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Abstract
In this thesis we study a class of non-invertible piecewise affine hyperbolic sys-
tems with discontinuities in two dimensions. This is a special class of systems
but it reflects many properties of more general non-invertible hyperbolic sys-
tems.

For a special subset of parameters the system is especially simple. In this
case the system reduces to a one-dimensional system and methods from one-
dimensional dynamics can be applied. We classify the ergodic properties in
terms of the associated subshift and the number-theoretical properties of the
parameter.

We show that for an open set of parameters the Sinai-Bowen-Ruelle measure
is absolutely continuous with respect to Lebesgue measure and the correlations
of Holder continuous functions decay exponentially.
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Chapter 1
Introduction

This thesis is a study of a class of non-invertible hyperbolic maps on the square,
called the Belykh systems. These systems are piecewise affine and hyperbolic.
The simple form of the Belykh maps make them easier to work with and they
are hoped to share many properties with more general classes of non-invertible
hyperbolic systems. We hope that the study of the Belykh maps will contribute
to a better understanding of non-invertible hyperbolic systems and that the
methods can be generalised to a broader class of systems.

In [27], Pesin studied a general class of piecewise diffeomorphisms with
a hyperbolic attractor. He showed the existence of the Sinai-Bowen-Ruelle
measure, or SBR-measure for short, and studied the ergodic properties of this
measure. If f: M — M is the system in question then the SBR-measure is a
weak limit point of the sequence of measures

n—1

—k

=S vofF,
k=0

where v denotes the Lebesgue measure. This measure is the physically relevant
measure as it captures the behaviour of the orbits of points from a set of positive
Lebesgue measure. Pesin showed that the SBR-measure has at most countably
many ergodic components. For a more restricted class, Sataev [29] showed that
there are only finitely many ergodic components. In [30] he used this result to
prove that under a condition on the parameters, the Belykh map is ergodic.
Schmeling and Troubetzkoy studied in [33] a more general class than Pesin’s
and proved the existence of the SBR-measure. Their method to deal with the
non-invertibility of the system was to lift the system to a higher dimension
and get an invertible system on which the calculations was made. In this
way methods from invertible systems could be used. The result could then be
projected back to the original system.

Among the above mentioned classes are the Belykh systems. These systems
were first studied in [5] as a model of the Poincaré map of a system of differential
equations coming from the study of phase synchronisation. In [33] and [32],
Schmeling and Troubetzkoy studied the Belykh systems for a wider class of
parameters. These systems are especially simple but it is hoped that they
reflect many interesting properties of Pesins class and that the method used
for Belykh systems can be generalised to investigate a broader class of systems.

The Belykh map is defined as follows. Let @ = [—1,1]? and define the

9



CHAPTER 1. INTRODUCTION

Belykh map f: Q — Q by

f(x’y)—{ Az —(1=2X), yw+(y-1), ify<ks,

where the parametersare 0 < A <1, -1 <k <land1l <~y < 1+|k|
1.1. In this work we will study a similar map with the only difference that the
singularity set is the set ([—1,0] x {—=k}) U ({0} x [—|kl|,|%]]) U ([0,1] x {k})
instead of {y = ka}, that is we approximate the line {y = kz} with a piecewise
constant curve.

See Figure
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Figure 1.1: The Belykh map for v = %, A= % and k =

=

We show that when the map expands area (yA > 1) then there is an open
set P of parameters such that the SBR-measure is absolutely continuous with
respect to Lebesgue measure almost surely if the parameters are in P.

There are similar results in the literature. In the case when £ = 0 and
~ = 2 the system is the fat baker’s transformation, studied by Alexander and
Yorke in [1]. In this case the map is the product of its projections to the first
and the second coordinate. The projection on the second coordinate is the
two-shift. This simplifies the calculations and the SBR-measure is the product
of the one-dimensional Lebesgue measure and a Bernoulli convolution. The
result of Solomyak in [35] implies that for Lebesgue almost every parameter the
fat baker’s transformation has an SBR-measure which is absolutely continuous
with respect to the Lebesgue measure. Alexander and Yorke showed that if A=!
is a Pisot number then the SBR-measure is singular to the Lebesgue measure,
since then the Fourier transformation of the Bernoulli convolution does not tend
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to zero at infinity and hence can not be absolutely continuous with respect to
Lebesgue measure, [11].

In the case of expanding maps, that is maps that eventually are expanding
in every direction, much is known. Buzzi, [3], and Tsujii, [36] showed indepen-
dently that any expanding piecewise analytic map of the plane has an absolutely
continuous invariant measure. In higher dimensions Tsujii [37] showed that any
expanding map which is piecewise affine on finitely many polyhedral pieces has
an absolutely continuous invariant measure. Buzzi showed in [2] that almost
any expanding map which is piecewise affine on a more general type of pieces
has an absolutely continuous invariant measure.

Let A be a finite set and call it an alphabet. A word is an element of the
set

A* ={apar---an—1 |a; € A,;n >0}

and A* is called the language of A. A language L on A is a subset of A*.
Let AN be the set of all infinite sequences of elements in A. We define the
map o : AN — ANby o : {ag}ren — {ari1}ren. A cylinder is a set of the form

k[ak---ak_,_l]k_,_l :{bobl---EAN|bi:ai,Vi:k,...,k+l}.

A subset S C AV is said to be a subshift if it is invariant under o and closed
in the topology generated by the collection of all cylinders. We say that a word
apaj -+ -an—1 € A* is allowed if there is a sequence {i;} € S and an integer
m > 0 such that ay = i,,,4 for k=0,1,...,n— 1. The set of allowed words is
called the language of S.

In Chapter 2 we consider the special case of the Belykh maps when k = 0
and v and A\ are arbitrary. In this case the dynamics depends only on the
second coordinate and we therefore study the dynamics of the projection to
the second coordinate. The map T : [—(y—1),(y—=1)] = [-(y—=1),(y—1)] is
then the following.

oy —(y—-1) ifx>0,
T(a:)—{ vyr+(y—1) if z <O.

The graph of T is in Figure 1.2. By a change of variables 7' can be written
in the form x — vz + o (mod 1) were & = 1 — ~/2. This is similar to the
[-expansion, fg : [0,1] — [0,1), fg : © — Bz (mod 1), introduced by Rényi
[28] in the context of expanding numbers in non-integer bases, see figure 1.3.
The theory was further developed by Parry in [22], where he describes the
associated subshift ~ the (-shift, defined below  in terms of the orbit of 1.
He also proved the existence of an absolutely continuous invariant measure and
calculated the topological entropy.

Let [z] denote the integer part of the number z and let {z} denote the
fractional part of z. Let 8 > 1. For any = € [0, 1] we associate the sequence

11



CHAPTER 1. INTRODUCTION

(-1

-(v-1) (y-1)

~(y-1

Figure 1.2: The graph of T.

Figure 1.3: The graph of the map fz: 2 — Sz (mod 1), for 3 = 3.

d(z,8) € {0,1,---,[B]} defined as follows. If d(x, 3) = {ix}$2, then for each

k € N we define
ir = [Bff ()] = [B{B{B--- {Bx}}}].

The closure of the set of all such sequences is denoted by Sg and it is called
the (-shift. It is invariant under the left-shift o : {ix}32, — {ir+1}72, and the
map d(-, §) satisfies o™ (d(x, 3)) = d(fs(x), 5). If we order Sz with the lexico-
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graphical ordering then the map d(-, 3) is one-to-one and monotone increasing.

Parry |22] proved that the map 3 — d(1,/) is monotone increasing and
injective. For a sequence {ij}72, there is a § > 0 such that {i;};>, = d(1, 3)
if and only if 0" ({irx}) < {ir} for every n > 0. The number ( is then the
unique positive solution of the equation

o0
1= § i k.
k=0

The subshift Ss is the set of sequences {ij} such that o"({ix}) < d(1,0)
for every n > 0. If x € [0,1] then

T = Z d(:t,ﬁ)kﬂfk.

k=0
Any subshift S can be classified in the following way.

Definition 1.0.0.1. A subshift S is said to be a subshift of finite type, SFT,
if the set of forbidden words is finite. Equivalently, a subshift is of finite type
if it is associated with a finite directed graph with labelled vertices, that is there
is a finite directed graph G with labelled vertices such that a sequence is in S if
and only if there is a path in G which yields the same sequence by reading of
the labels of the vertices along the path.

A subshift S is said to be sofic if it is associated with a finite directed graph
with labelled edges.

A subshift S is said to be specified, or have the specification property, if
there exists a number k such that if a and b are words in the language of S
then there is a word c of length k such that the word acbh is allowed.

Note that if .S is of finite type then it is sofic. There are subshifts that are
not sofic and subshifts that are not specified.

It is possible to characterise the different types of subshifts Sz in terms
of the properties of the sequence d(1, 5) and make connections to the number-
theoretical properties of 3, see for example [7] and [31] for a collection of results
on the subject. Among other results are

Sg is of finite type if and only if d(1, ) either terminates with zeros or
is periodic. [22]

Ss is sofic if and only if d(1, 3) is eventually periodic, that is the orbit of
1 under fg is finite. [6]

Sp s specified if and only if there is an n such that there are no n con-
secutive zeros in d(1, ). [6]

13



CHAPTER 1. INTRODUCTION

If B is a Pisot number then Sg is sofic. [22]
If Sp is sofic then [ is a Perron number. [20], [9]

The methods from the S-expansion can be applied to the map T" with small
changes. We will describe the associated subshift and give analogous results to
those mentioned above for the G-expansion. This is done in Chapter 2.

In Chapter 3 we study a class of maps similar to the Belykh systems. We
prove the existence of an absolutely continuous invariant measure and prove
exponential decay of correlation for Hélder continuous function.

14



Chapter 2

Restriction to one dimension
2.1 Definition of the system

Put Q = [-1,1]* and S = ([-1,0] x {=k}) U ({0} x [—[k[, [k[])) U ([0, 1] x {K}).
Let @1 and @_1 be the upper respectively the lower connected component of
the set Q \ S.

