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Summary in Swedish

Fyllotaxi är läran om blad, löv, och andra växtorgans placering. Ordet fyl-
lotaxi har sitt ursprung i de grekiska orden för ’blad’ och ’organisation’, och
mönsterbildning i växter har studerats sedan antiken. Mönster i naturen har
alltid intresserat människan och fantasieggande kopplingar till matematiken gör
sig ständigt till känna. I m̊anga växter bildar växtorgan mönster av spiraler
som är nära sammankopplade med den s̊a kallade Fibonacci-serien. Fibonacci-
serien är en serie av heltal där varje tal i serien är summan av de tv̊a föreg̊aende
talen (1, 1, 2, 3, 5, 8, 13, 21, o.s.v.). Kvoten mellan tv̊a efterföljande tal i serien
g̊ar mot vad som brukar kallas för det gyllene snittet. När ett nytt växtorgan
skapas bildar det tillsammans med det föreg̊aende organet en vinkel. Vinkeln
är ofta lika med 137,5◦ – kallad den gyllene vinkeln – vilken är nära besläktad
med det gyllene snittet. När växten skapar nya organ skapas en spiral, men det
mänskliga ögat uppfattar även att organen bildar ett antal spiraler i b̊ade mot-
och medurs riktning. Räknar man antalet spiraler i vardera riktning är dessa
tv̊a tal – för m̊anga växter – lika med tv̊a efterföljande tal i Fibonacci-serien.

Trots att människan har studerat mönsterbildning i växter i flera tusen år
kommer den större delen av v̊ar först̊aelse för de underliggande biologiska pro-
cesserna fr̊an forskning utförd under de senaste tre-fyra decennierna. Ny teknik
har skapat möjligheter att undersöka utvecklingen fr̊an frö till fullvuxen växt.
Konfokalmikroskopi har gjort det möjligt att skapa tredimensionella modeller
av växter som kan studeras och användas vid modellering och datorsimulering-
ar. Med hjälp av biologiska markörer är det även möjligt att följa geners och
proteiners uttryck i tid och rum.

I den här avhandlingen använder vi modeller för att studera olika aspekter
av mönsterbildning i skottet av växten Arabidopsis thaliana – eller backtrav
som är växtens svenska namn. I de fem artiklar som ing̊ar i avhandlingen tit-
tar vi närmare p̊a ett självreglerande gennätverk i skottet, anisotropisk tillväxt
av celler, celldelning, samt intercellulär transport av växthormonet auxin. I
nära samarbete med biologer utvecklar vi matematiska modeller som uttrycks
i form av ordinära differentialekvationer. Vi använder sedan analytiska, nume-
riska, och statistiska metoder för att analysera modellerna. Analyserna leder
till förutsägelser som kan testas i nya experiment.

I avhandlingen st̊ar Arabidopsis thaliana i fokus. Arabidopsis är p̊a grund av
sin korta livscykel och modesta storlek en av de mest studerade modelorganis-
merna. Även vi väljer att studera Arabidopsis, men resultaten som presenteras
i den här avhandlingen är även applicerbara p̊a andra växter. Än är v̊ara studi-
er begränsade till grundforskning, men förhoppningar finns att forskningen ska
leda till praktiska tillämpningar inom jordbruket och – den för Sverige viktiga
– skogsindustrin.
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Introduction

The study of patterns in plants is a fascinating field as series, patterns, and
relations known from physics and mathematics are found in plants. Therefore
the field has attracted – and still attracts – researchers from various disciplines
including, but not limited to plant biology. The study of patterns in plants
has a long history and dates back to classical antiquity. Still, a bulk of the
understanding about the development of patterns in plants comes from scien-
tific work done in the last thirty or forty years, where modern experimental
techniques have made it possible to study the development of plants in new
ways. Confocal microscopy can generate three-dimensional stacks of images of
plants and series of stacks make it possible to follow the development in time.
In combination with biological markers it is now also possible to track gene
and protein expression patterns during development.

This thesis is part of a field that is often referred to as systems biology.
Systems biology is an interdisciplinary field with focus on complex dynamics in
biological systems. With a systems approach low-level details are of less inter-
est, instead effort is made to understand system-wide dynamics of interactions
between different parts of the system. A complete list of all genes present in
the genome of a plant – even together with the knowledge of all interactions
between genes – is not sufficient for a full understanding of the development
from a seedling to an adult plant. With a systems approach experiments are
used to identify key components of the system and the interactions between
them. This information is used to build models, which are capable of mak-
ing predictions that can be tested in experiments. This thesis includes several
examples of this process.

The thale cress Arabidopsis thaliana is the Drosophila melanogaster or Es-
cherichia coli of plant biology and was the first plant species to have its full
genome sequenced. The adult plant is about 20-25 cm tall and can complete
its life cycle in six weeks. These properties make this plant a suitable model
organism although there is little agricultural use for the plant itself. The focus
of this thesis is the spiral patterns of Arabidopsis thaliana that are initiated
at the shoot apical meristem. Still, the discussion is not limited to the study
of the patterns of Arabidopsis. What is presented in this thesis is most likely
to be true for other plants and the tools used are generally useful for studying
other biological or non-biological systems.
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Plant phyllotaxis and the Fibonacci series. Plant phyllotaxis is the ar-
rangement of leaves, flowers, and other plant organs. The most famous type
of phyllotactic patterns is Fibonacci phyllotaxis. In the Fibonacci series each
element is the sum of the two previous elements (1, 1, 2, 3, 5, 8, 13, 21, and
so on). The ratio between two consecutive elements converges and the limit is
called the golden ratio. New plant organs are initiated at the tip of the plant
shoot and are initiated with a fairly constant angle between consecutive organs.
What is interesting is that this angle is in many cases close to the golden angle,
closely related to the golden ratio.

