖ (5)

where C‖ ≡ (Cx, Cy, 0) is the component of the
chiral operator in the xy plane. In Eq. 5 the energy
∆SOI is proportional to the SOI coupling strength,
and turns out to be equivalent to the DM coupling
constant D. The parameter d is the electric dipole
moment introduced in Eq. 1. We will now see how
this effective spin Hamiltonian emerges from the
Hubbard model approach.18

The second quantized one-band Hubbard
Hamiltonian reads

HU = −
∑

i,j

∑

α

{

tijc
†
iαcjα+h.c.

}

+
1

2
U

∑

i

ni↑ ni↓ ,

(6)

where c†iα (ciα) creates (destroys) an electron with

spin α at site i, niα = c†iαciα is the particle num-
ber operator and tij is a spin-independent hop-
ping parameter. More precisely the index i labels
a Wannier function localized at site i. The first
term represents the kinetic energy describing elec-
trons hopping between nearest-neighbor sites i and
j. For D3h symmetry this term is characterized by
a hopping parameter tij = t. The second-term is
an on-site repulsion energy of strength U , which
describe the energy cots associated with having
two electrons of opposite spin on the same site.
In this model the interaction energy between elec-
trons which are not on the same site is completely
neglected. The Hubbard model is the simplest
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model describing the fundamental competition be-
tween the kinetic energy and the interaction en-
ergy of electrons on a lattice.
The spin-orbit interaction in the Hubbard

model is described by adding the following spin-
dependent hopping term18,29–31

HSOI =
∑

i,j

∑

α,β

{

c†iα

(

i
Pij

2
·σσσαβ

)

cjβ+h.c.
}

, (7)

where σσσ = σxx̂ + σy ŷ + σz ẑ is the vector of the
three Pauli matrices. A commonly used notation
for the Pauli matrices is to write the vector index
i in the superscript, and the matrix indices as sub-
scripts, so that the element in row α and column β
of the the ith Pauli matrix is σi

αβ , with i = x, y, z.
Here the vector Pij is proportional to the matrix
element of ∇∇∇V × p between the orbital parts of
the Wannier functions at sites i and j; V is the
one-electron potential and p is the momentum op-
erator. Clearly the spin-orbit term has the form
of a spin-dependent hopping, which is added to
the usual spin-independent hopping proportional
to t. In Eq. (7), spin-orbit coupling induces a spin
precession of magnitude about Pij when an elec-
tron hops from site i to site j. This form of the
spin-orbit interaction is a special case of Moriya’s
hopping terms32 in the limit that all but one or-
bital energy is taken to infinity,30 and it is consis-
tent with our choice of a one-band Hubbard model.
The x and y components of Pij describe processes
with different spin and because of the αv symme-
try, Pij = pez. Therefore, because of the symme-
try of the molecule the free Hubbard parameters
are reduced to three, namely, t, U and p.
The final expression of the Hamiltonian describ-

ing the electrons in a triangular molecule, includ-
ing the spin-orbit interaction, is

HU+SOI =
∑

i,α

{

c†iα
(
− t+ iλSOIα

)
ci+1α + h.c.

}

+
∑

i,α

(

ǫ0niα +
1

2
Uniα niᾱ

)

, (8)

where λSOI ≡ p/2 = Pij/2 · ez is the spin-orbit
parameter, ǫ0 is the on-site orbital energy, and ᾱ =
−α.
We want to treat the two hopping terms pertur-

batively on the same footing, by doing an expan-
sion around the atomic limit t/U , λSOI/U → 0.
In many molecular magnets t ≫ λSOI. This turns
out to be the case also for {Cu3}.33 In other
molecules the two hopping parameters are of the
same order of magnitude.
We are interested in the half-filled regime. From

second-order perturbation theory in t/U , an an-
tiferromagnetic isotropic exchange term emerges
and it splits the spin degeneracy of the low-energy
sector of the Hubbard model, which is defined by
the singly-occupied states.

The perturbative method requires the definition
of the unperturbed states being the one-electron
states

|φαi 〉 = c†iα |0〉 , (9)

singly occupied three-electron states

|ψα
i 〉 =

3∏

j=1

c†jαj
|000〉 =

3∏

j=1

∣
∣φ

αj

j

〉
, (10)

with αj = α for j 6= i and αj = ᾱ, for j = i.
Finally the double-occupied three electron states

∣
∣ψα

ij

〉
= c†i↑c

†
i↓c

†
jα |000〉 , (11)

with i = 1, 2, 3 and j 6= i. Note that the states
in Eqs. (9)-(11) are eigenstates of the Hamilto-
nian, Eq. (8), only in the absence of the hop-
ping and spin-orbit parameter and with energies
ǫ0, 3ǫ0 and 3ǫ0 +U , respectively. These states are
not yet symmetry adapted states of the D3h point
group. Symmetry adapted states can be found us-
ing the the projector operator formalism.18,34 One-
electron symmetry adapted states can be written
as a linear combinations of one-electron states, Eq.
(9),

∣
∣
∣Φα

A′
1

〉

=
1√
3

3∑

i=1

|φαi 〉 , (12)

and

∣
∣
∣Φα

E′
±

〉

=
1√
3

3∑

i=1

ǫi−1
1,2 |φαi 〉 , (13)

where A′
1 and E′

± are one-dimensional and two-
dimensional IR in D3h point group, respectively

and ǫk = exp
(
(2πi/3)k

)1,2
is a phase factor. The

three-electron symmetry adapted states for singly-
occupied magnetic centers can be written as

∣
∣
∣ψ1α

A′
1

〉

=
1√
3

3∑

i=1

|ψα
i 〉 , (14)

and

∣
∣
∣ψ1α

E′
±

〉

=
1√
3

3∑

i=1

ǫi−1
1,2 |ψα

i 〉 , (15)

The states |ψ1α
E′

+
〉 and |ψ1α

E′
−

〉 have total spin

S = 1/2 and z-spin projection Sz = ±1/2. These
states are formally identical to the chiral states
given in Eq. (2), and are eigenstates of the Hub-
bard Hamiltonian when t = λSOI = 0. The
tunneling and SOI mix the singly-occupied and
double-occupied states. Symmetry properties of
D3h point group dictates that the tunneling and
SOI terms in the Hubbard Hamiltonian transform
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FIG. 3. Coordinates of magnetic centers in a triangular
molecule. ri is the coordinate of the ith electron.

as the IR A′
1. Therefore, only states transforming

according to the same IR could be mixed. The
first-order correction in t/U and λSOI/U is ob-
tained by mixing in doubly-occupied states

|Φ1α
E′

±
〉 ≡ |ψ1α

E′
±
〉+ (ǫ12 − 1)(t± αλSOI)√

2U
|ψ2α

E
′1
±

〉

+
3ǫ11(t± αλSOI)√

2U
|ψ2α

E
′2
±

〉 , (16)

where

|ψ2α

E
′1
±

〉 = 1√
6

3∑

i=1

ǫi−1
1,2 (|ψα

i1〉+ |ψα
i2〉) , (17)

and

|ψ2α

E
′2
±

〉 = 1√
6

3∑

i=1

ǫi−1
1,2 (|ψα

i1〉 − |ψα
i2〉) , (18)

are three-electron symmetry adapted states for
double occupied magnetic centers.
In the small t/U , λSOI/U limit, we can re-

sort to a spin-only description of the low-energy
physics of the system. The ground state mani-
fold (corresponding to the states Eq. (16)) is given
by the two chiral spin states of Eq. (2). In this
low-energy regime the orbital states correspond to
the singly-occupied localized atomic orbitals. The
lowest energy states have total spin S = 1/2 and
chirality Cz = ±1. Using the same perturbative
procedure, we can construct approximate Hubbard
model states corresponding to the S = 3/2 excited-
state quartet of Eq. 4. To first order in t/U and
λSOI/U one obtains

|Φ1α
A′

1
〉 = |ψ1α

A′
1
〉 (19)