Consider the class of maps f: Q\ S — @Q defined by

— ()“T+(1_)‘)7 '73/_(/7_1))7 if (‘T,y)EQl,
f(xvy)_ { ()\,T—(l—)\), 7y+(7_1))7 if (sv,y)EQ_l,

where the parameters are 0 < A <1, -1 <k <land 1<y < 1+2|k|. These
are the Belykh maps.

2.2 The one-dimensional case

Here we consider the case k = 0. In this case the dynamics in the second
coordinate do not depend on the first coordinate and the dynamics in the
first coordinate are completely determined by that of the second. Hence the
interesting dynamics take place in the second coordinate and we therefore study
the projection of f to this coordinate. Let the map T : I, — I,, where
L, = [—(y—1); (y — 1)] be defined by

vy —(y—-1) ifx>0,
T(x)—{ v+ (y—1) ifx <0.

We have defined T to be (v —1) at 0 for convenience, but we could just as well
have defined it to be —(y — 1).

2.2.1 A subshift with two kneading sequences

Let Iy = [—(y—1);0) and I} = [0;(y — 1)]. For any = € I, we associate a
sequence i = {ix}2°, € {—1,1}Y defined by T*(x) € I;, for any k € N. Then

x and g satisfy
st i i
o del

15



CHAPTER 2. RESTRICTION TO ONE DIMENSION

We let 3, denote the closure of the set of all such sequences and define the
map 7, : X, — I, by

7 =1 o= ik
Ty (l) v kgo F)/k .

The left-shift o is defined by o({ix}32o) = {tk+1}re,- It is easy to see that
my(0"(i)) = T™(m(2)). The set X is invariant under o and is hence a subshift.

We endow the subshift ¥, with the lexicographical ordering, denoted by <.
Because T is piecewise monotone increasing this makes the map m, monotone
increasing.

We denote by v = {V.}72, € ¥, the sequence that satisfies v — 1 = m,(7).
If we let —y = {ix} denote the sequence such that i, = —~; for each k then
—(y—1) =7,(—7) and ¥, is the set

S, ={i| -y <o¥(i) <y, Vk e N} (2.1)

We will call v the upper kneading sequence and —+v the lower kneading se-
quence. B B

Since we have defined T'(0) = (v — 1) there is no n such that o”(y) = —.
It is however possible that 0" (y) = v. If we had defined T/(0) to be —(y — 1)
then we would have the opposite case.

We let = : (1,2) — {—1,1}" denote the map that maps v € (1,2) to the
upper kneading sequence of ¥.,. The map Z satisfies 7, (2(vy)) = v — 1.

Let K denote the set of kneading sequences. Define

Pn={y €K |y=(mv2- )™ for some vz ¥}

and let P = J;" | P,,. For any 7 € K define

L(y) = sup{n € Z | 3k : veVes1 - Yorn—1 = (—70)(=71) - - (=Vn-1)}

Let
Kn={y€ K| L(y) =n}.

For any word A = apa; -+ - a; and k,l € N we denote by [A]x+; the cylinder
set defined by

k[A]k+l = {g S Z’Y | btk = G, T = 0,1,1}
k41

=) o "{i €3, |io=ar}).

m=~k

We will use the notation [A] = o[A];.

16



2.2. THE ONE-DIMENSIONAL CASE

2.2.2 Classification of the subshifts

We begin by defining some different types of subshifts.

Definition 2.2.2.1. A subshift is said to be of finite type, SFT, if it is asso-
ciated with a finite directed graph with labelled vertices.

A subshift is said to be sofic if the language is associated with a finite au-
tomaton, that is a finite directed graph with labelled edges.

A subshift S is said to be specified, or have the specification property if there
exists a number k such that if a and b are words in the language of S then there
is a word c of length k such that the word acb is allowed.

In this section we will prove the following theorem, that characterises the
three types of subshifts in Definition 2.2.2.1 in terms of the kneading sequence.

Theorem 2.2.2.1. The subshift ., is of finite type if and only if v is periodic.
The subshift ¥, is sofic if and only if v is eventually periodic.

If v > \/2 then the subshift ¥, is specified if and only if v € KCy,, for some
integer n.

This can be formulated equivalently in terms of the orbit of (v — 1).

Theorem 2.2.2.2. The subshift ¥ is of finite type if and only if the orbit of
(v — 1) is periodic.

The subshift ¥, is sofic if and only if the orbit of (y — 1) is finite

If ¥ > \/2 then the subshift ., is specified if and only if the orbit of (y — 1)
is bounded away from —(y —1).

Consider the case v = /2. Let

¥y—1 v—-1 v—1 v—1
PO T T’ Y P Y A
y+1 v+1 v+1 y+1

Then T7'(A) = B and T~!(B) = A. Hence X, is not specified even though
7 =11(=11)® € K;.
If v < V2 then f(A) C B and f(B) C A and ¥, can not be specified.
However there is no v € (1,v/2) such that v is periodic or eventually periodic.
Let A be an alphabet and L C A* = {araz---ay, | ap € A;n € N} a
language. For z,y € L we define the relation ~ by

T~y — (axb € L if and only if ayb € L, Va,b € A”).

Definition 2.2.2.2. The language L is said to be rational if the quotient group
with respect to the relation ~ is finite.

17



CHAPTER 2. RESTRICTION TO ONE DIMENSION

The following theorem can be found in [10]. It will be used in the proof of
Theorem 2.2.2.1.

Theorem 2.2.2.3 (Kleene). A subshift is associated with a finite automaton
if and only if it’s language is rational.

We can now prove Theorem 2.2.2.1.

Proof. We first prove that if ¥, is sofic then 0" (y) is periodic for some n.
Assume that ¥, is sofic and ¢™(7) is not periodic for any n € N. Then
there exists an infinite sequence i; < i < --- such that the sequences

Vi Yig+1Yip+2 " k= 1,2,3,...

are unique. Consider two sequences

Vi Vig+1Yig+2 "
Vi Vig+1Vi 42 -

Without loss of generality we may assume that there is a j such that

Vi = Yirr -+ s Yinti = YVi+j a0d Vi 101 > Vi i1

The sequence 7;, Vi, +1%i,+2 - - - prolong the word yoy; - - - 7i,—1 but it does not
prolong the word 71 - - - y;,—1. Hence the quotient group is not finite and X
is not sofic. This proves that o™ () is periodic for some n if ¥ is sofic.

We now prove that if v is periodic then Y, is of finite type.

The subshift ¥, is of finite type if and only if it is associated with a finite
graph with labelled vertices. Assume that v is periodic. We construct a graph
in order to prove that the subshift is of finite type.

Assume that v is n-periodic. Let

V ={apay - -an—1|aopas---an—1 is an allowed word.}
be the set of vertices and let
E={(AB)| A BecV,AB is an allowed word.}

be the set of edges. Then a sequence is in X, if and only if there is a corre-
sponding path in the graph G = (V, E). Indeed, a sequence a = agpajag - - -
is in ¥, if and only if the words arar41 - ar4n—1, £ = 0,1,... are allowed.
This condition is obviously satisfied for any path in G. Furthermore, for any
such sequence the words agynm - Gptnm+1)—1 ad Qgtnm = Cpgn(m42)—15
k=0,1,...,m=0,1,2,... are allowed and therefore there is a corresponding
path in G. An example of the construction is in Example 2.2.2.1 below.

18



2.2. THE ONE-DIMENSIONAL CASE

It is now time to prove that if ¢"(7y) is periodic for some n then X, is sofic.
Assume that o™ (v) is periodic for some n.

If ~ is periodic then Y, is of finite type and hence sofic. Assume that v is
not periodic. Write v = agary - - m-1(Bof1- Bn-1) = yoy1---. We may
assume that o« @m-1> B0+ Bn_1.

For any finite word ag---an—_1 we define the state (k,1); Put

k' =max{j | an—j - an—1="0"""Vj-1}

I'=max{j | an—; - an—1=(—0) - (—7-1)}

and let
E=FE if &' <m+n,
1= if ! <m+n,
k=m+n+r if K =m+pn+r, p>1and
l=m+n+r ifl! =m+pn+r, p>1.

Then 0 < k,l <m+2n—1. Let S be the map (ag---an—_1) — (k,1).
Let V. = {(k,1) = S(A) | Ais an allowed word.} be the set of vertices.
Define the set of edges E by

E = {(ki,l1) & (ka,1s) | L € {~1,1},a0---as_1 L is an allowed word with
S(ao e as_l) = (kl,ll) and S(ao . --as_lL) = (kz,lz),
where ag---as—1 =" Vi, —1 if k1 > 11 and

ao-+as-1 = (=70) - (=yw-1) if b >k}

We prove that the graph G = (V, E) determines the subshift 3. Observe that
the word A(fBy - -+ 3,—1)B is allowed if and only if the words A(B3p - Bn—1)'B,
i =1,2,3,... are allowed. This implies that for any ¢ € ¥, and any j the
state S(ag---aj—1) is defined and from the vertex S(ap---a;j—1) there is a
unique edge labelled with a; going to the vertex S(ag - - - a;). Hence the subshift
determined by G contains >,,.

Conversely, let a be a sequence determined by a path in G. Then for any
i =1,2,3,... the word a;_s11---a; = *(7y0---7Ys—1) where s = max{k, !},
(k,1) = S(ag---a;). Clearly ag is an allowed word. Assume that ag---a; is an
allowed word. The word a;_441 - - - a; is allowed and by the construction of G it
is clear that the word a;_441 - - - a;a,41 is allowed. Hence ag - - - a;41 is allowed
and by induction a € X,.

The graph G is obviously finite so X, is indeed sofic. See Example 2.2.2.2
below for an example of the construction.

We can now prove that if 3, is of finite type then 7 is periodic.