As new organs are initiated a spiral known as the genetic spiral is created.
Although consecutively initiated organs are located rather far away from each
other, every organ is located close to two organs above and two organs below
itself. The human eye tends to follow these neighbouring organs in spirals
going clockwise and anti-clockwise around the stem. These spirals are called
parastichies. If the number of clockwise and anti-clockwise parastichies are
counted then these numbers are for many plants two consecutive elements in the
Fibonacci series. See Figure 1 for a computer-generated example of Fibonacci
phyllotaxis.

A fundamental question is what gives rise to Fibonacci phyllotaxis in plants.
It has been shown that the combination of a growing apex and a spacing mecha-
nism for new primordia is sufficient for Fibonacci phyllotaxis (Mitchison 1977).
Douady and Couder illustrated this with an elegant experiment (Douady and
Couder 1992). Charged oil-drops were placed in a magnetic field on a horizon-
tal dish. The magnetic field made the oil-drops move radially outwards, which
would correspond to a growing apex in a plant. The oil-drops also repelled each
other, corresponding to a spacing mechanism of new plant organs. By tuning
the strength of the magnetic field and the periodicity of adding new oil-drops
Douady and Couder were able to produce patterns equivalent to Fibonacci
phyllotaxis.

Motivation. As stated above, two “ingredients” – a growing apex and a spac-
ing mechanism for new primordia – have been identified and in combination
they result in proper phyllotactic patterns. The five papers of this thesis all
study different aspects of these two ingredients. Paper I is about stem cells,
which are tied to both tissue growth and initiation of new primordia. Paper II,
Paper III, and Paper IV are all studies of the growth of the epidermal layer
of the shoot apical meristem. Paper V is mainly related to a mechanism for
initiating new primordia, but the results also have implications for the growth
of the tissue. See Figure 2 for a diagram showing how the different projects
are related to phyllotactic patterns.



3

Figure 1: Computer-generated example of Fibonacci phyllotaxis. There are 34
clockwise and 55 anti-clockwise spirals in the pattern. These two numbers are
consecutive elements in the Fibonacci series.
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Cell division Anisotropic growth
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Auxin transport

Spacing mechanism
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Figure 2: Diagram showing how the projects presented in this thesis are related
to phyllotactic patterns in Arabidopsis thaliana.

The shoot apical meristem

Arabidopsis thaliana has two primary meristems; the primary shoot apical
meristem, which is the source of all above-ground tissue and organs, and the
primary root meristem, which is the source of the below-ground root system.
In addition there are secondary meristems originating from the primary meris-
tems; lateral root meristems from the primary root meristem, and shoot and
floral meristems from the primary shoot meristem (Weigel and Jürgens 2002).

Meristems and plant stem cells. The main function of the meristems is to
harbour stem cells. Most cells proliferate to produce new cells of the same cell
type, but stem cells also have the ability to differentiate into more specialised
cell types. Stem cells that can differentiate into multiple different cell types
are pluripotent and cells that can differentiate into all different cell types are
totipotent. While animal stem cells are mostly pluripotent many plant cells
stay totipotent.

The shoot apical meristem can be divided into several regions of different
functions, see Figure 3. The central zone is located at the tip of the meristem
where stem cells reside. The stem cells at the central zone are slowly dividing
and their descendants are displaced to the peripheral zone. The peripheral zone
is the area adjacent to and surrounding the central zone. Cells at the peripheral
zone divide at higher rates and differentiate to specialised cell types. The rib
meristem is located underneath the central zone and cells in this region also
divide at higher rates. Lateral organs are initiated at the peripheral zone and
cell fate is mainly decided by a cell’s spatial location (Bowman and Eshed 2000;
Weigel and Jürgens 2002).
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Figure 3: Schematic drawing of the organisation of the shoot apical meristem.
Central zone (CZ), peripheral zone (PZ), organisation centre (OC), and rib
meristem.

The cells of the shoot meristem are organised into three clonally distinct
layers. The outermost epidermal layer, L1, is the source for the epidermis.
Underneath the epidermal layer is the subepidermal layer L2 and the corpus, or
L3, the latter also includes the remaining internal cells. The L2 and L3 are the
sources of internal subepidermal tissue. This structure of clonally distinct layers
are preserved in lateral organs and thus organ formation requires cooperation
between all three layers (Meyerowitz 1997).

Humans can live for about a hundred years, and the oldest known animal
was about 400 years old, but some plants can have lifetimes of several thousands
years. Although cells divide and move in and out between the different zones
the structure of the meristem is maintained during the lifetime of the plant.
An extra cell division at the meristem every year would after only ten years
result in a meristem a thousand times larger than a normal meristem. For a
plant that is expected to live for hundreds or even thousands of years the need
for a well-balanced meristem is crucial. The stability of the meristem during
growth suggests an underlying feedback network that balances the proliferation
and differentiation of cells of the meristem.

The WUSCHEL and CLAVATA genes. The WUSCHEL (WUS ) and the
CLAVATA (CLV) genes are present in the Arabidopsis genome and have been
shown to be essential for the self-maintenance of the shoot apical meristem.
The CLV3 gene is expressed in the cells in the central zone and is often used
as a stem cell identity marker (Fletcher et al. 1999). WUS is in postembryonic
development expressed in a small group of cells referred to as the organising
centre and located under the central zone (Mayer et al. 1998). WUS expres-
sion is necessary and sufficient for proper stem cell identity and wus mutants
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fail to organise a primary shoot meristem in the embryo and shoot meristems
terminate prematurely (Laux et al. 1996). It has also been shown that WUS
expression induce CLV3 expression in the central zone (Schoof et al. 2000).
What has also been shown is that the CLAVATA genes act together in a path-
way to repress WUS activity (Fletcher et al. 1999; Brand et al. 2000; Schoof
et al. 2000). Therefore a self-regulating feedback loop between CLV3 and WUS
has been proposed (Sharma et al. 2003; Brand et al. 2000).