The energy of the S = 3/2 quartet is 3J/2 higher
in energy than the energy of the chiral GS dou-
blets, with J ≈ 4t2/U .
We now introduce the effect of the external elec-

tric field. An external electric field εεε can couple to

the molecule via two mechanisms. The first mech-
anism that we will study is by the modification of
the on-site energies ǫ0 via the Hamiltonian

H0
d−ε =

∑

α

3∑

i=1

(−eri · εεε) c†iαciα, (20)

where ri is the coordinate vector of the ith mag-
netic center. From Fig. 3, the on-site electric
Hamiltonian can be written as

H0
d−ε = −ea

∑

α

[
εy√
3
c†1αc1α − 1

2

(

εx +
εy√
3

)

c†2αc2α

+
1

2

(

εx − εy√
3

)

c†3αc3α

]

, (21)

where εx,y are the in-plane coordinates of the elec-
tric field, e the electron charge and a the distance
between magnetic centers.
The second mechanism is given by the modifi-

cation of the hopping parameters tii+1 and it can
be written as

H1
d−ε =

∑

α

3∑

i=1

tεεεii+1,αc
†
iαci+1α +H.c., (22)

where tεεεii+1,α =
〈
φαi | − er · εεε|φαi+1

〉
are the modi-

fied hopping parameters due to the external elec-
tric field εεε, φαi are the Wannier states localized
on the ith magnetic center with spin α. These
induced hopping parameters can be written as
tεεεii+1,α =

∑

q q
α
ii+1εq, with q

α
ii+1 = −e

〈
φαi |q|φαi+1

〉

and q = x, y, z. D3h point group symmetry prop-
erties, given by the dipole selection rules, reduce
the number of free parameters induced by the elec-
tric field. Finding these free parameters is not
an easy task when the basis set are the localized
Wannier orbitals. In order to investigate the effect
of the electric field on the triangular molecule we
switch from the localized Wannier basis set to the
symmetry adapted basis set Γ = A′

1, E
′
±. Then we

apply the transition dipole selection rules to the
new induced hopping parameters. In the symme-
try adapted states, the hopping-Hamiltonian, Eq.
(22), reads

H1
d−ε =

∑

α

∑

ΓΓ′

tεεεΓ,Γ′,αc
†
ΓαcΓ′α +H.c., (23)

where Γ,Γ′ = A′
1, E

′
+, E

′
−, t

εεε
Γ,Γ′,α =

∑

q q
α
ΓΓ′Eq,

with q = x, y, z and qαΓΓ′ = −e 〈φαΓ |q|φαΓ′〉. Here

c†Γα(cΓα) creates (destroys) an electron in the
adapted state Γ with spin α. Note that in Eq. (23)
all the possible transitions are included, even those
between states of the same symmetry adapted ba-
sis set. Dipole transition rules then will select the
allowed transitions and the corresponding states.
Although symmetry properties control the dipole
transition rules, they do not allow us to calculate
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the strength of the transitions. Detailed exper-
imental measurements and/or accurate ab-initio
calculations have to be carried out to determine
them. In the D3h point group the (x, y) and z
coordinates span as E′ and A′

1 IR, respectively.
We have grouped x and y because they form a de-
generate pair within the E′ representation. From
character tables of D3h point group we have the
only allowed transitions correspond to

〈

φαE′
+

∣
∣
∣ x

∣
∣
∣φαE′

−

〉

= −i
〈

φαE′
+

∣
∣
∣ y

∣
∣
∣φαE′

−

〉

≡ −dEE

e
〈

φαA′
1

∣
∣
∣ x

∣
∣
∣φαE′

+

〉

= −i
〈

φαA′
1

∣
∣
∣ y

∣
∣
∣φαE′

+

〉

≡ −dAE

e
(24)

〈

φαA′
1

∣
∣
∣ x

∣
∣
∣φαE′

−

〉

= i
〈

φαA′
1

∣
∣
∣ y

∣
∣
∣φαE′

−

〉

≡ −dAE

e

where dEE and dAE are the only two free param-
eters to be determined. Here we have used the
symmetry rule that the product f1⊗ f2⊗ f3 6= 0 if
it spans A1 representation. All the other possible
transitions are not allow within the D3h symmetry
group. Inserting these allowed transitions into the
Hamiltonian, Eq. (23), we have

H1
d−ε =

∑

α

[

dAE

(

Ēc†
A′

1α
cE′

−
α + Ec†

A′
1α
cE′

+α

)

+ dEE Ēc†E′
−
α
cE′

+α

]

+H.c., (25)

where E = εx+iεy and Ē = εx−iεy. Note that the
parameter dAE and dEE tell us about the possible
dipole-electric transitions between states that span
the A′

1-E
′
± and E′

+-E
′
− IR, respectively. From Eq.

(15) we can see that the chiral states also span the
E± IR.
To take even more advantage of the symme-

try of the triangular molecule, we now write the
relationship between the second quantized opera-

tors c†iα, ciα and the symmetry adapted operators

c†Γα, cΓα. From Eqs. (9),(12) and (13), we have







c†
A′

1α

c†
E′

+α

c†
E′

−
α







=





1 1 1
1 ǫ ǫ2

1 ǫ2 ǫ









c†1α
c†2α
c†3α



 , (26)

where we have used ǫ4 = ǫ. From last equation
we can write the localized second quantized oper-
ators as linear combination of symmetry adapted
operators





c†1α
c†2α
c†3α



 =





1 1 1
1 ǫ2 ǫ
1 ǫ ǫ2











c†
A′

1α

c†
E′

+α

c†
E′

−
α






. (27)

Now we can write the rest of the perturbed
Hamiltonian, namely the H0

d−ε on-site electric
field Hamiltonian (Eq. (21)) and HSOI spin-orbit

Hamiltonian (Eq. (7)), in terms of the symmetry
adapted operators

H0
d−ε = − iae

2
√
3

∑

α

[

Ēc†
E′

+α
cA′

1α
− Ec†

E′
−
α
cA′

1α

+Ēc†
E′

−
α
cE′

+α

]

+ H.c., (28)

and

HSOI =
√
3λSOI

∑

α

α
(

c†
E′

−
α
cE′

−
α − c†

E′
+ᾱ
cE′

+ᾱ

)

.

(29)
We conclude this section with the following im-

portant considerations
1. With the use of the symmetry properties of
the triangular molecule, the Hubbard model in the
presence of SOI (Eq. 29) and external electric field
(Eqs. (25) and (28)), can be parametrized by five
free parameters: t, U , λSOI, dEE and dAE . For
a realistic MM, t, U , λSOI can be extracted from
first-principles calculations, as for example done in
Ref. 33 for {Cu3}. An analogous determination of
the single-particle parameters dEE and dAE has
not been attempted so far. For localized orbitals,
one expects ea >> dEE , dAE , and this the assump-
tion that we will make in the paper.
2. Eqs. (25) and (28) and Eq. (29) are completely
consistent with the effective spin Hamiltonian re-
sult of Eq. 5, in that they imply a splitting of the
chiral GS by the SOI, and a linear coupling of the
same states by an electric field. Note also that
the SOI does not mix states of different chirality
and/or spin.
3. Clearly Eqs. (25) and (28) and Eq. (29) are
single-particle Hamiltonian. In order to extract
the electric-dipole moment d and the DM splitting
δSOI appearing in Eq. 5, one has to take matrix el-
ements of these Hamiltonians between many-body
states |Φ1α

E′
±

〉 defined in Eq. (16). For the matrix el-

ements of the electric field Hamiltonian one finds18

∣
∣
∣

〈

Φ1α
E′

−

∣
∣
∣H0

d−ε

∣
∣
∣Φ1α

E′
+

〉∣
∣
∣ ≃

∣
∣
∣
∣

t3

U3
Eea

∣
∣
∣
∣
, (30)

∣
∣
∣

〈

Φ1α
E′

−

∣
∣
∣H1

d−ε

∣
∣
∣Φ1α

E′
+

〉∣
∣
∣ ≃

∣
∣
∣
∣

4t

U
EdEE

∣
∣
∣
∣
. (31)

It follows that the electric-dipole moment d of the
spin electric coupling is given by a combination of∣
∣
∣
t3

U3 ea
∣
∣
∣ and

∣
∣ 4t
U
dEE

∣
∣.