19



CHAPTER 2. RESTRICTION TO ONE DIMENSION

If ¥, is of finite type then it is sofic and o™(y) is periodic for some n.
Assume 7 is not periodic. Then we can write 7 as

y=ao - am1(Bo- Bn-1)>,

where By -+ Bn_1 < Qg+ Qm_1. Then thereis a k < nsuch that Gy --- Bx_11 >

Bo-+Bno1and (Bo- - Bn_1)VB1 - Br_11 is allowed for any N. For any N the
word

o m1(Bo - Bu1)VBo- Br-1l

is forbidden but it contains no smaller forbidden word. Hence the subshift is
not of finite type. We conclude that if ¥ is of finite type then +y is periodic.
If there is no n such that y € K,, then for any n there is an m such that

o+ ym] = [0 Ym(=71)(=72) -+ (=7n)]-

This implies that ¥, can not be specified.

If v € Ky then for any allowed word C of length m there are k,l with
k + 1 < n such that either

Cyivigr -+ Ve (—11)%°,

Cyivigr - Ve+11(=7)
or

Cyivigr - Vet (1-1),

Cyvisr et — 1y

are sequences in X,. Hence we have either

Fr m([0D) 2 [0, 1

1] or e (D)

U
|
2
|
—
2,

For v > /2 there is an N, depending on v, such that
(o351 - (o) -
0,——|) = ——0])=[-(y—-1),(v—1)].
(o1 ) = (0 (=1 (y = 1]
This implies that ¥, is specified. O

Example 2.2.2.1. Let v = (11—1)*°. The corresponding graph is in figure

21. Ifwelet 1 =11-1,2=1-11,3=1-1-1,4= —1-11,5 = —11-1 and

20



2.2. THE ONE-DIMENSIONAL CASE

6 = —111 then we get the following adjacency matrix.

111 0 1 1
01 1 1 11
111 0 0 0
01 01 11
110 0 1 1
001 1 11

11-1 1-11 1-1-1

[ ] [ ] [
-1-11 -11-1 -111

Figure 2.1: The graph associated with the subshift determined by the kneading
sequence y = (11-1)°°.

Example 2.2.2.2. Let y = 1(1-1)*°. The corresponding graph, constructed
as in the proof of theorem 2.2.2.1, is in figure 2.2. The graph for the subshift
determined by 7y = 11(—11-111-11)* is in figure 2.3.

2.2.3 Invariant measures

In this section we construct an absolutely continuous invariant measure. The
method follows that applied for the S-expansion by Parry in [22]. We estimate
the number of allowed words of length n in the subshift ¥ and use this estimate
to estimate the Lebesgue measure of pre-images of any cylinder. In this way
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Figure 2.2: The graph associated with the subshift determined by the kneading
sequence y = 1(1-1)*
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Figure 2.3: The graph associated with the subshift determined by the kneading
sequence y = 11(—=11-111-11)*°

we can construct the absolutely continuous invariant measure as a weak limit
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2.2. THE ONE-DIMENSIONAL CASE

point of the sequence
1 n—1
- Z volT ™™
k=0
where v denotes the Lebesgue measure. The limit measure is the measure of
maximal entropy.

By constructing a Markov partition Hofbauer showed in [13] that a class of
piecewise monotone increasing maps of an interval has at most finitely many
measures of maximal entropy and if the map is transitive then there is a unique
measure of maximal entropy. Hofbauer used this method for more general maps
in [14, 15, 16, 17).

Define the following metrics.

1
dZw(Qab) = max{_n | Qan, 7é bn}u a,be E'ya
Y
—1l=a,—b
d’y(@vb): FY Zak k k I Q;bez’y
T o= 7

The metric d, is the Lebesgue metric in the sence that it satisfies d,(a,b) =
|7y (@) — 7y (B)]-

Theorem 2.2.3.1. Let a,b € ¥,. Then 2ds._(a,b) > d,(a,b).

Proof. Assume that ds_(a,b) =~~". Then

— 1 Xap—b
Y Zakkk

dy(a,b) =
+(a,0) AP

O ) 2
< — = — =2dy (a,b). O
7n+1k§0,},k ,.Yn w( )

The following lemma is obvious.
Lemma 2.2.3.1. For any cylinder [C] of length m we have
ds, ([C)) <7~
d\([C]) < (v = 1)y
Lemma 2.2.3.2. Let v € KC,,. Then for any cylinder [C] of length m we have
ds, ([C]) =yt

Proof. Let j > 0 be such that there is no a,b € [C] with dx_(a,b) > v~ ™.
There are numbers k£ and [ such that the last k letters of C' are g ---vy,—1 and
the last [ letters of C' are (—vp)---(—v—1). Since v € K,, any a € [C] has
the property that one of these chains of ~g---7,_1 and (=v0) - (—=vi-1) in
a ends after at least n letters. This implies that we can find a,b € [C] with
d(a,b) > ", 0
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Theorem 2.2.3.2. Assume that v € KC,,. Then for any cylinder [C] such that
ds. ([C]) > 0 we have

=1 (€D
y+1 7 ds ([C])

o <2

Proof. By theorem 2.2.3.1 we have that j;(é[ccl])) <2
Y

Arguing as in the proof of Lemma 2.2.3.2 we see that there are integers k
and [ with k¥ < n — 1 such that either

ay = Cyvigr - k=1,
a; = Cyvigr - Yir(—11)%°,

or

ag = Cyyitr - k1 (=7),
a; = Cyvyigr - ir(1-1).

are in [C]. If m is the length of C then a direct calculation gives d,([C]) >

—m—-ny—1
¥ 1 and hence

d'y([c]) a1y — 1
7o R =

Theorem 2.2.3.3. Let N(k) denote the number of allowed words of length k.
Then A
2k < < — AP
WW_JW@_V_lv
Proof. There are N(k+ 1) — N(k) allowed words W of length k& such that both
W1 and W—1 are allowed. For each such word W—1v, W1l—y € ¥,. Since
7, (W—17) = m,(W1—v) we may think of the word W as if it was a sequence,
such that 7, (W) = 7, (W1—7).

Order these N(k + 1) — N(k) words lexicographically and consider three
consecutive words Wy, Wy, Ws3. It can happen that Wi and W5 or W5 and W3
are very close. However d, (W1, Ws) > 77—]1 Hence

N(k+1)—N(k)y—1

<2(y-1)

and
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2.2. THE ONE-DIMENSIONAL CASE

Consider the allowed word igiy - - - ix—1 of length k. The cylinder [ig - - - ix—1]

has the property that d.([io - - - ix—1]) < % Hence

Yy -1

N(k)% >2(y—1).
v

This implies that

Corollary 2.2.3.1. The topological entropy of ¥ is log-y.

Corollary 2.2.3.2. The map = : (1,2) — {—1,1} is monotone increasing
and injective.

Proof. 1f v < ¢ then ¥, C Y5 by (2.1). This implies that htop(3+) < hiop(Xs)
and so we must have v < 4. O

Theorem 2.2.3.4. Let I C I, be any interval. Then for any m

LSt <

where v denotes the Lebesgue measure. If v € Ky, and v > V2 then there exists
a constant ¢ > 0, depending on v, such that

=

m—

S v(THI) = en(D).

k=0

1
m

Proof. The set T~%(I) consists of at most N (k) disjoint interval each of measure

less or equal to Vv(i). This implies that

W) < N < )
and hence

imz_lu(T"“(I)) <1
m -1 '

Assume that v € K, and 7 > +/2. Then %, is specific and there exists an
N such that for any allowed word igiq - - - i,,_1 there exists a word W of length
N such that igiy---i,_1WC is an allowed word. So T‘k(wv([C]) consists of
at least N(k — N) intervals and by Lemma 2.2.3.2 and Theorem 2.2.3.2 there
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CHAPTER 2. RESTRICTION TO ONE DIMENSION

exists a constant ¢y > 0 such that each of these intervals has length not less
than cov(m,([C]))y~". Hence

(T~ ([C]) = Nk = N)cov(m, ([C]))y ™" = ev(m,(IC])),

where ¢ depends on vy but not on [C]. This implies the statement of the Theo-
rem. O

Corollary 2.2.3.3. There exists an invariant measure ji, absolutely continuous
with respect to the Lebesque measure v such that

n—1

1 4
w(A) = lim — v(TF(A)) <
() = Jim S < =

v(A).

Ifye Ky and v > V2 then i is equivalent to v.

Parry [25] has shown that the measure p has the density
h(@) =D Y (Xi=(-1.7(-1) (&) = X[=(r=1). 77 (~(r-1)) (7))
n=0

where D is a normalising constant, and if v > /2 then h(z) > D%.

Theorem 2.2.3.5. The measure p is the measure of mazximal entropy. That
is hy(T) = hiop(T).

Proof. It suffices to show that h,(T) > log~ since h,(T) < hyp(T) for any
measure and Ayop (1) = logy. Theorem 2.2.3.4 and Lemma 2.2.3.1 implies that
for any cylinder [C] of length n we have u([C]) < 4y'~". If C, is the partition
of I, into cylinders of length n we have

1 1
- > —ullO)logu((C)) = - >~ w(C)(nlogy —log(4y))
[C]€Cn [Clec,
=logy — L log(4v) — log,
n
as n — oo. This shows that h,(T") > log~. O

Example 2.2.3.1. If ¥, is specified then there exists a sequence a € ¥, such
that {c™(a)}nen is dense in 3, with respect to the metric d,.
Let {a, }nen = {@n,1an2- - }nen be dense in X,. Define

An = an,10n2 ** Apn-
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2.2. THE ONE-DIMENSIONAL CASE

The cylinder sets [A,,] are all non-empty since a,, € [A,]. Since X, has finite
memory there exists words A, of length T;, <T such that

b= AlAT71A2AT)2A3 s € EV'
Let

kn=> (i+T).
=1

Then by Lemma 2.2.3.1 and Theorem 2.2.3.2 the set {o*" (b)},en is dense in
Y, with respect to d,.

2.2.4 Ergodic properties

The theory of piecewise monotone maps of an interval is well developed. We
use this theory to conclude that the measure p constructed in the previous
section is the unique measure of maximal entropy and that it is Bernoulli.

Theorem 2.2.4.1. Let v > /2. If v € Kn then T is mizing.