Mutants of members of the CLAVATA gene family have similar phenotypes;
clv1, clv2, and clv3 mutants all have enlarged shoot meristems and enlarged
floral meristems carrying an increased number of floral organs such as petals
and carpels (Clark et al. 1993, 1995; Kayes and Clark 1998). The CLV3 gene
encodes a protein that functions as a mobile intercellular signal and the CLV1
gene encodes a receptor kinase that has been shown to bind with the CLV3
protein (Lenhard and Laux 2003; Clark et al. 1997; Fletcher et al. 1999; Ogawa
et al. 2008). The CLV1 expression pattern partly overlaps the expression pat-
tern of CLV3, but is also extended to a larger region including the organising
centre (Clark et al. 1997; Fletcher et al. 1999). While activated the CLV1/CLV3
complex downregulates WUS expression. WUS in turn promotes – by an un-
known mechanism – stem cell identity and CLV3 expression in the central
zone. This feedback loop guarantees that the number of stem cells in the shoot
meristem is highly regulated. If too many stem cells are present the CLV3
signal will be stronger and thus suppress WUS expression. As WUS expres-
sion decreases the stem cell inducing signal also decreases and fewer new stem
cells are produced. If – on the other hand – there are too few stem cells in
the meristem the signal that represses WUS will be weaker and the increased
expression of WUS will promote production of new stem cells.

The CLAVATA2/CORYNE pathway. The CLV2 gene encodes a receptor-
like protein and it was once suggested that the CLV2 protein acts together as
a complex with the CLV1 receptor to bind with the CLV3 protein (Jeong et al.
1999), but this hypothesis is inconsistent with data. Experiments with clv2
and clv1 single and double mutants show that CLV1 is significantly active even
in absence of CLV2 (Kayes and Clark 1998). The CORYNE (CRN ) gene en-
codes another receptor kinase and crn mutants have similar phenotypes as clv
mutants. Experiments also show that it is likely that CLV2 acts together with
CRN in a second pathway, a suggestion that would explain the inconsistency
above (Müller et al. 2008).

Plant cells

Following is a brief and simplified description of the anatomy of plant cells –
the building blocks of plants. For further reading see Alberts et al. (1994).
Plant cells are together with animal cells so called eukaryotes; each cell has its
own nucleus, containing most of the cell’s genetic material – for example DNA
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molecules – and encapsulated in a protecting membrane. A plasma membrane
surrounds the interior of the cell and separates intracellular components from
the extracellular environment. Everything inside the plasma membrane that
is not organelles surrounded by membranes is referred to as the cytosol and
the space outside the plasma membrane is called the apoplast. Various types
of proteins are embedded in the plasma membrane. One important function of
these membrane proteins is to transport specific molecules through the mem-
brane between the interior and the exterior of the cell. The protecting plasma
membrane together with these membrane proteins enable the plant cell to con-
trol its own intracellular environment. Plant cells – in contrast to animal cells
– are also enclosed by cell walls. Cell walls provide plant cells with structural
support and protection. They are rigid, but flexible; they can be bent, but
have great tensile strength. Cell walls between neighbouring plant cells fuse
together and are shared between pairs of cells.

Cell growth. Plant cells grow by an uptake of water from the apoplast
(Schopfer 2006). An osmotic flow fuelled by a large difference between osmotic
pressure in the apoplast and the cytoplasm drives water into the cytoplasm.
This inflow of water results in a large internal turgor pressure in the cells. Tur-
gor pressure is needed for a cell to keep its shape and rigidity. As the turgor
pressure increases it counters the osmotic pressure difference and if the cell
walls are kept static, equilibrium will be reached. But plant cells maintain a
pressure difference by increasing the wall sizes; the turgor pressure puts cell
walls under stress, and cell walls under stress are loosened by more material
being added to the walls. Parallel to water inflow the cell is maintaining an
uptake of solute to keep the osmotic pressure difference constant.

The growth of plant tissue is due to a delicate combination of isotropic
and anisotropic growth, which results in the elongated structures of the stem
and organs. Anisotropic growth of cells is a product of the arrangement of
cell wall cellulose microfibrils. Microfibrils are thin fibres that are arranged in
parallel strands around the cell and the orientation of the microfibrils follows
microtubule cortical arrays (Paradez et al. 2006). Microtubules are part of
the cytoskeleton and are involved in several developmental activities in cells.
Microtubules can be depolymerised by application of oryzalin and lack of mi-
crotubules results in inhibition of cell division and affects cell growth rates
(Corson et al. 2009).

Cell division. A plant cell will not grow indefinitely, instead it will after
some time divide into two daughter cells. Cell division is a process of several
phases. First the cell enters mitosis, the phase during which the chromosomes
are duplicated into two identical sets in the cell nucleus. Subsequent to mi-
tosis is cytokinesis, during which the plasma membrane, the nucleus, and the
cytoplasm split into two daughter cells. In plant cells a new cell wall is also
constructed between the two daughter nuclei during cytokinesis. The new cell
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wall defines the division plane and it is still unknown how cells orient the di-
vision plane, but plant biologists have suggested that there is a correlation
between the orientation of the division plane and cell shape. Hofmeister stated
in 1863 that the division plane is perpendicular to the principal direction of
growth of the cell, and in 1888 Errera formulated the rule that the division
plane is the shortest path that divides the mother cell into two daughter cells
of equal volume (Smith 2001, and references therein). Experiments with cells
from tobacco plants showed that the division planes of spherical cells were ori-
ented randomly while cells deformed by compression had their division planes
perpendicular to the main axis, a result in accordance with both Hofmeister
and Errera’s statements (Lynch and Lintilhac 1997).

Studying cell division in plants is a relatively grateful task. As indicated
above, it is possible to follow plant cell division even with – compared to modern
equipment – a rather primitive microscope. Furthermore, cells in the epidermal
layer of plant tissue divide anticlinal, which means that the division plane is
perpendicular to adjacent cells. Therefore cell division can be studied and
modelled by representing the epidermal layer as a two-dimensional surface.