4. In the presence of an electric field, the degen-
erate GS chiral manifold {|Φ1α

E′
±

〉} is replaced by

the coherent linear superpositions

∣
∣χα

±(εεε)
〉
==

1√
2

(

|Φ1α
E′

+
〉+±|d · εεε|

d · εεε |Φ1α
E′

−
〉
)

(32)

with energies

E±(ε) = E±(0)± d ε/
√
2 (33)
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Note that spin degeneracy is preserved, even when
SOI is included. The electric-field–induced split-
ting of the chiral GS, ∆E(ε) ≡ E+(ε) − E−(ε), is
proportional to ε, at least in this approximation,
in agreement with the effective spin Hamiltonian
approach. We will refer to the states

∣
∣χα

±(εεε)
〉
as

mixed chiral states. They will play a crucial role
in transport.
5. Eqs. (25) and (28) show that an electric field, in
fact, can couple {|Φ1α

E′
±

〉} with |Φ1α
A′

2
〉. However this

coupling, which in principle could affect Eq. 32 is
not important, since these states are separated by
an energy of order J . We will therefore disregard
it.
In Figs. 4and 5 we plot the computed energy

splitting of the chiral GS, ∆E(ε), induced by an
electric field of strength ε, as a function of ε and
t/U . The splitting is, as expected, linear in ε at
small fields. This is the landmark of the spin-
electric coupling. However, at larger field, we find
also a quadratic dependence. Is seems that, de-
spite the large value of U , the system has a sizable
polarizability, leading to an rather strong induced
electric dipole moment in the presence of a field.
This is responsible for the quadratic contribution
in ∆E(ε).
All the calculations on the model presented in

the next section are obtained by exact diagonaliza-
tion of the Hubbard model for N = 2, 3, 4 filling
or charge states. It turns out, however, that for
the values of the parameters relevant for {Cu3},
the perturbative results in t/U are typically quite
close to the exact results.

FIG. 4. (Color online) Electric-field–induced splitting
∆E(ε) of the chiral GS energy for a triangular MM at
half-filling (N = 3), as a function of field strength ε
and t/U . At these small/moderate values of the field,
∆E(ε) depends linearly on ε.

III. TRANSPORT MODEL AND MASTER

EQUATION APPROACH

A. Transport setup

We are interested in studying quantum trans-
port through a triangular MM, weakly coupled to

FIG. 5. (Color online) The same as in Fig. 4, but for
larger values of the electric field, showing a quadratic
dependence of ∆E(ε) due to an induced electric dipole
moment.

FIG. 6. Schematic representation of the transport ge-
ometry with a triangular MM. Picture modified from
the original work by Fuechsle et.al.. Reprinted by per-
mission from Macmillan Publishers Ltd: Nature Nan-
otechnology 7, 242246, copyright (2012)

conducting leads, gated, and with the possibility
of an extra external electric field for control of
the spin-electric coupling. The transport regime
that we have in mind is predominately the one
where transport is controlled by Coulomb block-
ade physics. Later in this section we will also com-
ment on the possibility of employing inelastic elec-
tric tunneling spectroscopy without the presence
of charging effects.
A possible transport geometry is schematically

shown in Fig. 6. The MM is placed on a surface
(semiconducting or insulating.). Two conducting
coplanar leads acting as source (S) and drain (D)
are constructed on the surface, for example using
techniques recently to realize a single-atom tran-
sistor.35 the molecule is weakly couple to S and D
leads via ligands. Two in-plane gates (G1 and G2)
are also patterned on either side of the transport
channel. The orientation of the MM on the surface
is such that the electric from the gate is orthogonal
to the plane of the MM, and it is simply used as a
capacitative coupling to control the chemical po-
tential of MM. Alternatively, S and D nanoleads
and gate electrodes can be constructed by nano-
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lithography by depositing metal atoms (e.g., Au)
on an insulating surface. Finally, a STM tip is po-
sitioned in the vicinity of the MM (see the blown-
up region of the device close to the MM). This elec-
trode is supposed to provide another strong and lo-
calized electric field to manipulate the MM states
via the spin-electric coupling discussed in the pre-
vious section.
The construction of the device described here is

very challenging. But we rely on recent progress
in STM nano-lithography, and especially in fun-
cionalizing MMs on surfaces.
A second possibility is to study transport in

a single-electron transistor (SET) built in more
traditional molecular electronic device. MMs are
presently being successfully investigated with this
techniques.14,36? ? ,37 Here the challenge is to pro-
vide and independent extra gate electrode (besides
the ordinary back gate) to reliably generate an in-
plane electric field triggering the spin-electric cou-
pling.
In the following we will assume that the fol-

lowing three features are present in our system:
(i) source and drain leads weakly coupled to the
molecule, providing a bias voltage Vb for electric
transport; (ii) a gate voltage generating a variable
potential Vg on the molecule able to manipulate its
charge state; (iii) a third independent local elec-
tric field εεε, of strengths typically attainable in the
vicinity of a STM, with a component in the plane
of the MM.

B. Hamiltonian of the transport device

The Hamiltonian of the system, schematically
represented in Fig. 6, is the sum of three terms

H = HL/R +Hmol +HT
L/R , (34)

where

HL/R =
∑

kα

ε
L/R

k a†
L/Rkα

aL/Rkα (35)

describes free (i.e., noninteracting) electrons in the
left/right conducting lead (source/drain). Here,

the operator a†
L/Rkα

(aL/Rkα) creates (destroys)

one electron with wave vector k and spin α in

the left/right lead, respectively with energy ε
L/R

k .
The tunnel junctions representing the coupling be-
tween leads and MM are described by the tunnel-
ing Hamiltonian

HT
L/R =

∑

kmα

(

T
L/R

kmαa
†
L/Rkα

cmα +H.c.
)

, (36)

where T
L/R

kmα is the tunneling amplitude, c†mα (cmα)
creates (destroys) an electron in a single particle
state with quantum numbers m and α inside the

MM. The tunneling Hamiltonian HT
L/R

is treated

as a perturbation to Hmol and HL/R.
The general form of the MM Hamiltonian is

given by

Hmol = H0 +HU +Ht +HSOI +HEF, (37)

where

H0 =
∑

j

∑

α

(ǫj − e Vg) c
†
jαcjα, (38)

with Vg the gate voltage. HU = U
∑

j nj↑nj↓

with U the on-site Coulomb repulsion parameter

and njα = c†jαcjα the number operator. Ht =

t
∑

j

∑

α c
†
jαcj+1α +H.c. the hopping Hamiltonian

with t the hopping parameter. HEF = H1
d−ε +

H0
d−ε the electric field Hamiltonian defined in Eqs.

(25) and (28) andHSOI the spin-orbit Hamiltonian
defined in Eq. (29).
We assume the Coulomb interaction between

electrons in the MM and those in the environment,
to be determined by a single and constant capac-
itance C = CL + CR + Cg, where CL/R and Cg

are the capacitances of the right/left lead and the
gate electrode, respectively. Another assumption
is that the single-particle spectrum is independent
of these interactions.
Quantum transport, e.g. the calculation of the

tunneling conductance as a function of bias and
gate voltages, can now be studied by means of
a quantum master equation. General derivations
of these equations have recently appeared in the
literature,38–40 together with several approximate
solutions applied to SETs with quantum dots41

and molecules,39,40,42 including MMs.38,43–46 The
simplest strategy is to solve these equations per-
turbatively in the tunneling Hamiltonian.47