Proof. Bowen [8] has shown that any piecewise C? function on an interval with
one discontinuity and derivative larger than /2 is weakly mixing. If T is weakly
mixing then 7T is mixing if and only if there exists a constant K such that

limsupr(ANT™"B) < Kv(A)v(B),

n—oo

for any measurable sets A, B.
Take any two cylinders [A] and [B]. We prove that

d,([A]NT7"[B]) < Kd,([A])d,([B]), (2.2)

for n large enough. Let ny be the length of the word A. Assume that
ds, ([A]) =y~ and dy, ([B]) =y~ ",
Let n > n4. Then

ANT "B ={ae%, la= A B} =il

n letters k

where [C}] are disjoint cylinders of the form [Ai,, ---i;-1B]. There are at
most N(n —ny4) such non-empty cylinders.
By Lemma 2.2.3.2 we have dg_([4]) >y~ "4V~ We get

ds, (AN T(B)) = 3 ds, ([Ck]) < N(n —na)y "

< ——pnnay T NE < ads, ([A])ds, ([B]).
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By Theorem 2.2.3.2
dy([A]nT~"[B]) < 2dx, ([A]nT~"[B])
< 2c1ds, ([AD)ds, ([B]) < cady ([A])d, ([B]).
Hence T' is mixing. |

Theorem 2.2.4.2. If v > /2 then T is topologically mizing.

Proof. We show that for any non-empty cylinders [A] there exists a number n
such that 0" ([A]) = X,. It then follows that T is topologically mixing.

Let n4 be the length of the word A. Let n,, be the largest number such that
(=v0) - (_an—l) is a word in g ---vn,—1. Clearly, n, < ng. There exists
k,l1 < n, such that either

Ay e (1-1)* € B,
Ay yigr—11l(=y) € X5,
or
Ay e (—11)7 € B,
Ay vigpr—1—1y € B,
Hence fra+*(m([A]) 5 [0,252] or fra*(m,([4]) > [~22,0]. For any
v > /2 there is a number N such that
() = (o 355))
— ,0 = 0, =|—(y—1), —1)].
M ([ool) = (o o)) === 1)
This implies that 7" is topologically mixing. O
Corollary 2.2.4.1. If v > /2 then the measure 11 is the unique measure of
mazimal entropy.

Proof. In [13], Hofbauer showed that provided T is transitive then there is a
unique measure of maximal entropy. O

Theorem 2.2.4.3. T is ergodic with respect to the measure p.

Proof. In [19] it is shown that that any transformation of a certain class of
transformations with n discontinuities has at most n ergodic measures each
absolutely continuous. Thus p is ergodic. O

Theorem 2.2.4.4. If v > /2 then p is Bernoulli.

Proof. Bowen [8] has shown that provided T' is weakly mixing, the measure
1 is Bernoulli. As mentioned in the proof of Theorem 2.2.4.1, T is weakly
mixing. |
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2.2. THE ONE-DIMENSIONAL CASE

2.2.5 Connection to algebraic numbers

Let 2 be a number. We denote by Q[z] the smallest field extension of Q
containing the number z. A number z is called an algebraic number if it
is a root of a polynomial with integer coefficients, that is there are integers
ag, - - -, ay such that = satisfies

ant™ + ap_12" L+ 4 ag = 0. (2.3)

A minimal polynomial of an algebraic number is a polynomial with integer
coefficients with the least degree n such that (2.3) holds. The roots of a minimal
polynomial are called the conjugates of x. If  has a minimal polynomial with
a, = 1 then z is called an algebraic integer.

Definition 2.2.5.1. A Salem number is an algebraic integer x of which all con-
jugates have modulus less than or equal to 1 and there is at least one conjugate
with modulus 1.

A Pisot number is an algebraic integer x of which all conjugates have mod-
ulus less than 1.

In this section we will prove the following theorem. We denote by Per(y)
the set of points in I, with finite orbit.

Theorem 2.2.5.1. If 3, is sofic then v is an algebraic number of which all
conjugates have modulus less than 2.
If v is an algebraic integer then Per(y) C Q[v].
IfQN1I, C Per(y) and v > V2 then v is either a Pisot or a Salem number.
If v is a Pisot number then Per(y) =QnN L,.

For the (-expansion, similar results with similar proofs can be found in [22]
and [34].

Let U be the set of v of the form v = agay - - am—1(6of1 -+ Bn-1)>. It
v € (1,2) and ~ is the corresponding kneading sequence then + solves the

equation (z — 1) = m.(y). For 7 € U this yields the equation
LA (aozm-i-n—l do a2+ 6075"_1 R 67171)
=" — (2™ o amo1). (24)
We call this the characteristic equation of ~.

Lemma 2.2.5.1. The conjugates of vy with respect to the characteristic equation
satisfies

TO(,_Y _ l)zm-l-n—l + Tl("y _ 1)Zm+n—2 R Tm-l-n—l(,_y _ 1)
=Ty = 1)z Ty = 1)2™ 2 4 T (y = 1),
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TF (y=1) AT (y—1)
TO(y—1)

Proof. Insert v, = — into (2.4). One get

Tty =1 (z =)z 4+ THy = 1)(z = 7)™ 2 4
F Ty = 1) (2 =) + T (v = 1)
=Ty =1)(z =)™+ Ty =) (z = 7)™ 2 + -
+T" =1z =) + T (v = 1).

Since T™T"(y — 1) = T™(y — 1) and z # ~ for the conjugates this gives the
statement in the lemma. O

We are ready to prove the first statement of Theorem 2.2.5.1.

Theorem 2.2.5.2. If y € U then for any conjugate z of v with respect to the
characteristic equation we have |z| < 2.

Proof. By Lemma 2.2.5.1 the conjugates satisfy
TO(y—1)zmt =t =l (o 1) = Ty — 1) 2™ e T (y = 1),

Assume |z| > 1. Then

(lz[" =)z Ty = 1)+ T(y = 1)2" 2 4+ T (y = 1))
<JE"=DETTIT(y =D+ T(y =122+ + T (v = 1))
=Ty = 1)z" 4 T (y = 1))
lz|" =1

<O=D T T ) = (- D

Hence |zm MT0(y — 1)+ T(y— 1)z 24 -+ T 1 (y - 1)| < \2\7—11' Finally

m— Y- 1 m— T —
(v = 1)l 1<|Z|_1+|T(7—1)Z Pk T (y - 1)
v—1 2™ -1 |21
< L T
implies that |z| < 2. O

Let v be an algebraic integer. There exists a minimal polynomial
d—1
P(z) = Zakzk + 24
k=0
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2.2. THE ONE-DIMENSIONAL CASE

such that P(y) = 0. Since P(y) =0 any o € Q[y] can be written in the form

d—1
1
o = a E pk/yka q,Pk € 7. (25)
k=0

Because of the minimality of P(z), this representation is unique if we choose
the smallest possible ¢ > 0.

Lemma 2.2.5.2. If v is an algebraic integer then Per(v) C Q[y] N I,.

Proof. Let a € Per(y). That is @ = ap- -+ Qm—1(Qm ** * Qmgn—1)°° for some
positive integers m and n. Then

o0

v—1 g
0‘:%(@)272?
k=0

oo n—1

m—1
-1 k1 Otk
- ym Z ay™ " + v Z Z FYerkJrin
k=0 =0 k=0

m—1 n—1
—1 - 1 o
S — E apy™ P + — E k" R | € Q). O
v k=0 LA s

Lemma 2.2.5.3. Let « € Q C Q[y] and let o = %Zz;é pry* be the unique
representation of « in the form (2.5). Then for any ¢,

=
a=- Zpkék.
1=

Proof. Since o € Q we have p, =0 for k£ > 0. O
Lemma 2.2.5.4. Let o = %Zz;é pry* € Q[y]. Then, for any n, there exists
a unique vector (Tp1,...,"n,d) € Z¢ such that
1
T (a) = 4 Z Pngy " (2.6)
k=1

Proof. From P(~) = Zz;é ary® 4+ ¢ we get the relations

d—1
d-1 k—1
v = E agy
k=0

d—1
1=- Z apy*4.
k=0
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With these relations a can be written in the form a = % Zzzl ro.xy k.
For any n

n—1
_ 1 -~
77 (ev) —7”(04— TS oy ’“>,
v k=0
n+1 _ n
T3 (o) =T (o) = (v = Da.

Assume that 77'() has the representation

d
n 1 —
T () :a E Took?Y k.
k=1

Then
1
T ) = - Zrnﬁkﬂy*kJrl —(y—Day,
k=1
d—1
1 _ 1
= - ZM,HW "+ =rna = (v = Dan.
q = q

With P() = 0 this can be written in the form T"!(a) = %Zzzl Tni1 k7.
To prove the uniqueness, assume that there exists (b 1,...,bn.4) € 74 such

that T"(a) = £ 37470 by x7*. Then

d—1 d—1
d—1 —k d—1 —k
v E bnky " =1 E Ty -
k=0 k=0

Because of the minimality of P(z) we must have b, j = ry, . O

Lemma 2.2.5.5. Let o € Per(y). If 6 is a conjugate of y then

1 d—1 S 1 n—1 a 1 d
n k - k . —k

k=1

o0

1 — kid—l a
g2 === 5

k=0 k=0
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Proof. Since

n = 1 = —k n 1 : —k
Y la=—> apxy ") =TMa) == raay
Y 9.

~ solves the equation

144 -1 1

n - k _

z <5 E PRzt — . E z_k> = E oz F (2.8)
k=1

k=0 k=0

and so does any conjugate § of .
Suppose that [6] > 1. The set

{(rna,...,mna) | n €N}

is finite since o € Per(y). Let ¢ = sup{|rn.x||6| 7% | n € N,1 < k < d}. By (2.8)
d-1 —
1 0 — o
TEE SIS S
o k=0
Let n — oo. If [0] > 1 this yields
0 =
k
DY ) :
k=0

Theorem 2.2.5.3. If QN I, C Per(y) and v > /2 then v is either a Pisot or
a Salem number.

Proof. Let 0 be a root of P(z) = 0 with |§| > 1. We prove that 6 = «. This
implies that « is either a Pisot or a Salem number.