As there is no sliding between neighbouring plant cells there is no possible
way for plant cells to reorganise or migrate after cell division. And as the only
means of signalling – neglecting apoplastic diffusion – is by local interactions
between cells, the topology of the tissue is of outermost importance. This
emphasises how important proper cell division is in plants as the topology of
the tissue is determined by cell division.

Auxin and intercellular transport

Auxin is a family of plant hormones. In the context of this thesis the most
important member is indole-3-acetic acid (IAA), which is commonly present in
plants and plays an important role for plant development. Root gravitropism,
cell division, and vascular patterning are all developmental processes that rely
on functional auxin transport (Blancaflor and Masson 2003; Sieburth 1999;
Campanoni and Nick 2005; Okada et al. 1991).

Auxin is also necessary and sufficient for initiation of new primordia at
the shoot apical meristem (Reinhardt et al. 2000, 2003). Plants grown in the
presence of auxin transport inhibitors lack lateral organs and take a pin-like
form. However, new primordia are initiated if auxin is exogenously applied
to such plants and the radial position of the applied auxin determines where
the new primordia is initiated. Externally added auxin also disturbs the phyl-
lotactic patterning at the meristem. In wild-type plants localised increase in
concentration of auxin have been observed to preceed initiation of new primor-
dia (Benková et al. 2003). These findings add together to the hypothesis that
auxin is redistributed actively in the tissue and that peaks of auxin concentra-
tion determine where new primordia are to be initiated.
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The chemiosmotic model. Most modern models for auxin transport are
based on the chemiosmotic model (Rubery and Sheldrake 1974; Raven 1975).
Auxin is present in two different forms, as a dissociated anion (IAA−) and in
an associated protonated (IAAH) form. The uncharged protonated form can
freely pass the membranes between the compartments, while the anion cannot
and must be actively transported across the membranes. The pH levels in wall
compartments are lower than in cytosol compartments so without an active
transport of the anion auxin will accumulate within the cytosol compartments
predominately as the anion. An auxin efflux carrier allows the anion to move
across the membrane and if the carrier is inhomogeneously distributed at the
plasma membrane then it enables a mechanism for polarised auxin transport
in the plant tissue.

PINFORMED1 and polarised auxin transport. The membrane protein
PINFORMED1 (PIN1) is a putative auxin efflux mediator and is found mainly
in the epidermal layer of cells. PIN1 mutants result in similar phenotypes as for
wild-type plants cultured in auxin polar transport inhibitors. Phenotypes are
inflorescence with no flowers or with a flower at the top, but without stamens
and with petals of abnormal shapes (Okada et al. 1991).

PIN1 is polarised within cells and the localisation of the protein at the
plasma membrane is a product of rapid cycling between cytosol and membrane
compartments (Geldner et al. 2001). PIN1 has been observed to polarise to-
wards new primordia and away from older ones (Heisler et al. 2005; Barbier de
Reuille et al. 2006). The underlying mechanism is still unknown, but models for
which PIN1-polarisation is dependent on auxin concentrations in neighbouring
cells have been proposed (Jönsson et al. 2006; Smith et al. 2006). In the pro-
posed models auxin concentrations in neighbouring cells attract PIN1 to the
plasma membrane. The resulting polarisation of PIN1 generates a net flow
of auxin towards cells with high concentrations of auxin leading to a positive
feedback where localised high concentrations of auxin attract more auxin.

The models have in numerical simulations been able to generate regular pat-
terns of peaks of auxin concentration separated with a wave-length determined
by parameter values (Jönsson et al. 2006; Smith et al. 2006). With parameter
values estimated from experiments the models generate peaks separated by a
distance of about five to seven cells.

Auxin influx carriers. So far the discussion has been focused on auxin efflux,
but the genome of Arabidopsis also holds four genes, AUX1, LAX1, LAX2,
and LAX3 that encodes putative auxin influx mediators (Parry et al. 2001).
The product of the AUX1 gene is a protein that is localised to the plasma
membrane and acts as an auxin influx mediator (Swarup et al. 2004; Yang
et al. 2006). Single mutants of AUX1 or members of the LAX gene family
show no visible phenotype, but apices of pin1 aux1 double mutants treated
with applied auxin resulted in initiated organs much wider than for pin1 single
mutants (Reinhardt et al. 2003; Bainbridge et al. 2008). Organ initiation is
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present in double, triple, and quadruple aux1, lax1, lax2, and lax3 mutants,
but the resulting phyllotactic pattern is highly disorganised (Bainbridge et al.
2008). These results suggest that AUX1 and the LAX genes are not required for
organ initiation, but contribute to the arrangement and the size of primordia.
Computer simulations have shown that AUX1 can help to stabilise phyllotactic
patterns (Heisler and Jönsson 2006).

Auxin is colocalised with AUX1 in the epidermal layer (Smith et al. 2006).
aux1 lax1 lax2 triple mutants show a weak expression of auxin in subepidermal
layers and a proposed function for AUX1 is to reduce the effect of diffusion of
auxin into subepidermal layers to keep auxin in the epidermal layer of the
meristem (Bainbridge et al. 2008). Another proposed function of AUX1 is to
increase the uptake of apoplastic auxin to counter apoplastic diffusion.