C. Coulomb blockade Regime, Sequential

Tunneling

In the regime of weak coupling between leads
and molecule, transport occurs via the so-called
sequential tunneling.47 We review here the main
characteristics of this regime an the steps leading
to the calculation of the current.47 In this regime
the conductance of the tunnel junctions should
be much smaller than the quantum of conduc-
tance GQ = 2e2/h. The electron tunneling rates
Γ should be much smaller than the charging en-
ergy Ec of the molecule and the the temperature:
h̄Γ ≪ kBT ≪ Ec. The time between two tunneling
events ∆t is the longest time scale in the regime. In
particular ∆t≫ τφ, where τφ is the electron phase
coherence. This guarantees that once the electron
tunnels in, it has the time to loose its phase coher-
ence before it tunnels out. Therefore the charge
state can be treated classically and superposition
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of different charge states is not allowed. Only one-
electron transitions between leads and molecule
occur in the system. These transitions are char-
acterized by rates Γij , where i, j are the initial
and final system states of the system involved in
the electron transfer. The system is described by
stationary non-equilibrium populations Pi of the
state i. These occupation probabilities can be ob-
tained from the master equation

d

dt
Pi =

∑

j(j 6=i)

(ΓijPj − ΓjiPi) . (39)

The first RHS term represents events where the
electron tunnels into the state i from the state
j, while the second RHS term represents events
where the electron tunnels out from the state i
into the state j. These probabilities obey the nor-
malization condition

∑

i

Pi = 1 . (40)

In the steady state, the probabilities are time-
independent dPi/dt = 0, therefore Eq. (39) can be
written as

0 =
d

dt
Pi =

∑

j(j 6=i)

(ΓijPj − ΓjiPi) . (41)

In the regime of sequential tunneling the tran-
sition amplitudes are computed by first-order per-
turbation theory in the tunneling HamiltonianHT ,
Eq. (36). Therefore the transition rates from state
i to state j, through the left/right lead, are given
by Fermi’s golden Rule

Γ
L/R

i→j =
2π

h̄

∑

i,j

∣
∣
∣

〈

j
∣
∣
∣HT

L/R

∣
∣
∣ i
〉∣
∣
∣

2

Wiδ(Ej − Ei) ,

(42)
where Wi is a thermal distribution function and
Ej −Ei gives the energy conservation. The states
|i〉 and |j〉 are the unperturbed system states and
are defined as a product of the molecule and lead
states |i〉 = |imol〉 ⊗ |il〉 ⊗ |ir〉. Transition rates
depend on whether an electron is leaving or en-
tering the molecule through the left or right lead.
Inserting the tunneling Hamiltonian Eq. (36) into
the Fermi’s golden Rule, Eq. (42), the transition
rates become47,48

Γ
L/R,−
i→j = γ

L/R,−
ji

[
1− fL/R(E)

]
, (43)

Γ
L/R,+
i→j = γ

L/R,+
ji

[
fL/R(E)

]
, (44)

where

γ
L/R,−
ji = ΓL/R

∑

m,α

|〈j |cm,α| i〉|2 (45)

and

γ
L/R,+
ji = ΓL/R

∑

m,α

∣
∣
〈
j
∣
∣ c†m,α

∣
∣ i
〉∣
∣
2

(46)

are the transition matrix elements between the
states j and i of the molecule (we have now
dropped the label ”mol”); E = Ej − Ei is the
energy difference between molecule many-electron

states, and fL/R(E) =
[
e(E−µL/R)/kBT + 1

]−1
is

the Fermi function. Here the combination between
the tunneling amplitudes T

L/R
m,α and the left/right

lead density of states DL/R(iL/R) is assumed to be

constant: ΓL/R = (2π/h̄)
∣
∣
∣T

L/R
m,α

∣
∣
∣

2

DL/R(iL/R) =

(2π/h̄)
∣
∣TL/R

∣
∣
2
DL/R(iL/R). The full transition

matrix in the master equation, Eq. (39) is the sum
of all contributions of electrons tunneling out or
into the molecule, Eqs. (43) and (44):

Γij = ΓL,+
ij + ΓR,+

ij + ΓL,−
ij + ΓR,−

ij . (47)

The stationary rate equation, Eq. (41), is a sys-
tem of linear equations and has to be solved nu-
merically for a system of n many-electron states
that are taking into account. We can rewrite it as
a matrix equation

0 =

n∑

j

ΛijPj , (48)

where

Λij = Γij − δij

n∑

k=1

Γkj . (49)

There must exist a physical solution to Eq. (48).
Therefore we replace the first line of of this equa-
tion by the normalization condition, Eq. (40), fix-
ing Λ1j = 1. Thus we can write

δ1i =

n∑

j

ΛijPj (50)

instead Eq. (48). Because Coulomb blockade is
typically studied at low temperatures some tran-
sitions rates might become exponentially small.
This leads to numerical problems in solving Eq. 50.
Then some of the states do not contribute and one
has to develop a convenient truncation method.44

Finally, the current flowing through left lead
coming into the molecule must be equal to the cur-
rent flowing through right lead coming out from
the molecule. Knowing the occupation probabili-
ties, Eq. (41), the current through the system is
defined as41

I ≡ IL/R = (−/+)e
∑

i,j(j 6=i)

Pj

(

Γ
L/R,−
ij − Γ

L/R,+
ij

)

(51)
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This expression contains implicitly the bias and
gate voltages. Therefore IV curves can be obtained
for finite values of these voltages. The bias deriva-
tive of the current gives the differential conduc-
tance G. When plotted as a function of the bias
Vb, the current has steps in correspondence of val-
ues of Vb at which new transitions involving two
contiguous charge states are energetically allowed.
At low voltages – smaller than the charging energy
– this is not possible and the current is blocked.
In correspondence of these transitions, the con-
ductance as function of Vb displays peaks. When
plotted simultaneously as a function of both Vb
and Vg, the conductance displays a characteristic
diamond pattern, the so called stability diagram:
inside each diamond a given charge state is stable
and the current is blocked.

D. Cotunneling Regime

When the coupling to the leads becomes
stronger the description of transport based on in-
coherent sequential tunneling is no longer enough.
In particular higher-order tunneling processes in
which the electron tunnels coherently through clas-
sically forbidden charge states. As a result, for
values of the voltages where sequential tunnel-
ing predicts a blocking of the current, a small
leakage current is in fact possible though these
processes.47 The simplest example of these pro-
cesses is second order in the tunneling Hamilto-
nian, and it is known as cooperative tunneling or

cotunneling. Typically for the cotunneling regime
kBT < h̄Γ ≪ Ec.
Cotunneling can be either elastic or inelastic.

In the former case the energies of the initial and
final state are the same, while in the latter the
energies are different. Signatures for these pro-
cesses have also been observed in single-molecule
junctions.14,36,37 Beyond the sequential tunneling
regime, the tunneling Hamiltonian must be re-
placed by the T -matrix, which is given by47

T = HT +HT 1

Ej −H0 + iη
T , (52)

where Ej is the energy of the initial state |j〉 |n〉,
where |j〉 refers to the equilibrium state on the left
and right lead and |n〉 is the initial molecular state,
η = 0+ is a positive infinitesimal andH0 = Hmol+
HL/R. To second order, the transition rates from
state |j〉 |n〉 to |j′〉 |n′〉 with an electron tunneling
from lead α to the lead α′ are given by

Γnj;n′j′

αα′ =
2π

h̄

∣
∣
∣
∣
〈j′| 〈n′| HT 1

Ejn −H0 + iη
HT |n〉 |j〉

∣
∣
∣
∣

2

×δ(Ej′n′ − Ejn) , (53)

where Ej′n′ and Ejn are the energies of the final
and initial states, respectively. Here |j′〉 |n′〉 =
a†α′k′σ′aαkσ |j〉 |n′〉. Inserting the tunneling Hamil-
tonian, Eq.(36), in last equation and after some
algebra (see Appendix A) one can get the expres-
sion for the transition rates for processes from lead
α till lead α′ and from molecular state |n〉 to the
state |n′〉:

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

, (54)

where σ is the electron spin, f(ε) is the Fermi dis-
tribution function, µα is the chemical potential of
the lead α, µL − µR = −eV/2, |n′′〉 is a virtual

state, Aσ′

ij = 〈i| cσ′ |j〉 and Aσ∗
ij = 〈j| c†σ |i〉. Here

γσα is the tunneling amplitude. Note that |n〉 and
|n′〉 are states with the same number of particles.
We have not taken into account processes changing
the electron number by ±2 units.42,49