Let
vy—1 6-1 1 [v—=1] |0 —1]
h=2——7 — ——|, n*max{ ,—}, C = + .
ol § |6 o] 0]
Choose m such that n™ < %1;”%.
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This is possible if ¥ > /2. By Lemma 2.2.5.3 and 2.2.5.5

T—1xa 1 f—1a
- k k - k
a:—g —k:—g PRo" = —— %" (2.9)
7= 7%= 0 k:o(S
Similarly
Tl B 0 -1 B
) D = Y3 (2.10)
k k
T =7 0 k:05

(2.9) and (2.10) together imply

7—1(2+ Z ak-i;ﬁk>:5gl(2+ Z ak(;i;ﬁk)

v k=m+1 7 k=m+1

This implies that

-1 -1 = y—1 §—1 1 1

h=2 = - fk§12(\7\+\7)(\$\+\5—k\)
<4C i nk:4c”m+1<

k=m+1 -

Hence h =0 and v = 4. O

h.

Wl o

Lemma 2.2.5.6. Let v = 01,02,...,0q be the roots of P(z). For a € Q[y] let
T,k be defined by (2.6). For every n let

1 d
tni == Tnid; "
q k=1

Then o € Per(y) if and only if sup{|t,q| | n € N,;1 <i < d} < 0.

Proof. Assume « € Per(vy). It is clear that sup{|r, x| | n € N,;1 < k < d} is
finite since {r, } is a finite set. Hence sup{|t,;| | n € N,;1 <4 < d} is also
finite.

Assume that sup{|t, ;| | n € N,1 <i < d} < oo. Since

—1 —d
- 5t 57 T

p : : :
tn,d 5;1 s 5;(1 Tn.,d

and the non-singularity of the square matrix we have that {r, 1} is bounded.

Since 1y, € Z the set {(rp1,...,7n,q)} is finite. Hence there are numbers

N, M such that ryiare = ryg for any 1 < k < d. It then follows that

a € Per(y). O
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2.2. THE ONE-DIMENSIONAL CASE

Theorem 2.2.5.4. If v is a Pisot number then Per(y) = Q[y] N I,.

Proof. By Lemma 2.2.5.2 Per(y) C Q[y] N I,.
Take a € Q[y] N I, and let t,, ; be defined as in Lemma 2.2.5.6. By (2.7)

d—1 n
1
|tn,il < = E peloi" T + 16 — 1] E Ak
q k=0 k=1

Since |0;] < 1 for i > 2 it follows that ¢, ; is bounded for ¢ > 2. By the definition
tn1 = T"(«) is also bounded. Lemma 2.2.5.6 implies that o € Per(7). O

2.2.6 Distance to the singularity and return times

Pesin developed in [27] the theory of a class of piecewise hyperbolic maps with
singularities. The difficulties with this sort of systems lie in the presence of
the singularities. A curve in the unstable direction is uniformly stretched by
the map but can also be cut into pieces by the singularities. This can give the
result that the curve is mapped into small pieces that do not increase in length.
This phenomenon destroys the local unstable manifolds.

To handle these difficulties Pesin worked with the sets

{z | d(f"(x),S) > cA™",¥Vn > 0},
{z|d(f"(x),S) >cA\™",Vn >0},

where f is the map, S is the singularities and A is the stretch rate. If a point x
lies in these sets then this guarantees the existence of a local stable and unstable
manifold of at least length c. It is thus of interest to estimate the measure of
these sets. In this section we show that for the map 7 the measures of the
complement of these sets decrease exponentially with c.

In [38] Young considered a class of systems with some partial hyperbolicity.
She showed that if there is a positive measure set A with sufficiently good
hyperbolic properties and with exponential decay of the return time, i.e. the
measure of the set

{zeA|n=min{k >0]| fF(x) e A}}

decays exponentially with n, then this implies the existence of an SBR-measure
and exponential decay of correlations for Hélder continuous functions. We show
in this section that for the map 7', the above mentioned sets have this property.
This could be used to show exponential decay of correlations, but for this map
it is easier to show this with help of Fourier series. This is done is section 2.2.7.
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For each m € N and « > 0 define the sets

Ao = {z] inf v ds, (0"2,9) > 77"},

My, o = {z | inf y*"ds, (0”2, 7) <77}

Note that
A:?rz,a < Artb+1,av (2.11a)
M} 2 M, (2.11b)
Define the hit-time Ta+ o DY
min{n >1|c"z e A}l } if{n>1]|oc"ze Al }#0,
Tar (@) = ’ ; ’
ma 00 otherwise.

Lemma 2.2.6.1. For anym >1,n>0 and o > 0,
472+a _

— "
v —1

472+a -

o1’

plo (M o)) <

(o " (My)0)) <

Proof. Let,

B={ze¥,|infyl*"lds (6"2,7)

IN

7"
B; = U k+i Y0 Yt [ak] =15
k=0

where [2] denotes the smallest integer not less than z. Note that B = By.
We use that d,([S]) < v(y — 1)y~ ™ for any cylinder [S] of length m > 1 to
estimate the Lebesgue measure of B; as follows.

NE

v(Bi) < > v(k+ilv0 - Ymsfak]—1])

el
Il

0

< SO N(k+iyy(y — 1)y~ (titlaklem) < § yy2-ak-m
k=0 k=0

472+o¢ B
= ,.Ya_l,y m.
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It now follows that

The inclusion M,ﬁ)a C B yields the inequality for g in the theorem. The

inequality for v follows by B = By. O

For each m € N and a > 1 define the sets

Ao =1z i%fl Yy (0 "z, )

>
My o = {2 | nf y*dy, (07" 2, 7) <77}

and the hit-time

()= [ min{n21lo"ze Ay} i {n>1lo"ze A} #0,
Ao B =3 5o otherwise.

We can write M, , in the form

My = b Van] smal- (2.12)
n=1

Lemma 2.2.6.2. For anyn >0 and o > 1

-1 1—
,.Yafl_l/y ™.

Proof. This estimate follows by (2.12).
v(My o) <D vl Vraniem—1]) € D (y = 1yt Tenltm=n)
n=1 n=1

— —(a—1)n—m v 1 —m
<Y (y— 1yl < SR
n=1
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CHAPTER 2. RESTRICTION TO ONE DIMENSION

Lemma 2.2.6.3. The following inclusions hold

Proof. Take z € 0~ '(A,, ,). Then for y = oz € A, , it holds that

—m—an

dE.Y (Uﬁngv 1) > Y )
for some n > 1. This implies that
dZw (0,—7127 1) > ,}/—(7714-[0&)—0[717

for any n > 0. Hence z € A and so o~ 1(A,, ) C A

m+[al,a m,o m+[al,a
The other inclusions can be proved in a similar way.

O

Theorem 2.2.6.1. Given m € N and o > 0, the following estimates are valid.

y{& c M;Z)a | Ta a(g) = n} < 4,71—771—01(71—1),

v{z € Ay, o | Tas  (2) =1} < dylTmreln2) n>2
—1

vz e, | (2)=n} < 2omen

,yoz—l -1
Proof. Let z € M} ,. Then there exists an n > 0, such that

L =TTy " Tp—-1771"" '7m+|'an-\flxm+|'an"|+n Tt

If n > 0, then
0L = 122 Tn-17071 """ Ym+[an]—1Tm+[an]+n " € Mnt+a,a <
This shows that that o*z € M , for 0 < k < n. Hence for n >0
{ze Mo |mys (@ =141} Cubomn - Ymtfan]-1]
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2.2. THE ONE-DIMENSIONAL CASE

and so
vz € M, | Tys (2) =n+1} < N(n)(y—1)y -mlonl=n < gyl-m-an,

Let z € A, . In order that oz € M} ,, there must be an n > 1 such that

L =TTy " Tnp—-1771""" ’7m+|’o¢(n71)-\71xm+|'a(n71)-\+n .
Then 0%z € M, , for 1 <k < n. This implies that
{ze A .| TATga(&) =n+1} Culyor Ymtfam—1)]-1]
and
vz € Af . [Tys (@) =n+1} < N(n)(y — 1)yt let=bl
< 4,_)/1—771—(1(71—1)'

Finally, for any n > 1
{2 | Uk& S M/[;1Q7 1 S k S TL} g U [’7_] o "7|'aj"|+n+m71] = Mm—i—n,a-
=1

Hence

Y 1 27m7n.

Az €3y [y, =0} S v(Miminr0) < 27—

2.2.7 Decay of correlations

Since T' can be written in the forms 2 — vz +1 — 3 (mod 1). It is easy to
calculate the decay of correlations with help of Fourier series.

Theorem 2.2.7.1. Let A be the set of functions on L, representable with

Fourier series _
¢($) _ Zakelﬁkm7

kEZ

with the property that |ag| < k—A2 for some A depending on ¢. Then, for any
o, € A there exists a C such that

’/((MT”W d“‘/¢ dV/w | <Cy

holds for any n € N.
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CHAPTER 2. RESTRICTION TO ONE DIMENSION

Proof. Let,
= Z age’ 7T € A, op(x) = Zbkeiﬁlm cA
kEZ kEZ
With a change of variables we can write T as
T:00,1)O; z—~vyzx+a (mod 1),
were o = 1 — 3. Equivalently, we may define T" on the unit circle T.
T:TO; 2z 227,
where o =1 — 3. We can then write ¢ and v as
w) =Y a2, Pla) = b2t
kez keZ

with different aj and by, but with the property that |ax| < A/k? and |b| <
B/k?*. We can now rewrite [(¢) o T")idv as follows.

/(qboT” ¥ dr —/ Z akblewm” =Ry

k,lcZ
§ :/ akbleﬂﬁa'y — 1 1271'(7 k+l)tdt
k,l€Z

Assume that « is irrational. Then

o 1 ez?fr('y"k-i—l) -1

n _ z27ra'y
J(oor)war = Y aubee T E S o

k,IEZ
k20

This gives the following estimate of the correlations.