Auxin flux models. There are additional models based on polarised auxin
transport. Leaf vascular patterns of Arabidopsis plants in presence of auxin
transport inhibitors are disturbed and pin1 mutants display vascular defects
(Mattsson et al. 1999, and references therein). Therefore it has been suggested
that auxin and PIN1 are also key components in vascular pattern formation in
– for example – the leaf. The models described above have been unsuccessful
in reproducing vascular patterns of Arabidopsis leaves, instead another family
of models also based on polarised auxin transport have been proposed. The
canalisation hypothesis first presented by Sachs (1969) – which states that the
permeability for auxin transport between cells increases by auxin flux – has
been the foundation for several models of vascular pattern formation in plants
(Mitchison 1981; Feugier et al. 2005; Fujita and Mochizuki 2006). In earlier
models the permeability for auxin transport increased by auxin flux while in
later models PIN1 is explicitly taken into consideration; in these models the
polarisation of PIN1 is dependent on auxin flux instead of auxin concentrations
in neighbouring cells.

The canalisation hypothesis in its different incarnations has been proven
to be a good candidate as a mechanism for formation of veins in plant leaves.
Still these models are limited as they are unable to spontaneously generate
patterns. They rely heavily on boundary conditions; a common requirement is
the presence of auxin sinks and/or sources.



Methodology

There are two types of dynamics that have been studied in this thesis. Paper I
and Paper V are about chemical reactions while Paper II, Paper III, and Pa-
per IV are about mechanical properties of plant cells. A number of different
numerical and analytical methods have been used to study the different prob-
lems. The modelling approaches, analytical methods, and numerical methods
of this thesis are described in this following chapter.

Modelling chemical reactions

Paper I and Paper V are about chemical reactions. The approach used in both
these papers to deal with chemical reactions is to use the law of mass action.
The law of mass action is a model by Guldberg and Waage and deals with both
the relation between chemical reactants at equilibrium and reaction rates for
systems not at equilibrium (Lund 1965, and references therein).

Consider a reaction among n chemical species

a1X1 + . . .+ anXn ⇀↽ b1X1 + . . .+ bnXn. (1)

The integers ai and bi are called the stoichiometric coefficients. The reaction
is in equilibrium when the entropy is at a maximum. For an isolated system
this requirement is equivalent to

∆G =
n∑
i=0

qiµi = 0, where qi = bi − ai, (2)

∆G is the change of free energy, and µi is the chemical potential for species i,
which can be written as

µi = kBT ln(ci/c0) + µ0
i (T, c0), (3)

where kB is Boltzmann’s constant, T is the temperature, ci is the concentration
of reactant i, c0 is a reference concentration, and µ0 is the standard chemical
potential for a given reference concentration and temperature. For a reference

11
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concentration equal to one molar, Equation 2 can be rewritten to

n∏
i=0

cqi

i = e−∆G0/kBT = Kequilibrium, (4)

where Kequilibrium is the equilibrium constant and ∆G0 is defined as

∆G0 =
n∑
i=0

qiµ
0
i (T ). (5)

Equation 4 gives the relation between concentrations of reactants at equi-
librium. The law of mass action states that if the system is not at equilibrium
the rate of a reaction is proportional to the concentrations of the reactants
involved in the reaction, i.e. the forward and backward rates of the reaction
are

r+ = k+

n∏
i=0

cai
i , and r− = k−

n∏
i=0

cbi
i , (6)

where k+ and k− are proportionality constants.
It should be noted that when the system is at equilibrium there is a flow in

both directions of the reaction, but the net flow is zero. To reach the results in
Equation 4 and Equation 6 a macroscopic point of view has been taken and the
reactants are assumed to be well mixed together. For a throughout discussion
about the law of mass action, see Nelson (2004).

Michaelis-Menten kinetics. The reaction rates are in many cases extremely
slow. Enzymes are structures that have a catalytic effect on a reaction and
enhance the rate of a chemical reaction. An enzyme E binds to a reactant S
called the substrate and turns it to a product P. The chain of reactions is the
following

S + E
k1⇀↽
k2

SE k3⇀ P + E. (7)

Two assumptions are made to get a mathematical representation of the reaction
in Equation 7. The first assumption is that the amount of substrate-bound en-
zyme SE is quasi-stable and changes much slower than the amounts of substrate
and product (k1, k2 � k3). The second assumption is that the total amount of
enzyme is constant, i.e. [Etotal] = [E] + [SE]. With these two assumptions the
reaction rate is

r = rmax
[S]

K + [S]
, where rmax = k3[Etotal], and K =

k2 + k3

k1
. (8)

Equation 8 is called the Michaelis-Menten rule and the constant K is called
the Michaelis constant. The important feature of this kind of reaction is that
the reaction rate is saturated. The law of mass action tells us that the reaction
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rate is proportional to the substrate, but the reaction in Equation 7 is bottle-
necked by the intermediate step, and the reaction rate is limited by the amount
of enzyme. The Michaelis-Menten rule can also be used to model intracellular
transport of – for example – auxin by an influx or efflux mediator. Then the
rate of auxin flow will be limited by the number of available transport mediators
at the plasma membrane

The reaction in Equation 7 can be generalised. Assume that n substrate
molecules bind to the enzyme instead of only one. Following the same path of
derivations as above the reaction rate is now

r = rmax
[S]n

Kn + [S]n
. (9)

Equation 9 is called the Hill equation while n is called the Hill coefficient and
is a measurement of the cooperativity of the reaction.

The chemiosmotic model revisited. The law of mass action can be ap-
plied to the chemiosmotic model. The protonated form of auxin is dissociated
according to the following reaction

IAAH ⇀↽ IAA− + H+. (10)

The reaction is assumed to be fast and the equilibrium constant K for the
reaction is

K =
[IAA−] · [H+]

[IAAH]
. (11)

The fractions of dissociated anion and the protonated form are then equal to

f[IAA−] =
10pH−pK

10pH−pK + 1
, and f[IAAH] =

1
10pH−pK + 1

, (12)

where pH = − log [H+] and pK = − logK. From Equation 12 it can be seen
that the protonated form will dominate if pH levels are low – as in the apoplast
– while that the anion will dominate if pH levels are high – as in the cytosol.