The transition rates in Eq. 54cannot be evalu-
ated directly because of the second-order poles in
the energy denominators. A regularization scheme
has been carried out to fix these divergences and
obtain the cotunneling rates.50,51 Here it is im-

portant to mention that these divergences are an
artifact of the to the T -matrix approach rather
than a real physical problem. The fourth-order
Bloch-Redfield quantum master equation (BR)
and the real-time diagrammatic technique (RT)
approaches to quantum transport have been devel-
oped to avoid any divergences and therefore no ad
hoc regularization to cotunneling is required.39,40

Nevertheless, the T -matrix approach agrees with
these two approaches and gives good reasonable
results deep inside the Coulomb blockade region.45

We expect to catch all the relevant physics for our
system with the T -matrix approach. After the reg-
ularization scheme is implemented, we get the tun-
neling rates defined as (see Appendix B)
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Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

[
∑

k

(
A2J(E1, E2, εak) +B2J(E1, E2, εbk)

)
+ 2

∑

q

∑

k 6=q

AkAqI(E1, E2, εak, εaq)

+2
∑

q

∑

k 6=q

BkBqI(E1, E2, εbk, εbq) + 2
∑

q

∑

k

AkBqI(E1, E2, εak, εbq)

]

(55)

where Ak = Aσ∗
kn′Aσ′

kn, Bk = Aσ′

n′kA
σ∗
nk, εak = εn′ −

εk, εbk = εk−εn, E1 = µα and E2 = µα′+εn′−εn.
Here I and J are integrals that come out from the
regularization scheme, and are defined in Eqs. (B1)
and (B2), respectively.
The complete master equation, including both

sequential and cotunneling contributions, finally
reads

d

dt
Pi =

∑

j(j 6=i)

(ΓijPj − ΓjiPi)

+
∑

αα′j

(

Γji
αα′Pj − Γij

αα′Pi

)

,(56)

and the current through the system is now given
by

I ≡ IL/R = (−/+)e
∑

i,j(j 6=i)

Pj

(

Γ
L/R,−
ij − Γ

L/R,+
ij

)

+(−/+)e
∑

i,j(j 6=i)

Pj

(

Γji

LR/RL
− Γij

RL/LR

)

(57)

As mentioned above, cotunneling gives rise to a
small current inside a Coulomb-blockade diamond
region of a given charge state. At small values of
the bias voltage, smaller than any excitation ener-
gies for the given charge state, we are in the regime
of elastic cotunneling and the current is propor-
tional to the bias voltage. At voltages correspond-
ing to the transition energy to the first excited
state of the same charge state, a new cotunneling
transport channel becomes available and the slope
of the linear dependency of the current increases.
This signals the first occurrence of inelastic co-
tunneling. Upon further increasing the bias, other
upward changes of the slope of the current occur
in correspondence to energies at which higher ex-
cited states become available. It follows that the
differential conductance displays steps that resem-
ble the IV curve in the sequential tunneling regime.
Note however, that the nature of the two curves is
very different: at low bias the conductance is fi-
nite (elastic cotunneling). Furthermore the width
of the steps in the cotunneling conductance gives
the energy difference between states of the same
charge state, fixed by the specific Coulomb dia-
mond of the stability diagram. Therefore, cotun-
neling is an excellent tool to investigate directly
the excitation energies of a given charge state. In-
deed cotunneling spectroscopy has been used to in-
vestigate electronic, vibrational and magnetic ex-
citations in nanostructures such as a-few-electron

semiconductor quantum dots,52 carbon nanotube
quantum dots,53,54 metallic carbon nanotubes,55

and single-molecule junctions.56–58

At this point, before analyzing the transport re-
sults of our model, it is useful to make a connec-
tion with inelastic electron tunneling spectroscopy
(IETS), studied for example by electron tunnel-
ing from a STM tip through a molecule adsorbed
on a surface59,60. The reader familiar with IETS
easily recognizes that the differential conductance
versus applied voltage for this case is very sim-
ilar to the cotunneling conductance of Coulomb
blockade. This similarity is not accidental: the
physics is essentially the same in both cases, since
involves the coherent electron tunneling through
a finite system, whose internal degrees of freedom
(e.g., vibrational, magnetic and electronic) can be
excited by the process. The mathematical formu-
lation of the problem is very similar in the two
cases. There is one noticeable difference. In IETS
by STM the coupling between the molecule and the
(conducting) substrate is much stronger that the
coupling between the STM tip and the molecule.
Therefore typical IETS setups can be viewed as
strongly asymmetric Coulomb-blockade systems,
when these are studied in the cotunneling regime.
These considerations suggest an alternative way

to investigate the spin-electric coupling in trian-
gular MMs via quantum transport. In the setup
of Fig. 6 we can imagine that transport through
the MM occurs between the STM and the sub-
strate. on which the MM is placed. Now the gates
and leads constructed on the surface could provide
the external electric field responsible for the spin-
electric tunneling. For this purpose the plane of
the triangular MM should be parallel to the sur-
face of the substrate. In this case the detection
and coherent manipulation of the low-energy chiral
states of the MM would occur by means of IETS.

IV. RESULTS AND DISCUSSION

We now discuss quantum transport for the setup
of Fig. 6
We first construct the relevant low-energy many-

body states for the charge states containing N =
2, 3, 4 electrons. For this purpose we use he Hub-
bard model introduced in Sec. II. The parameters
of the model are taken from the first-principles
studies on the {Cu3} triangular MM by Ref. 21.
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We have t = −51 meV, U = 9.06 eV, λSOI = 0.4
meV. The model is solved exactly for N = 2, 3, 4.
We label the many-body states with their electron
number N (the charge state), total spin S and z-
component of the total spin Sz

61 In case of addi-
tional degeneracy, we will use additional quantum
numbers to specify the states. E.g., for the the
chiral degeneracy for the N = 3 GS, we will add
E′

±.
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FIG. 7. Low-energy spectrum of the triangular molec-
ular magnet, described by the Hubbard model of
Eq. (8), for different charge states or electron filling,
N = 2, 3, 4. Here the Hubbard model parameters,
t = −0.051, U = 9.06, λSOI = 0.0004 (all in eV), are
taken from first-principles calculations21 for the {Cu3}
MN. A gate voltage Vg = U/2 has been added to rigidly
shift the spectrum of the system for a given N . The
total spin of the ground state (GS) for the different
charge states is indicated in parenthesis. The GS for
the N = 3-particle system corresponds to the chiral
states, E′

±, defined in Eq. (16).

The low-energy levels for the three contiguous
charge states are shown in Fig. 7. To the ener-
gies calculated with the Hubbard model, we have
added a gate voltage term −eVgN = −U/2N ,
which shifts rigidly the spectra of the different
charge states with respect to each other. (This
choice makes the spectra of the N = 2 and N = 4
charge states more symmetric with respect to the
N = 3 states. We will also use this value of the
gate voltage below, in the study of cotunneling
transport, to make sure that the system is stable
in the middle of the N = 3 Coulomb diamond.)
For the present choice of the Hubbard parame-

ters, these states are well described by the pertur-
bative analysis of Sec. II. As discussed there, the
GS for the N = 3 charge state (lowest middle line)
is four-fold degenerate, and it corresponds to the
states defined in Eq. 16. In Fig. 7 the same line
denotes the position of the S = 3/2 excited state,
whose separation from the GS is not visible on this
energy scale.
We now consider the presence of a strong and lo-

calized electric field, generated, for example, by a
STM tip positioned nearby the MM. We will con-
sider values of ε up to a maximum equal 0.1V/Å,

FIG. 8. (Color online). Schematic energy diagram of
a triangular MM in the presence of an external electric
field ε. Only the GS of the N = 2, 3, 4-particle system
and the lowest excited states of the N = 3 system are
included. The numbers in parenthesis corresponds to
the total spin S. The electric field lifts the of theN = 3
GS degeneracy, and mixes the chiral states defined in
Eq. (16). The “mixed chiral states”, are now labeled
by χα