L/¢oT"¢dy—/¢dK/¢dy<:Z:MMM

sm( (v k—l—l))‘

kl€Z m(y*k +1)
k0
1
: vy bil.
> klzez |ak|| l||7T(’Ynk+l)| + klZGZ |ak|| l|
k0,1 <g7" k0l

The first sum is estimated by

sin(m(y"k + 1))
> bl R < 2 S bl

k,JEZ k, €L
k#0, |1 <3y
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2.2. THE ONE-DIMENSIONAL CASE

The second sum is estimated by

Yoo a0 Zﬁig 3 %2(1+/1 t‘zdt>

k€7 |k|>3~™ 370 |k|> 3~y
k#0,111> 54"

o0 16AB
< 4AB2 / t72dt = .
%,Yn_l ’}/n — 2

Hence there exists a C' such that

‘/(¢OT")¢dy_/¢dy/¢dV‘ <oy,

If ~ is rational then

g ei27r('y"k+l) -1

/ (0oT)pdv=" 3 a5 e+ ) aih

k€L k€L
Y k+IgZ " k+1#£0

The first sum is estimated by

o ei27‘r('y"k+l) -1

. 1

akblez%ra'y S p— |ak||bl|7
kJZGZ ’L27T(’Ynk + l) k,lZGZ |7T(7nk + l)'
Rry kA0, < 37"

and the estimates of the correlations are done similarly as in the irrational
case. O
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Chapter 3

Absolutely continuous invariant
measure for a class of piecewise
affine hyperbolic endomorphisms

This chapter is based on the following article.

T. Persson, Absolutely continuous invariant measure for a class of piece-
wise affine hyperbolic endomorphisms, (to appear in Discrete Contin.
Dyn. Syst.)

Abstract

We consider a class of non invertible piecewise affine hyperbolic endomorphisms
with singularities and show that for an open set of parameters there exists
almost surely an absolutely continuous invariant measure. Also, exponential
decay of correlations is proved for Holder continuous functions.

3.1 Introduction

In [1], Alexander and Yorke considered a one parameter class of maps called the
fat baker’s transformations. These maps are piecewise affine maps of the square
with one expanding and one contracting direction. Their results together with
the result of Solomyak in [35], imply that for an open set of parameters, almost
surely there is an absolutely continuous invariant measure. The fat baker’s
transformations are a special case of the Belykh map, introduced in [5] by
Belykh. Schmeling and Troubetzkoy considered in [33] the Belykh map for a
wider range of parameters. It was further investigated in [32].

In this article we consider a three parameter class of endomorphisms similar
to the Belykh map. In fact, this class has a non empty intersection with the
class of Belykh maps considered in [33] and [32] and it contains the fat baker’s
transformations. We show that there is an open set of parameters for which
there is almost surely an absolutely continuous invariant measure.

Similar results in two dimensions, but in the case of expanding maps, were
independently obtained by Buzzi in [3] and Tsujii in [36]. The corresponding
results for arbitrary dimension are in [2] and [37].

43



CHAPTER 3. ABSOLUTELY CONTINUOUS INVARIANT MEASURE

In [38] Young introduced a method using a tower construction for proving
exponential decay of correlations for a wide range of hyperbolic maps. Among
other examples in the article she uses the method to prove exponential decay
of correlations for a class of piecewise C? maps in two dimensions. Buzzi
and Keller proved in [4] that a class of piecewise affine and expanding maps
have exponential decay of correlations. In Section 3.5 the method of Young is
adopted to show exponential decay of correlations for our class of maps.

3.2 The class of endomorphisms

Put Q = [~1,1]* and S = ([~1,0] x {~r}) U ({0} x [=|s],[&[]) U ([0,1] x {x}).
Let Q1 and @_1 be the upper respectively the lower connected component of
the set Q\ S.

Consider the class of maps f: Q\ S — @ defined by

f(““"'”)‘{ Oa—(L=N), w+(—1) if(ry)€Qu.
1

where the parameters are 5 < A <1, -1 <k <land 1 <~y <

A See

Figure 3.1.

7 A1 7
_ 7 N
o o \
7 7 NN 7
. DR W g
7 7
7 N N
N BRI 7
\ \ W\
R W N 7
N N N 7
A\ ol D
Figure 3.1: The map f for v = %, A= 1% and kK = %.

The set S is the discontinuity set. Let S, = {0} x [—|x],|x|] be its ver-
tical component and S, = ([—1,0] x {—x}) U ([0,1] x {k}) be its horizontal
component.

44



3.2. THE CLASS OF ENDOMORPHISMS

With a little more work the method of this paper can be used for maps
with singularity sets with more than one jump. The only difficulty is to show
that the complete backward orbit of the vertical components of the singularity
consists of finitely many pieces.

The main difficulty in working with the map f is that it is not invertible.
To handle this problem we lift the map f to an invertible map f on the three
dimensional cube. The idea is to prove the desired result for f and then project
the result on f. This idea has previously been used in [33] and [32].

The map f is defined as follows. Put Q = [~1,1]* and Q; = Q; x [-1,1],
i=—1,1. Deﬁnef:@l UQ,l —>Q by

f(x1, @2, 2 )_{ (f(@1,2), 723 + (L= 7)),  if (@1,22,25) € Qla
b (f($11$2)17x3_(1_7—)), if (1'1,.1'2,1'3) EQ—la

where 7 is chosen so small that f is invertible on its image, that is 7 < % See
Figure 3.2. Denote by 7 the projection from Q to @, defined by m(x1, X2, x3) =
(z1,22).

Figure 3.2: The map f for v = %, A= %, K = % and 7 = %.
Given a sequence i € ¥y = {—1, 1}, define the cylinder set
Ry™N 7y k) = {2 € Q| 1, .(3) € Qi in=—m,—m+1,... —l},

where 0 <1 < m € N. We will write R;”()\,'y, k) for Rg’m(/\,ﬂy, k). Let
Samw ={i € S | RY™ (X7, 5) # 0 VI, m € Z}
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CHAPTER 3. ABSOLUTELY CONTINUOUS INVARIANT MEASURE

be the coding of the system fAmK. Denote by o the left shift.

The set R R A
AN%H = ﬂ fﬁ%fi(@)
nez

is the attractor of fkm. It is easy to see that the map py .. @ Zayw — @
defined by px .~ : & — (1,22, x3) where

1— )=,
T = T A",

n=1
[eS)
_ 07— 1 - oon
Ty = —— n?y ,
v n=0
[e'S)
1—7 . "
I3 = E L_nT
T
n=1

SAatiSﬁes kaw(?@) - f&%ﬁ(/’)\mrﬂ(i)) for all 1 € Xy 5x and pxq,x(Br4.0) =
Ay~ Hence Ay 5 . is the set

R _ J I
A~y = {(361,332,333) | di€ X n:x1 = — i A",
n=1
1 1—7 &
To = r=- Zin”y", T3 = ZznT”}
v n=0 T n=1

Let ¥ denote the normalised Lebesgue measure on Q and for n € N define
Uy = o f7". The sequence of measures

converges weakly to the SBR-measure, fispr. In [33] it is shown that the
measure Uspr = fispr 07 ' is the SBR-measure of f. It has the property that
the conditional measures on the unstable manifolds are absolutely continuous
with respect to Lebesgue measure.

The map f satisfies the conditions (H1), (H5)-(H9) in [27] and this im-
plies that there exists C,q > 0 such that v(f~"U(S,¢)) < Ce? for all n > 0,
where U(S, €) denotes the e-neighborhood of S. This implies that puspr(A) =
fiser(A) = 1. Tn [27] it is also shown that hispr = Puspr = 10g7.

Let 2 € Q. We define the local stable manifold W®(z) of « to be the largest

connected subset of {y € Q | d(f"(z), f"(y)) — 0, n — oo} containing x. If
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3.3. ABSOLUTELY CONTINUOUS INVARIANT MEASURE

the set {y € W*(z) | d(z,y) < d} is a connected curve of length 26 then define
W;i(x) ={y € W) | d(z,y) < 0} to be the stable manifold of z with length
2§. Otherwise we say that W§(x) does not exist.

Since f is not invertible we can not define the local unstable manifold of x
in the usual way. Let

Dy ={z|d(f"(x),S) >0y " ¥Yn > 0}.

This set has positive Lebesgue measure if § is taken sufficiently small, see [27].

It is even true that -
MSBR (U Dl1> =1.

=1

If x = (x1,22) € Dy then for any y = (y1,y2) with y; = x1 and |22 —y2| < J we
have d(f~"™(x), f~"(y)) < oy~ ™ for all n > 0. We can thus define the unstable
manifold of & = (21, 22) € Dy of length ¢ to be the set

Wi'(@) = {y = (y1,92) [ y1 = 21, |22 — 2| <6}
If z ¢ Dy then we say that Wj'(z) does not exist.

3.3 Absolutely continuous invariant measure

We will prove the following theorem.

Theorem 3.3.0.2. There is an open ball P C {\,~,x} such that uspr < v
for a.e. (\,7y,k) € P.

There are parameters in the set {y\ > 1, x = 0} for which the SBR-~
measure is not absolutely continuous. In [1], Alexander and Yorke point out
that if & = 0, v = 2 and A~ ! is a Pisot number, then the SBR-measure is
singular with respect to Lebesgue measure. If yA < 1 then there can not
be any absolutely continuous invariant measure pu, since then the Lebesgue
measure of f™(Q) converges to zero but u(f™(Q)) =1 by invariance.

3.4 Proof of the theorem

To prove Theorem 3.3.0.2 the method of Peres and Solomyak in [26] will be
used. This is a simplified version of the method used by Solomyak in [35]. Peres
and Solomyak showed the almost surely absolutely continuity of a Bernoulli
convolution when the associated shift space is the full two-shift 5. In this
proof we have to work with the more restricted shift space Xy -

The following Lemma from [35] will be used in the proof of Theorem 3.3.0.2.
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CHAPTER 3. ABSOLUTELY CONTINUOUS INVARIANT MEASURE

Lemma 3.4.0.1. Lete > 0 be fized and I C (y~'+¢,0.64). There is a constant
c such that for any k € N and any {a;}3°, € {—1,0,1}" the following estimate
s valid.