Modelling mechanics: The spring model

The spring model is an approach to model mechanical properties of cells in the
epidermal layer – in this thesis as a two-dimensional sheet. In the spring model
cells are represented by a network of vertices connected by edges corresponding
to cell walls. Cell walls are treated as mechanical springs, hence the name of
the model. Vertices are treated as being in a viscous medium, i.e. the velocities
of vertices are directly proportional to the forces acting at them.

The contribution of forces from walls acting on vertex i is

dvi
dt

= kw
∑
j∈V(i)

uij
|uij |

(
|uij | − Lij

Lij

)
, (13)
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where vi is the position of vertex i, uij = vj − vi, kw is the spring constant
and determines the stiffness of walls, and Lij is the resting length of the wall
connecting vertices i and j. The summation is over vertices connected via edges
to vertex i.

Plastic growth is assumed for cell walls. Cell walls grow under tension as
new material is added. In the spring model resting lengths of cell walls are
increased as walls are being stretched.

dLij
dt

= kgΘ
(
|uij | − Lij

Lij
− T

)
. (14)

kg is a constant setting the rate of growth and Θ is the ramp function defined
as

Θ(x) =
{
x if x ≥ 0
0 if x < 0 . (15)

T is a threshold that must be exceeded before new material is added to the
wall.

Microtubules. Mechanical anisotropy by microfibrils is modelled by defining
a microtubule direction nmicrotubule,i for each cell i. The spring constants of
cell walls are then updated according to

kw → kw,j = kisotropic + kanisotropic

∑
i∈C(j)

|nmicrotubule,i · nwall,j |2, (16)

where kisotropic and kanisotropic are the isotropic and anisotropic contributions
respectively, and nwall,j is the direction of wall j. The summation is over the
one or two cells that are neighbours to wall j.

Stress direction. In Paper II the hypothesis is that the alignment of micro-
tubules is regulated by mechanical stress. Circular statistics is used to calculate
the stress direction of a cell according to

θmicrotubule,i =
1
2

atan

(∑
j∈W(c) fwall,j sin (2θwall,j)∑
j∈W(c) fwall,j cos (2θwall,j)

)
, (17)

where θmicrotubule,i is the direction of the microtubules of cell i, fwall,j is the
force of wall j, and θwall,j is the direction of wall j.

Analytical methods

Different analytical methods have been used to study the models of this thesis.
These methods are explained in this section.
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Fixed point stability analysis. Given a system of ordinary differential equa-
tions it is often of interest to study the system when it is close to equilibrium.
Consider the system

dx
dt

= f(x). (18)

If f(x∗) = 0 then x∗ is called a fixed point. For a fixed point the time-derivative
is equal to zero and the system is at equilibrium. A fixed point can be either
stable or unstable. A common way to find the stability of a fixed point is to
linearise the system at the fixed point. Let ε be a small perturbation from the
fixed point, i.e. x = x∗ + ε, then Equation 18 can be expanded in a Taylor
series

dε

dt
= f(x∗ + ε) ≈ f(x∗) + J ε = J ε, (19)

where J is the Jacobian matrix and is defined as

Jij =
∂fi
∂xj

. (20)

Assuming that there are no degenerated eigenvalues to the Jacobian matrix the
solution to Equation 19 equals to

ε = c1v1e
λ1t + . . .+ cnvne

λnt, (21)

where λi and v1 are the eigenvalues and eigenvectors of the Jacobian matrix,
and ci are constants determined by initial conditions. If the real parts of all
eigenvalues are negative then the perturbation ε vanishes with time; the fixed
point is a stable fixed point. If the real part of at least one eigenvalue is positive
then the perturbation will grow with time; the fixed point is an unstable fixed
point. For further reading about analysis of fixed points, please see Strogatz
(2000).

Robustness analysis. While modelling a biological system parameters are
in most cases considered to be constants. But in a real life situation many
parameters depend on environmental changes such as temperature, acidity,
pressure, and so forth. For example both the equilibrium constant Kequilibrium

in Equation 4 and the proportionality constants k+ and k− in Equation 6 are
dependent on the temperature. A model must be robust against environmental
changes, a parameter value can be difficult to estimate, and the model itself is
most likely to be a simplification, so it is therefore important to test the model
for parameter perturbations.

One way to measure robustness is to calculate the sensitivity, here defined
as

S =
∂C

∂p

p

C
≈ Cperturbed − Cunperturbed

pperturbed − punperturbed
× punperturbed

Cunperturbed
, (22)

where C is a measurable and p is a parameter (Savageau 1971). If the magni-
tude of the sensitivity is equal to one then a change of the parameter results in a
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corresponding relative change of the measurable. A higher or lower magnitude
of the sensitivity equals to a stronger or weaker response. If the sensitivity is
negative then the measurable decreases as the parameter is increased. One ad-
vantage of the sensitivity measurement is that it is independent of magnitudes.
Often the sensitivity is used to compare parameters in order to pin-point what
parts of the model that are most sensitive to perturbations.

Another way to analyse the robustness is to have all but one or more pa-
rameters fixed, vary the free parameters, and plot the measurable as a function
of these variables. While the sensitivity measurement is localised to a small
region close to the unperturbed parameter value this approach gives informa-
tion about an extended region in parameter space. The drawback is that the
approach does not give a quantative measurement of the robustness that can
be used to compare parameters or models.

Numerical methods

Even simple biological systems are often represented by mathematical equa-
tions that are not possible to solve analytically and one must rely on numerical
methods to get an approximative solution to the problem. The numerical meth-
ods used in this thesis are given a brief overview in the following section. For
further references see a standard work on numerical methods such as Kincaid
and Cheney (2002) or Press et al. (2002).

Numerical solutions of ordinary differential equations. Most problems
in this thesis are expressed mathematically as systems of ordinary differential
equations. These equations are of the form

dx
dt

= f(x), (23)

where x is the state vector of the system and f is a vector-valued function.
With a boundary condition most equations in the form of Equation 23 have a
well defined solution. In this thesis the boundary condition is always an initial
state x0 for time t = 0.