±, with χα
− being the GS. The GS splitting ∆E

is linear in ε at low fields. Here we have used the
same parameters of Fig. 7, plus eaε = 0.487eV, and
dEEε = 0.1eaε. The electric field is applied in the
plane of the triangle, perpendicularly to line joining
vertexes 1 and 2 of the triangle. Also shown in the
figure with dashed-colored lines are allowed inelastic
cotunneling transitions, occurring via N = 2, 4 virtual
states. Red, black and green dashed lines correspond
to transitions: χ− ↔ χ+ (∆E), χ+ ↔ S = 3/2 and
χ− ↔ S = 3/2, respectively.

which can be easily attained with STM.62,63 For
a {Cu3} MM, the distance between magnetic ions
is a = 4.87Å. For a spin-electric coupling strength
d = ea, which is the maximum value estimated
in Ref. 15, the energy scale eaε is equal to 0.487
eV when ε = 0.1 V/Å. As discussed in Sec. II, we
model the effect of the electric field in the Hubbard
approach via the parameters a, dEE , dAE entering
the single-particle Hamiltonians in Eqs. (25) and
(28). Here we take dEE = 0.1ea and dAE = 0. The
effect of the field on the low energy spectrum of the
MM is shown in Fig. 8, with the expected splitting
and mixing of the GS chiral states for the N = 3
charge state. In the absence of SOI the “mixed chi-
ral states” |χα

−(ε)〉 and |χα
+(ε)〉 (with |χα

−(ε)〉 being
the GS) are still spin (α = ±1/2) degenerate. As
we saw, their splitting ∆E(ε) is proportional to ε.
It is interesting to note that, the (small) spin-orbit
coupling given in Eq. 29, mixes a little bit |χα

−(ε)〉
and |χα

+(ε)〉. However, since the effect is the same
for α = ±1/2, the double degeneracy of the GS
and the first excited state is preserved, and the
splitting remains of the order of ∆E(ε).

Shown on the same figure are also the four-fold
degenerate (N= 3, S = 3/2) excited state and the
N = 2 and N = 4 GS, having spin S = 0 and
S = 1 respectively. The N = 2(4) GS has total
spin S = 0(1) and spin projection Sz = 0(0). The
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rest of the energy spectrum is not shown in Fig. 8.
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FIG. 9. (Color online) Differential conductance as a
function of the bias and gate voltages in the sequen-
tial tunneling regime (stability diagram), showing the
Coulomb diamonds for three contiguous charge states
N = 2, 3, 4. Only the corners of the diamonds are
shown. The arrows indicate the electron transitions
responsible for peaks in the conductance. States are
labeled following the notation of Fig. 8. The calcula-
tions are done for a symmetric device at temperature
T ∼ 10−2K (kBT ∼ 0.001meV). The parameters for
the Hubbard model are the same of those in Fig. 8, A
local electric field ε = 0.1 V/Å, is also included, caus-
ing a spin-electric coupling of the N = 3 chiral states
and a GS splitting ∆E.

In Fig. 9 we plot the Coulomb blockade stabil-
ity diagram, that is, the differential conductance
in the sequential tunneling regime as a function
of bias and gate voltages. The calculations are
done for a symmetric device, where the capaci-
tances and tunneling resistances for the two junc-
tions are the same. The temperature is taken to
be T ∼ 10−2K (kBT ∼ 0.001meV). The calcula-
tions are done for the parameters of Fig. 8, and
an electric field ε = 0.1 V/Å is included, generat-
ing a GS splitting ∆E for the N = 3 charge state.
The picture displays familiar Coulomb diamonds
for the three contiguous charge states N = 2, 3, 4,
inside which the current is zero. The lines delim-
iting these diamonds represent the onset of tun-
neling current, where the conductance has peaks.
They correspond to real transitions between states
of two contiguous charge states N → N ± 1. The
first lines where this happens involve the transition
between the corresponding GSs. Other lines, par-
allel to these, involve transitions between excited
states, which become occupied out of equilibrium.
We do not include any energy or spin relaxation
mechanism in these calculations.
We now consider cotunneling. In Fig. 10 we

plot the differential conductance as a function of
the bias voltage Vb, for Vg = U/2, which puts
the system in the middle of N = 3 Coulomb di-
amond, that is, deep in the Coulomb blockade
regime. Here the sequential tunneling current is
suppressed, and transport is entirely due to co-
tunneling. The conductance is nonzero even at

zero bias, due to elastic cotunneling. At Vb ≈ 1.1
meV, the conductance has a first step, indicated
by the red dashed line. The step signals the onset
of inelastic cotunneling, which takes place when
the bias voltage provides enough energy for the fi-
nal occupation of the lowest excited state of the
N = 3 charge state (N = 3, χα

+), via the vir-
tual transition from the (N = 3, χα

−) GS to the
(N = 2, S = 0) GS. Therefore, the width of
this first step provides a direct estimate of the
energy splitting between the mixed chiral states,
(N = 3, χα

+) and (N = 3, χα
−), caused by the spin-

electric coupling Increasing further the bias, other
two cotunneling channels open up, causing the ap-
pearance of two other steps in the conductance.
The first one, quite small, indicated by the black
dashed line, is related with the first occupation of
the (N = 3, S = 3/2) excited state, which occurs
via the virtual transition from the (N = 3, χα

+)
excited state to the (N = 4, S = 1) GS. Note
that the state (N = 3, χα

+) is already occupied
because of the first inelastic cotunneling transi-
tion. The second (higher) step, indicated by a
green dashed line, is again due to the occupation of
the (N = 3, S = 3/2) as a final state, but though
the virtual transition from the (N = 3, χα

−) GS to
the (N = 4, S = 1) GS.
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FIG. 10. (Color online) Cotunneling differential con-
ductance as a function of the bias voltage for param-
eters as in Fig. 7. The states involved are labeled as
in Fig.8. At low voltage transport is through elastic
cotunneling. The red-dashed line corresponds to the
first onset of inelastic cotunneling, due the occupation
of the lowest excited state (N = 3, χα

+), through a vir-
tual transition (N = 3, χα

−) GS → (N = 2, S = 0)
GS. The black-dashed line and green-dashed line in-
dicate inelastic cotunneling steps caused by the final
occupation of the (N = 3, S = 3/2) excited state
via the virtual transitions from (N = 3, χα

±
) to the

(N = 4, S = 1) GS.

The cotunneling conductance pattern depends
on the external electric field ε. In Fig. 11 we plot
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FIG. 11. Cotunneling differential conductance as a
function of the bias voltage and the local electric field
triggering the spin-electric coupling.

the conductance as function of ε and Vb. As ex-
pected, the value of the voltage where the first in-
elastic step occurs increases with the field. Varia-
tions of the position of the other two inelastic steps
in the conductance as a function of ε are also visi-
ble: at low fields, where the splitting of the chiral
GS vanishes, the other two inelastic steps involv-
ing the (N = 3, S = 3/2) excited state occur at
the same bias. Surprisingly, the height of the in-
elastic steps is not strongly affected by the electric
field. The only exception is the second step, whose
height becomes very small at the maximum value
of ε, as also shown in Fig. 10.
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FIG. 12. Energy splitting of the N = 3 chiral GS, ∆E,
caused by the spin-electric coupling, as a function of
the external electric field. The values of ∆E corre-
spond to the position of the first conductance step in
Fig. 11. The fitting curve contains a linear term pro-
portional to a dipole moment p = 5.76 10−33 C m,
in agreement with the first-principles calculations on
{Cu3} of Ref. 21.

In Fig. 12 we plot ∆E, extracted from the po-
sition of first inelastic step, as a function of ε. A
polynomial fitting of ∆E vs. ε finds, besides a
quadratic contribution due to an induced electric
dipole moment, a linear term, which dominates at

low fields, and it is the landmark of the (linear)
spin-electric coupling. Interestingly, the extracted
value of the proportionality coefficient of the linear
term, i.e. the “electric dipole moment” p = d/

√
2,

is equal to 5.76 10−33 C m, which is consistent
with the value found previously by ab-initio meth-
ods for Cu.21 This indicates that our choice of the
spin-electric parameter dEE = 0.1ea (see Eqs. (24)
and (25) ) is in the right ballpark. In principle, the
curve plotted in Fig. 12 can be directly extracted
from experimental measurements of the conduc-
tance in the cotunneling regime. From this curve,
the strength of electric dipole moment d can be
estimated.
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FIG. 13. Cotunneling differential conductance ver-
sus bias voltage with (dashed red line) and without
(blue solid line) external electric field, causing the spin-
electric coupling. Here we have used the same param-
eters of Fig. 8.