~/IX{)‘H>"“+E$;1¢+1 a; Ni|<r} < c(/y_l + E)_kr'

Let v, & be fixed and I C (0.5,0.64) any interval such that {y} xIx{xk} C P,
where the set P will be chosen later.
Let B.(t) = [t —r,t + | and let

A8,z
A,s,x PR HMsBT (BT(t))
D(pgii »t) = lim inf =SERo——

denote the lower derivative of the measure ugg’g the conditional measure of

pdpgr With respect to the local stable manifold W*(z). The partition of @ into
local stable manifolds is clearly measurable so the conditional measures exist
and we can use them as follows. We want to prove that for a.e. A there is a set
Q) such that pdpg(2)) > 0 and

A8, A8,
; D(p3ii lox s v)dpssi (y) < oo (3.1)
A

holds for a.e. x. This implies that the measure ,ug‘]’;g restricted to the set
Q) is absolutely continuous for a.e. x. Since the conditional measures on the
unstable manifolds are absolutely continuous with respect to Lebesgue measure,
this implies that ;L§}3R|QA is absolutely continuous with respect to Lebesgue
measure. Since pdpg (2)) > 0, ergodicity then implies that this also holds for
the measure udpg.

Fatou’s lemma implies that in order to prove (3.1) it suffices to prove that

. . 1 S,T S,T
lim inf — /Q uég’R (N Br(y))dﬂgék (y) < oo.
A

r—o T

We may rewrite this as

r—0 7r

I 1 S, T S, T
lim inf — /Q /Q X{|y17Z1\<r}dM§i3’R (z)dug‘BR (y) < 0. (3.2)
A A

We will choose a class of functions x : I — @ such that z(\) € 2, and prove
that the following estimate is valid

r—0 71

L. 1 s,z (A A8,z (A
hmlnf—/l/Q /Q X{\yrZ1\<r}dNSBR( )(z)duSBR( )(y)d)\ < 0. (3.3)
A A
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y=1.858, A=0.54, k=0

0.8

0.6

0.4

Figure 3.3: Some inverse images of S,.

This then implies that uspr < v for a.e. A € I. Instead of proving (3.3) we
use that ugpr = fispr © 7+ and prove the equivalent condition

! AS,E(A) Ay 1 AN E(N) /A
hmmf_/[/@ /Q X{|91*21|<T}d/’LSBR( )(z)duSBR( )(y)d)\ < 0. (3.4)
A A

r—0 71

To prove (3.4) the symbolic coding X ., will be used. Since we have v and
k fixed and vary A it is the dynamics taking place in the horizontal direction
that is crucial. It is hence the dynamical behaviour of the vertical component,
of the singularity S, that is important. Below, we will choose a set P in which
S, behaves as if it does not exist.

One checks with a numerical calculation that for v = 1.858, A = 0.54 and
k = 0 there are only finitely many points in the complete backward orbit of
the vertical piece of the singularity, S,. Numerics are only used to see this in
an easy way. It does not influence on the rigorousity of the proof. In this case,
when x = 0, we have S, = {0}. Figure 3.3 and 3.4 illustrate this by showing
the two possible paths of {0} starting in @1. The points in the backward orbit
of S, are marked with X in the figures. The dashed lines are the border of
the sets f(Q1) and f(Q-_1). The arrows shows how the points are mapped by
f~1. Each path drawn in the figures terminates after finitely many steps, after
which there are no more inverse images.
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Y=1.858, A=0.54, k=0

Figure 3.4: Yet some inverse images of S.

The numerical evaluations of the points are in Table 3.1 and Table 3.2.
Comparing these values with

f(Q) = [1—2)1x[1—7,1] = [~0.08,1] x [—0.858,1],
fQ-) = [-1L,2x—1]x[-1,y=1] = [-1,0.08] x [-1,0.858],

shows that there are no more points in the backward orbit of S, and that these
points are bounded away from the set f(S). This allow us to draw the following
conclusion. There is an open neighborhood U of S, such that f=N(U) = () for
N sufficiently large.

By the continuous dependence on the parameters of the finitely many points
in the backward orbit of Sy, there exists an open ball P C {v, A, s} around
(v, A\, k) = (1.858,0.54,0) such that the backward orbit of S, behaves in the
same way for any (v,\, k) € P in the following sense. For any (y,\, k) € P
the backward orbit of S, contains finitely many pieces, each bounded away
from f(5), and there are uniform numbers o > 0 and N > 0 such that U =
([—a, a] x [—|k], |x[]) satisfies f~N(U) = (). This implies that U N A, 5, = 0
for any (v, \, k) € P.

Recall that we have the parameters v and « fixed and [ is an interval such
that {y} x I x {k} C P. Partition I into sub intervals {I;}}’_;, such that

|| < %a. This can be done so that p < %lll + 1. Foreacht=1,...,pfixa
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numerical
iterate | coordinates values contained in
BE b £(Q1) N Q)
4 j O f@-0 £(@)
- %1;:1; 0T Qo0 £(Qu)
3 } M99 g 0 @)
-4 ::?:A D r@unr@oy
s I“IA 096 pQ) (@)
6 i: o\ S@)
-7 _:zi_Z%LZj:_; ot | F@-n @)
s | e |5 e
o | e | e
0 | S T | 0% s s@)
| i [ 08 o gy u @)

ol

Table 3.1: The points in Figure 3.3.
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numerical
iterate || coordinates | values contained in
0 0
0 0 9 f(@1) N f(Q-1)
ESED
B - —0.8519
1 —1’:1")’ 04618 f(Q*l) \ f(Ql)
—1420—)\2
—e —0.7257
-2 71+3;yf'yz —0.2132 f(Q—l) \ f(Ql)
—1422=)\°
— s —0.4919
3| g | o | J@0V@)
— 1422\
— —0.05916
_4 _1+’3Z_’Y4 _07721 f(Ql) m f(Q*l)
—1420=\°
— x5 0.7423
-5 _1_;,_’33,_75 _08773 Q \ (f(Ql) U f(Q—l))

Table 3.2: The points in Figure 3.4.

A¢ € I. The following lemma will provide sufficient control when changing the
parameter \.

Lemma 3.4.0.2. For any t and any A\, X' € I, the symbolic spaces X - . and
Y\ ke coincide.

Proof. A point & = (x1,22,23) € Q lies in /A\At if and only if there is a sequence
{in tnez such that

o0 oo oo

1—A _ -1 . 1—7 .
Tl = At ‘ Zlan?a T2 = ’Y—erﬁ n7 xr3 = p Z’L,n’?'n

n=1 v n=0 n=1

and f/’\’t (2) € Qin for all n € Z. Let & = (z1,22,23) € A,\t. We show that for
any X € I, there is a point &’ = (), 25, x4) € Ay such that the corresponding
sequence {iy, },ez satisfies 4;, = 4, for all n € Z. In this way we define a map
Exov Ay, = Ay by 2y, v 2 — d
It suffices to show that the point &' = (2, 2}, %) defined by
oo o0

1-XN -1 1-
P= g D) =T Y i dh= Y it

n=1 n=0 n=1

satisfies fJ(#') € Q;,, for all n € Z. Then this implies that &’ € Ay. A change
of A has only influence on the second coordinate of f(i) Since the local stable
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manifolds are parallel and oriented in the direction of the second coordinate
it suffices to check that when changing A, the second coordinate never move
over the vertical discontinuity S,. We do this by an estimate of the derivative

dd/\ (1)\)‘ S i A" ) A simple calculation gives that

oo

u Z i\t

n=1

LYEL | B

n=0

12 i inA"
n=0

1 « 14+ A
<= Y A"+ < 15
_)\2; z_: TNaoy o
if £ <A< 2. This implies that

dd)\ (% Z -

|z — 2] < sup [\t — N| < 15| < a.

")

This means that 2’ does not cross the vertical piece of the singularity and hence
stays on the same side of the singularity as . Similarly one shows that any
iterate fJ (i) of stays on the same side of the singularity as fA (Z). O

Remark. The partition of I into subintervals is arbitrary so in fact the sym-
bolic spaces coincide for any \, N € 1.

We have shown that the symbolic space X , . does not change when A
varies. We also need to estimate how the measure ﬂé‘BR changes.

Lemma 3.4.0.3. There is a constant ¢y > 0 such that for any t and any
NN e

—1AX ~ A

o1 fighr(Cr,) < 3pr(Ch) < c1figpr(Cx,), (3.5)

for any cylinder set of the form Cy = gligigs1 - inln = ﬂ?:k f;j(Qij), k<n.

Proof. Since there are only finitely many inverse images of the set S, all other
inverse images of the singularity will consist of a horizontal line. As A varies over
I these horizontal lines are not changed, only the inverse images of S, changes.
There is thus a constant c1, independent of ¢, such that for any A € I; and any
cylinder set of the form Cy\ = g[igirt1 - inln = ﬂ;l:k f)\_] (Q”) 0<k<nwe
have
e o(Cy,) < 0(Cy) < e19(Cy,).

Especially cflﬁ(f;tm(C,\t)) < D(fy™(Cy)) < clﬁ(f;tm(C,\t)) for any m € N
and so

Z1aA N A
¢ 3R (Cr,) < A3pr(C) < c1ighr (Ch,),
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for any cylinder set of the form Cy\ = p[ixiri1 - in|n = ﬂ?:k f;J(QzJ) with
k <n. O

Remark. Lemma 3.4.0.3 is also valid for the conditional measures on the
stable manifold.

Since the entropy of the conditional measures are a.s. equal that of the
measure, the Shannon-McMillan-Breiman theorem implies that given € > 0,
there exists a number ng(\, &,¢) such that

Ns@ ([ aASE P (s - - i

i ({91357 (RL(@) < 775079, g > o\, ) }) > 1 -
Lusin’s Theorem implies that there is a number n;(g) and a set Qo,,\t such that
ni(e) > no(A¢, Z,€) when Z € Qg 5, and ﬂgﬁR(QO,At) >1—e. We put

M, = {g € QO,M N Ws(i) | & € Qo,», and
RS (RL(E) < 50 g > m(e)}

Then 35g(Q,) > 1 — 2¢.
Put O, = E)mk(flt) for A € I;. By Lemma 3.4.0.3 it follows that if § € 0y
then
HA DY (7 —qlog(v—e¢)
fiser (13 (9)) < cie , ¢ >ni(e)

and
13pr () > e ' idhr () > ¢ ' (1 — 2¢).