The most simple example of a numerical solver for ordinary differential
equations is Euler’s method. Euler’s method is a so called Taylor-series method
and is obtained by a series expansion of x(t+ h) to the first order,

x(t+ h) = x(t) + hf(x) +O(h2), (24)

where h is a step size in time. Euler’s method is said to be of first order as the
global error scales as the step size h. The advantage of the method is that it is
very simple to implement; the function f does not – in contrast to other fancier
methods – need to be differentiated. The disadvantage of the method is that –
to limit the global error – the step size h must be very small. A small step size
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means a large amount of iterations and the gain in simplicity is quickly lost in
computational costs.

More elegant methods can be constructed by a clever use of series expan-
sions. The Runge-Kutta method is such a kind of method and combines in-
formation from several Euler-style steps and uses that information to make a
more accurate step forward in time. The fourth-order Runge-Kutta method is
as follows,

x(t+ h) = x(t) +
1
6

(k1 + 2k2 + 2k3 + k4) +O(h5), (25)

where

k1 =hf(x(t)), (26)

k2 =hf(x(t) +
1
2
k1), (27)

k3 =hf(x(t) +
1
2
k2), (28)

k4 =hf(x(t) + k3). (29)

The fourth-order Runga-Kutta method requires four evaluations of the function
f for every step, but the increased accuracy gained makes the method attrac-
tive. For most problems the fourth-order Runge-Kutta method is good enough
and can be used as a general method to solve ordinary differential equations.
It is not the most accurate nor the fastest algorithm, but the method is simple
to implement and the function f – as with Euler’s method – needs not to be
differentiated.

Still there are improvements to be made. When choosing a step size the
characteristics of the function f must be taken into consideration. In the dis-
cussion above the step size h has been kept constant, but there might be regions
where f is well-behaved, and a larger step size could have been used, and regions
where f is less well-behaved, and a smaller step size is needed. If additional
calculations are carried out the local truncation error can be estimated and the
step size can be adjusted accordingly. The Runge-Kutta-Fehlberg method is an
algorithm that utilises a fourth-order together with a fifth-order Runge-Kutta
method to measure the local truncation error and adjusts the step size adap-
tively. The method is cleverly crafted such that only six function evaluations
are needed for every step in time.

Adaptive control of the step size comes with a potential increase in perfor-
mance; the gains in using an adaptive step size can be huge compared with
the extra computational costs from the additional function evaluations. But
methods like the Runge-Kutta-Fehlberg method are not suitable for all kinds
of problems. Cell division is an example of a situation for which the function f
changes drastically due to a discrete event. For simulations of discrete events
it is often better to use for example a fourth-order Runge-Kutta method with
a constant step size.
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Numerical equation solvers. In Paper I the focus is on equilibrium con-
centrations of chemical reactants. The problem of finding the equilibrium con-
centrations is equivalent to finding a solution x∗ such that f(x∗) = 0. In one
dimension this equation can be solved by the bisection method also known as
the method of interval halving. This method assumes that there is one and
only one solution in a range [a, b] determined by an initial guess. The signs
of f(a) and f(b) are compared with the sign of f(c), where c = 1

2 (a + b), to
determine if the solution lies in the range [a, c] or [c, b]. This step of interval
halving is recursively repeated until a stopping criteria is fulfilled. Granted
that there is only one solution the method guarantees convergence.

For a system of equations Newton’s method can instead be used. The
method starts with an initial guess x and the solution is assumed to be x∗ =
x + h. A Taylor-series expansion to the first order gives

0 = f(x∗) = f(x + h) ≈ f(x) + Jh, (30)

where J is the Jacobian matrix (Equation 20). To find the step h Equation 30
can be solved either by Gaussian elimination or by inverting the Jacobian ma-
trix. This procedure is repeated until a stopping criteria is fulfilled. Newton’s
method does not guarantee convergence. Therefore the implementation of the
method must keep track of the number of iterations, stop the algorithm when
a maximum number of iterations has been reached, and start over with a new
initial guess – unless a solution has already been found.

Optimisation algorithms. Let y(p) be the output of a system given a set
p of parameter values. Say that the parameter values are unknown, but that
a set of data y∗ is supplied and that we want to find an optimal parameter
set p∗ such that y(p∗) = y∗. A straightforward approach to this problem is
to systematically scan the parameter space until a solution is found. This ap-
proach will most likely fail as for even small systems the computational time of
trying every possible combination will exceed the life time of the implementor.
The common approach to most optimisation problems is not to look for the
optimal solution, but instead try to find a solution that is good enough. To do
this the fitness of a solution given a set of parameter values is quantified by an
objective function. An example of an objective function is

E(p) =
∑
i

(y∗i − yi(p))2. (31)

The optimisation problem can now be rephrased to find the minimum of the
objective function. To find a minimum of the objective function it is possible to
just go downhill the gradient of the function. This approach has its weaknesses;
if there are more than one minimum – for example if the objective function has
one or several local minima – then the minima closest to an initial guess is
most likely to be found.
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The simulated annealing method is an optimisation algorithm that can be
used to find a local minimum. For the algorithm the objective function is con-
sidered as an energy and a virtual temperature T is introduced. The algorithm
starts with an initial – often randomly chosen – set of parameter values. A
new set of parameter values pnew is randomly selected, often by a step to an
adjacent point in a discretised parameter space. If the energy E(pnew) corre-
sponding to the new set of parameter values is lower than the energy E(pold)
corresponding to the old set of parameter values, then the new set of parameter
values is kept and the old set is discarded. Otherwise the new set of parameter
values is kept with a probability

P = e−∆E/T , (32)

where ∆E = E(pnew) − E(pold). The probability in Equation 32 enables
the algorithm to sometimes walk uphill in the energy landscape, and thus
it is possible for the algorithm to get out of a local minimum. The virtual
temperature T starts at a high temperature and is successively reduced towards
zero. For high temperatures the probability in Equation 32 is close to unity
and the algorithm has the behaviour of a random walk in parameter space. As
the temperature is lowered the system is “frozen” and the algorithm becomes
greedy and seeks nearby minima. The algorithm is closely related to the field of
thermodynamics and the probability in Equation 32 is the Boltzmann factor.
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Summary of publications

Here follows a summary of the papers that are part of this thesis with descrip-
tions of my contribution to each paper.