The cotunneling conductance for both ε = 0
(blue line) and ε = 0.1 V/Å (red dashed line)
is plotted in Fig. (13). At zero field, the split-
ting of the N = 3 GS, controlling the onset
of inelastic cotunneling, is brought about only
by the SOI-induced Dzyaloshinskii-Moriya inter-
action, which splits the chiral states without mix-
ing them. This splitting is predicted to be very
small, both experimentally15 (∆SOI = 0.04 meV)
and theoretically (∆SOI = 0.02 meV)33. The
value extracted from the cotunneling conductance
of Fig. (13) is consistent with this estimate. A
measurement of this splitting from cotunneling ex-
periments is also in principle possible but probably
very challenging. The value of the elastic cotunnel-
ing conductance is slightly larger when the ε-field
is absent than in the presence of the field. However
value of the inelastic conductance is the same with
and without field. The fact that inelastic cotun-
neling sets in at very different thresholds with and
without field suggests the possibility of using this
system as a switching device, which can be con-
trolled electrically, possibly by a time-dependent
field.
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V. CONCLUSIONS

In summary, we have carried out a theoretical
study of quantum transport through an antiferro-
magnetic triangular molecular magnet (MM), in
a single-electron transistor setup. The interplay
of spin frustration and lack of inversion symme-
try in this MM is responsible for the existence of
an efficient spin-electric coupling, which can affect
the non-linear transport. When a strong local-
ized electric field is applied to the molecule, the
spin-electric coupling causes a splitting between
the two doubly-degenerate spin chiral states that
compose the ground state of the MM. We have
shown that this energy splitting and, consequently
the strength of the spin-coupling, should be di-
rectly accessible experimentally by measuring the
inelastic cotunneling conductance in the Coulomb
blockade regime. Both SETs used in molecular
spintronics and IETS of molecules on surfaces ad-
dressed with a STM could be employed to study
this effect.

Our theoretical approach was based on a Hub-
bard model,15,18 where the spin-electric coupling
can be described in terms of a few microscopic
parameters derivable from first-principles calcu-
lations. We have shown that the value of the
strength of spin-electric coupling estimated from
tunneling transport is consistent with the value
calculated by first-principles methods.21

Antiferromagnetic molecules, like the one con-
sidered here, characterized by ground states com-
posed of chiral pairs of spin-1/2 doublets, could be
used to create pairs of quasi-degenerate qbits. The

possibility of coherently coupling these two qbits
electrically and detecting their quantum superpo-
sition state in electronic transport is an interesting
topic that should further investigated.
The effect of an external magnetic field, not

considered in this paper, can be used for gain-
ing full control of the ground-state manifold. Fur-
thermore, higher excited states of the system can
play a role as auxiliary states employed to per-
form quantum gates. As we have shown in our
study of the cotunneling conductance (see Fig. 11),
these higher states can also be manipulated electri-
cally and brought closer to or further apart from
the ground-state manifold. One important issue
that we have not discussed in this work is the ef-
fect of spin relaxation on transport. This certainly
plays a crucial role in determining the robustness
of the coherent superposition induced by the elec-
tric field.
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Appendix A: Explicit derivation of Eq. (54)

Here we demonstrate the Eq. (54). We study the transition rates up to four order. The transition
rate from state |j〉 |n〉 to |j′〉 |n′〉 with one electron tunneling from lead α to the lead α′ is given by

Γnj;n′j′

αα′ =
2π

h̄

∣
∣
∣
∣
〈j′| 〈n′|HT 1

Ejn −H0 + iη
H

T |n〉 |j〉
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn) ,

where Ej′n′ and Ejn are the energies of the final and initial states, respectively. HT =
∑

α=L,R

tα
∑

kσ

(

a†αkσcσ + c†σaαkσ

)

is the tunneling Hamiltonian Eq. (36) with T
L/R

kmα = tα. H0 =

Hmol + Hleads and η is a positive infinitesimal number. Here |j′〉 |n′〉 = a†α′k′σ′aαkσ |j〉 |n′〉. |j〉 (|n〉)
refers to the equilibrium state of the left and right Fermi sea (molecule). The total cotunneling rates for
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transitions that involve virtual transitions between two n, n′-occupied molecule states are then given by

Γnj;n′j′

αα′ =
2π

h̄

∑

kk′σσ′

∣
∣
∣
∣
∣
〈j| 〈n′| a†αkσaα′k′σ′

∑

α′′′

t∗α′′′

∑

k′′′σ′′′

(

a†α′′′k′′′σ′′′cσ′′′ + c†σ′′′aα′′′k′′′σ′′′

)

× 1

Ejn −H0 + iη

∑

α′′

tα′′

∑

k′′σ′′

(

a†α′′k′′σ′′cσ′′ + c†σ′′aα′′k′′σ′′

)

|n〉 |j〉
∣
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn)

=
2π

h̄

∑

kk′σσ′

∣
∣
∣
∣
∣
〈j| 〈n′| a†αkσaα′k′σ′

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

×







a†α′′′k′′′σ′′′cσ′′′

1

Ejn −H0 + iη
a†α′′k′′σ′′cσ′′

︸ ︷︷ ︸

= 0, n-2 states

+ a†α′′′k′′′σ′′′cσ′′′

1

Ejn −H0 + iη
c†σ′′aα′′k′′σ′′

+c†σ′′′aα′′′k′′′σ′′′

1

Ejn −H0 + iη
a†α′′k′′σ′′cσ′′ + c†σ′′′aα′′′k′′′σ′′′

1

Ejn −H0 + iη
c†σ′′aα′′k′′σ′′

︸ ︷︷ ︸

= 0, n+2 states








× |n〉 |j〉|2 δ(Ej′n′ − Ejn)

Γnj;n′j′

αα′ =
2π

h̄

∑

kk′σσ′

∣
∣
∣
∣
∣
〈j| 〈n′| a†αkσaα′k′σ′

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

{

c†σ′′′aα′′′k′′′σ′′′

1

Ejn −H0 + iη
a†α′′k′′σ′′cσ′′

+a†α′′′k′′′σ′′′cσ′′′

1

Ejn −H0 + iη
c†σ′′aα′′k′′σ′′

}

|n〉 |j〉
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn)

=
2π

h̄

∑

kk′σσ′

∣
∣
∣
∣
∣

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

{

〈j| 〈n′| a†αkσaα′k′σ′c†σ′′′aα′′′k′′′σ′′′

1

Ejn −H0 + iη
a†α′′k′′σ′′cσ′′ |n〉 |j〉

+ 〈j| 〈n′| a†αkσaα′k′σ′a†α′′′k′′′σ′′′cσ′′′

1

Ejn −H0 + iη
c†σ′′aα′′k′′σ′′ |n〉 |j〉

}
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn) (A1)

Here n and n′ are states with the same number of particles. Now we take a look at the denominator
terms

〈j| a†αkσaα′k′σ′aα′′′k′′′σ′′′a†α′′k′′σ′′ |j〉 = −〈j| a†αkσaα′′′k′′′σ′′′aα′k′σ′a†α′′k′′σ′′ |j〉
= −f (ε− µα) δαα′′′δkk′′′δσσ′′′

× (1− f (ε+ εn − εn′ − µα′)) δα′α′′δk′k′′δσ′σ′′

and

〈j| a†αkσaα′k′σ′a†α′′′k′′′σ′′′aα′′k′′σ′′ |j〉 = 〈j| a†αkσaα′k′σ′





�
�
�
�
�
�
�
�
�:

0

δα′′′α′′δk′′′k′′δσ′′′σ′′ − aα′′k′′σ′′a†α′′′k′′′σ′′′



 |j〉

= −〈j| a†αkσaα′k′σ′aα′′k′′σ′′a†α′′′k′′′σ′′′ |j〉
= 〈j| a†αkσaα′′k′′σ′′ |j〉 〈j| aα′k′σ′a†α′′′k′′′σ′′′ |j〉
= f (ε− µα) δαα′′δkk′′δσσ′′

(1− f (ε+ εn − εn′ − µα′)) δα′α′′′δk′k′′′δσ′σ′′′

Here we have used a Taylor series expansion on the operator 1/(Ejn−H0) = (1/Ejn)
∑∞

l=0(H0/Ejn)
l.