Take a Ao € I and &y, € Q,. Define &(\o) = &y, and for A € I define #()\)
so that p}lvn(ﬁz()\)) = p/(olﬁﬁ(i:(/\o)). Then 7 is continuous. By Lemma 3.4.0.1

AASEN) a3 A NS E(N) /A
TLt,k:// N / N X{Iyrzl|<r}dNSBR( )(Z)dNSBR( )(?J)d)‘
I Q)\I’_WREI(X) Q,\ﬂRfﬁl(k)

2
51 / / R / R X{Ex, A @)1 —Ex, 2 ()<}
1 JOx,NRE () JOx,NRE (0)

S E) [ 2y 1 ~ASE(Ae) /A
dNSBR( )(Z)dMSBR( )(?J)d)‘

IN

2
_01/ . / . /X{\Ext,x(.@)l*Ext,A(f)l\<T}
Qa NRY (Ae) S, NRE (M) /T,

s a3 AAESE)
d)‘dNSBR( )(Z)dNSBR( )(y)
_ ko AnsEOe) A A, 2(0e) /B
<c(v ' +e) krMSBR( )(RZ()\t))NSBR( )(qu()‘t))
— — —kAAGS,E(A) D
<ear(y7 4 2) Ry — &) agnT M (RE ().
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Since

>>
H
I

UURO R )
we can proceed as follows

A8, (A ANS,T(A
// / Xl —er <y d3mn ™ (2)dadin ™ (y)dx
1J0y SOy

> Tick
i

S esr(v o)y — o) FagnT M (RE (M)

i

A I
M~ I
M I0Me 11

~
Il
-

~
Il
-

P
car(y 4+ e) Ry —e)TF < Z c4T = C5T

NE

~
I
—
>
Il
=)

Hence

liminf — //Q / X{lyr— Z1‘<T}du5§g()‘)( )dgg;(”( )dA < ¢s. (3.6)
A

r—0 71

This is independent of the choice of Z : I — @ so this proves Theorem 3.3.0.2.
O

3.5 Decay of correlations
Consider the following class of Holder continuous functions defined on @

Hy={0: Q=R [3C: [¢(x) - d(y)| < Cd(x,y)" Vz,y € Q}.

We will show that f has exponential decay of correlations for functions in H,,.
More precisely, we will show the following theorem.

Theorem 3.5.0.3. Let (\,v,k) € P. There is a 7 = 7(n) < 1 such that if
¢,v € H,) then there is a C = C(¢, ) such that

< O™

‘/(¢O IX k)Yduser — /fbdMSBR/U)dMSBR

In [38], Young introduces a general scheme for proving exponential decay
of correlations. The method is to find a set © with nice hyperbolic properties
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CHAPTER 3. ABSOLUTELY CONTINUOUS INVARIANT MEASURE

and a hyperbolic product structure;

o=(U)n(y-)

where I'® and T are collections of stable and unstable curves respectively, and
a return time R : © — N such that f5()(.): © — ©.

For w € T'" let v,, denote the conditional measure of the Lebesgue measure
v with respect to the curve w. If the conditions

Vy(wN®) >0, for each w e I'™
v{r € ©| R(z) > n} < CO", for some C and 6 < 1,
(™, Q) is ergodic for each n > 0,

and some other regularity conditions are satisfied then this is sufficient to con-
clude exponential decay of correlations for Hélder continuous functions.

Among other examples in [38], Young shows how to find the set © and the
return time R for a class of piecewise C? hyperbolic maps in two dimensions.
This class of maps is different from our class but still the method can be used
to construct © and R. We give the construction of © and R below.

The fact that (A,7,x) € P makes the construction of © easier. This is
because there is a uniform estimate of the length of the local stable manifolds
for these parameters. From Section 3.4 we conclude that W2 (z) exists for all
z € A. Theorem 3.5.0.3 is true also if (\,7,x) € P but then we have to work
with the set

Df = {w | d(f" (@), S) > 5y~ ¥n = 0},
which would have made the construction of © somewhat more technical.

We will now proceed with the construction of ® and R. It is important to
gather enough expansion in the unstable direction. For this purpose we take
an N € N such that vV > e

Choose § > 0 so that for any curve w in the unstable direction with length
not greater than § the set fV(w) consists of at most two connected components.
This can be done since we can choose § to be the smallest distance between
the lines in the set UY_, f~"(Sy).

Take 0 < 6o < %(5 to be so small that the set

Asy = {z € © | Wy () exists}

has positive Lebesgue measure. For any x € As;, we define Q(z) = W (z).
Put

()
()

W) [y € QAa)},
{Wh(z) | z € As,, WH(z)N W #£ 0, YIV® € T%(x)}.
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3.5. DECAY OF CORRELATIONS

We let ©(x) be the hyperbolic set with the product structure defined by I'*(z)
and T (x).

For any « € As, we let Q(x) be the smallest open rectangle containing
O(x). The open sets {Q(7)}zea,, form an open covering of As,. Since As, is
compact we can select a finite subcover {Q(x;)}7_;. The sets {O(z;)}1_; will
then cover As,. We will write ©; for O(z;).

We define the return time R to UO; on a subset of the sets ©;. Let ¢ be
fixed. We iterate the map f" and consider the connected components of the
set (/)" (@) |

We construct for each n € N a partition P, of Q(z;)\{R < n} into connected
curves with the property that if w € P! then (fV)"(w) is a connected curve of
length < 66p.

Let P¢ be the trivial partition, Pt = {Q(z;)}. Assume that P! _; is defined.
Let w € Pi_;. Since (fV)" !(w) is a connected curve of length < 65¢ the set
(fV)™(w) consists of at most two connected components. Let {w)}j=12 be the
corresponding components of w. If (fV)"(w;) has length < 6 then we put
w; in PL. If however (fV)"(w;) has length > 6y then there is a k such that
(fN)™(w;) crosses Q(xy) with segments of length > &y sticking out on each
side of Q(zx). Since |(fV)"(w;)| > 659 we have (fV)"(w;) € T'(x) and this
implies that (f)"(w;)NQ(zx) C O. We define R = n on w;N(fN)""(0y). In
this way we get two pieces of length > dy on each side of (fV)"(w; \ {R = n}).
We partition w\ {R = n} into {w; ,}7, such that 6y < (f¥)"(w;x) < 6y and
put {w;} in PL.

Finally, if w € P,,—1 then we define R = n on the set

(Y 0y

wSETS (w) whers

where I'*(w) is the set of local stable manifolds in I"*(x;) which has non-empty

intersection with w. The uniform estimate on the length of ws € I'® implies
that (fV)"(S,) C O.

Lemma 3.5.0.4. Let Q = Q(x;) for some x;. There exists C > 0 and 61 < 1
such that
I/Q{R > n} < 09?

Proof. Let T1(zx) be the smallest n > 1 such that if w € P,,_; is the component
containing x then |(fV)"(w)| > 6do. If there is no such n then we say that
T1(z) is not defined. Note that T3 < R

Suppose that Ty (z) has been defined. Then we define Tjq1(x) to be the
smallest n > Ty () such that if w € P,_1 is the component containing 2 then
|(FV)™(w)] > 6dg. Let Tp, = {T}, is defined}.
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CHAPTER 3. ABSOLUTELY CONTINUOUS INVARIANT MEASURE

Each time a segment is stretched to a length over 6y a piece of length 24
returns to one of the sets ©;. This implies that if w € P,,_1 and Ti|, = n then
|(fV)™(w)| < ¥N66¢ and so

VQ(wﬂ{Rle}) < 200 _ 1
149} (w) 650")/N 3’}/N'
Hence
vo(wnN{R>T1}) 1
<1l——x =0,
1Z9) (w) 3’}/N 2
This means that ZZE%; < 3. Similarly we get
vQ(T+1)
—————" < bs.
va(Tk) :

This implies that vq (7;@) < 9]5 and I/Q{R > Tk} < 9]5
For any k
{R>n} C{Ty >n}U{Tr <n< R}. (3.7)

There is a number M such that if w € P,_1 then w\ {R = n} can be
covered by less than M elements from P,,.

Let K, = {k;}}_, where ky < ko < --- < k,, with k, > n and k,_1 < n.
Consider the set Ax, = {T; = ki, i = 1,2,...,p}. It can be covered by less
than 2%» MP elements from Py, Since the length of €2 is 269 we have

vo(Agk,) <

kp \fp Ny—=kp k
28 M 650(")/ ) _ 3Mp(l) p.
260 N

If p < n then by Stirling’s formula

n B nnJr%efn _ e Pnpp (1 _ B)p—n
4 pl(n — p)n—Prae—ntp p! n

and so if € is small enough

[en] n [en] e—Ppp N
Z(p) SClZ p! (1_5)

p=0 p=0
len] /n p
2(1—c¢ n
<Ci(1—¢)™" E (2 m ) <C(1—g) e
p=0 '
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e €
Choose ¢ so small that 65 = €<= 2 < 1 This can be done because of the

(1—e)y N
choice of N. Then

[en] [en] 00
Tl > nh < 3 i) < 3 (1) Y- ()"
p=1

p=0 K, kp=n 7
1—¢ n
e~ M¢®2
<Oy ——— = (0%,
- 2((1—6)7N> o

We use (3.7) to approximate vo{R > n}. We choose k = en and get
I/Q{R > n} < Czeg + 9;” < 09? O

We have proved that the return time R decays exponentially. This is not
quite what we want. R is the time needed for a piece of ©; to return to some
0O;, but we would need R to be the return time from ©; to ©;. Arguing as
in [38], we can choose O, = ©; for some ¢ such that the return time R, of
O, satisfies v, {R > n} < CO" for some # < 1. This is sufficient to conclude
Theorem 3.5.0.3. Note that the SBR-measure constructed with the method in
[38] is the same measure as the SBR-measure constructed in Section 3.2.
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