Taking into account last delta rules, we have

〈n′| c†σ′′′cσ′′ |n〉 =
∑

n′′

〈n′| c†σ |n′′〉 〈n′′| cσ′ |n〉 =
∑

n′′

(〈n′′| cσ |n′〉)† 〈n′′| cσ′ |n〉 =
∑

n′′

Aσ∗
n′′n′Aσ′

n′′n
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and

〈n′| cσ′c†σ |n〉 =
∑

n′′

〈n′| cσ′ |n′′〉 〈n′′| c†σ |n〉 =
∑

n′′

〈n′| cσ′ |n′′〉 (〈n| cσ |n′′〉)† =
∑

n′′

Aσ′

n′n′′Aσ∗
nn′′

where Aσ′

n′n′′ = 〈n′| cσ′ |n′′〉 and Aσ∗
nn′′ = 〈n′′| c†σ |n〉. Here n′′ represents a intermediate state.

Thus Eq. (A1) becomes

Γnj;n′j′

αα′ =
2π

h̄

∑

kk′σσ′

∣
∣
∣
∣
∣

∑

α′′′k′′′σ′′′

∑

α′′k′′σ′′

t∗α′′′tα′′

{

−〈j| 〈n′| a†αkσaα′k′σ′aα′′′k′′′σ′′′c†σ′′′

1

εn′ − εn′′ − ε+ iη
cσ′′ |n〉 a†α′′k′′σ′′ |j〉

+ 〈j| 〈n′| a†αkσaα′k′σ′a†α′′′k′′′σ′′′cσ′′′

1

εn − εn′′ + ε+ iη
c†σ′′ |n〉 aα′′k′′σ′′ |j〉

}
∣
∣
∣
∣

2

δ(Ej′n′ − Ejn)

Γn;n′

αα′ = 2 |tα|2 |tα′ |2
∑

σσ′

να(σ)να′ (σ′)

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

=
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

Q

(A2)

Appendix B: Explicit derivation of Eq. (55)

The absolute value in Eq. (A2) can be written as

Q =

∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

=

(

Aσ′∗
1n A

σ
1n′

ε− εn′ + ε1 − iη
+

Aσ
n1A

σ′∗
n′1

ε+ εn − ε1 − iη
+

Aσ′∗
2n A

σ
2n′

ε− εn′ + ε2 − iη
+

Aσ
n2A

σ′∗
n′2

ε+ εn − ε2 − iη

+
Aσ′∗

3n A
σ
3n′

ε− εn′ + εn′′ − iη
+

Aσ
n3A

σ′∗
n′3

ε+ εn − ε3 − iη

)

×
(

Aσ∗
1n′Aσ′

1n

ε− εn′ + ε1 + iη
+

Aσ′

n′1A
σ∗
n1

ε+ εn − ε1 + iη
+

Aσ∗
2n′Aσ′

2n

ε− εn′ + ε2 + iη
+

Aσ′

n′2A
σ∗
n2

ε+ εn − ε2 + iη

+
Aσ∗

3n′Aσ′

3n

ε− εn′ + εn′′ + iη
+

Aσ′

n′3A
σ∗
n3

ε+ εn − ε3 + iη

)

=
∑

k

(

(Aσ∗
kn′Aσ′

kn)
2

(ε− εn′ + εk)2 + η2
+

(Aσ′

n′kA
σ∗
nk)

2

(ε+ εn − εk)2 + η2

)

+2Re
∑

q

∑

k<q

(

Aσ∗
qn′Aσ′

qn

ε− εn′ + εq + iη

Aσ∗
kn′Aσ′

kn

ε− εn′ + εk − iη
+

Aσ′

n′qA
σ∗
nq

ε+ εn − εq + iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)

+2Re
∑

q

∑

k

(

Aσ∗
kn′Aσ′

kn

ε− εn′ + εq − iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)
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Thus Eq. (54) becomes

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
∣
∣
∣
∣
∣

∑

n′′

{

Aσ∗
n′′n′Aσ′

n′′n

ε− εn′ + εn′′ + iη
+

Aσ′

n′n′′Aσ∗
nn′′

ε+ εn − εn′′ + iη

}∣
∣
∣
∣
∣

2

=
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− µα) (1− f (ε+ εn − εn′ − µα′))

×
[
∑

k

(

(Aσ∗
kn′Aσ′

kn)
2

(ε− εn′ + εk)2 + η2
+

(Aσ′

n′kA
σ∗
nk)

2

(ε+ εn − εk)2 + η2

)

+2Re
∑

q

∑

k<q

(

Aσ∗
qn′Aσ′

qn

ε− εn′ + εq + iη

Aσ∗
kn′Aσ′

kn

ε− εn′ + εk − iη
+

Aσ′

n′qA
σ∗
nq

ε+ εn − εq + iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)

+ 2Re
∑

q

∑

k

(

Aσ∗
kn′Aσ′

kn

ε− εn′ + εq − iη

Aσ′

n′kA
σ∗
nk

ε+ εn − εk − iη

)]

=
∑

σσ′

γσαγ
σ′

α′

∫

dεf (ε− E1) (1− f (ε− E2))

×
[
∑

k

A2

(ε− εak)2 + η2
(Integral type J)

+
∑

k

B2

(ε− εbk)2 + η2
(Integral type J)

+2Re
∑

q

∑

k<q

Ak

ε− εak + iη

Aq

ε− εaq − iη
(Integral type I)

+2Re
∑

q

∑

k<q

Bk

ε− εbk + iη

Bq

ε− εbq − iη
(Integral type I)

+ 2Re
∑

q

∑

k

Ak

ε− εak + iη

Bq

ε− εbq − iη

]

(Integral type I)

where Ak = Aσ∗
kn′Aσ′

kn, Bk = Aσ′

n′kA
σ∗
nk, εak = εn′ − εk, εbk = εk − εn, E1 = µα and E2 = µα′ + εn′ − εn.

Integral type I

I(E1, E2, ε1, ε2) = Re

∫

dεf(ε− E1) [1− f(ε− E2)]
1

ε− ε1 − iγ

1

ε− ε2 + iγ

=
nB(E2 − E1)

ε1 − ε2
Re

{

ψ

(
1

2
+
iβ

2π
[E2 − ε1]

)

− ψ

(
1

2
− iβ

2π
[E2 − ε2]

)

−ψ
(
1

2
+
iβ

2π
[E1 − ε1]

)

+ ψ

(
1

2
− iβ

2π
[E1 − ε2]

)}

(B1)

Here ψ is the digamma function, nB is the Bose function and β = 1/kBT .

Integral type J

J(E1, E2, ε1) =

∫

dεf(ε− E1) [1− f(ε− E2)]
1

(ε− ε1)2 + η2

=
β

2π
nB(E2 − E1)Im

{

ψ′

(
1

2
+
iβ

2π
[E2 − ε1]

)

− ψ′

(
1

2
+
iβ

2π
[E1 − ε1]

)}

(B2)
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Thus Eq. (B1) becomes

Γn;n′

αα′ =
∑

σσ′

γσαγ
σ′

α′

[
∑

k

(
A2J(E1, E2, εak) +B2J(E1, E2, εbk)

)

+2
∑

q

∑

k 6=q

(AkAqI(E1, E2, εak, εaq) +BkBqI(E1, E2, εbk, εbq))

+ 2
∑

q

∑

k

AkBqI(E1, E2, εak, εbq)

]

(B3)
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