Paper I

In Paper I we develop two models of the CLAVATA-WUSCHEL feedback net-
work to study the differences in phenotypes of two clavata1 mutants. The
main topic is the question how the clv1-1 non-null mutant can have a greater
phenotype – measured in number of carpels — than the clv1-11 null mutant.
It has been suggested that this counterintuitive result is due to interference
between the CLAVATA1 and the CORYNE pathways. The two models we
present differ only in how we implemented the clv1-1 non-null mutant. For the
first model – the interference model – the receptors CLAVATA1 and CORYNE
form a complex with no function and which is immediately discarded. For the
second model – the loss-of-signal model – the signal from activated CLAVATA1
is reduced.

Both implementations of the feedback network are dependent on a large
amount of parameters with unknown values. We use an optimisation algorithm
to find parameter values by fitting model output to data from wild type and four
receptor mutant experiments. In a validation step we test the model against
two receptor double mutant experiments. This procedure is repeated 25,000
times for each model and we end up with a few hundred parameter value sets
for each model. We compare these sets of parameter values with an unbiased
background parameter value distribution to make model predictions.

Both models show that the two receptor pathways are equally important,
and that the strengths of the two are close to equal, but with a slight asymmetry
with the CLAVATA1 pathway somewhat stronger than the CORYNE pathway.
For the interference model the main prediction is that we expect a large amount
of receptors, both of CLAVATA1 and CORYNE. For the loss-of-signal model
the main prediction is that CLAVATA1 sequesters CLAVATA3 in the clv1-1
mutant. The sequestration of CLAVATA3 by CLAVATA1 could be caused by
– for example – internalisation or degradation of bound CLAVATA1 receptors.

My contribution: I developed the two models together with my supervisor
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and I implemented the models, the numerical equation solver, and the optimi-
sation algorithm. I did all simulations and optimisations. I took part of the
following data analysis together with Pontus Melke and I contributed to the
final manuscript.

Paper II

Paper II is an interdisciplinary group effort to test the hypothesis that micro-
tubular cortical arrays in cells align according to stress patterns in the plant
tissue. This hypothesis implies that mechanical signals in the plant are used
as cues for anisotropic growth as microfibrils in cells are believed to align with
microtubular cortical arrays. Microtubules are possible to be observed in ex-
periments using markers and confocal microscopy, but stress patterns in a cell
tissue are currently impossible to measure directly. We use mathematical mod-
els to predict stress patterns at the surface of the shoot apical meristem. These
patterns are compared with the direction of microtubules in experiments.

We implement the spring model as a representation of the epidermal layer
of the shoot apical meristem. In experiments the microtubules are aligned
circumferentially at the periphery and the base of the meristem while they are
randomly oriented at the summit. In accordance with experiments the spring
model predicts the stress patterns to be circumferential at the periphery and
less organised at the summit. In experiments microtubules also align along the
boundary between the meristem and new primordia. The spring model is also
able to successfully predict the expected stress pattern.

Ablation experiments in which individual cells at the summit of the meris-
tem are destroyed by a laser are also conducted. In these experiments the
microtubules in cells surrounding the wound align circumferential around the
wound. The change of detail – from tissue level to cell level – in these experi-
ments requires us to use a finite-element method (FEM) to model the surround-
ing of the wound. The stress patterns of the FEM model are circumferential
around the wound. All these results help to strengthen the hypothesis that
microtubules align according to feedback from stress patterns in the tissue.

My contribution: I contributed to the implementation of a three-dimensional
model with a two-dimensional spring model representing the epidermal layer.
I participated in the discussion related to the development of the model.

Paper III

We test two different rules for orienting the division plane during cell division.
The first rule is our representation of Errera’s rule and divides the mother
cell such that the division plane is the shortest path through the cell. The
second rule orients the division plane randomly. The spring model is used for
simulations and we perform two parallel series of simulations; one with cell
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wall mechanics and one without. Distributions of number of neighbours are
measured from resulting tissues and we compare them with experimental data.
We also introduce a quantative measurement of cell shape and compare the
shapes of cells in simulations with shapes of cells in experiments.

We show that the distributions of number of neighbours measured from
tissues resulting from simulations with the the two division rules are different,
with the shortest path – or Errera’s – division rule performing better than the
random direction division rule. We also show that – while visual inspection of
the tissues shows a difference – for simulations with and without mechanics the
distributions of number of neighbours are the same. Comparing cell shapes we
show that the shortest path division rule results in more plant-like cell shapes,
while simulations without mechanics result in the least plant-like cell shapes.

My contribution: I implemented the two-dimensional spring model and per-
formed all simulations. I did the following data analysis and contributed to the
manuscript.

Paper IV

What is presented in Paper IV is a continuation of the project presented in
Paper III. We use the same two-dimensional spring model as in Paper III
to study cell division in the epidermal layer of the shoot apical meristem. In
Paper III the two division rules oriented the division plane such that it passed
the centre of mass of the mother cell. In Paper III we test another approach for
which the division plane can be randomly oriented in the mother cell. We show
by comparing simulated tissue with experiment data that the “centre of mass”-
mechanism is superior to the randomised approach for modelling the tissue.
This result is tied together with our main result that division rules that divide
the mother cell into two symmetrically shaped daughter cells better reproduce
topologies and geometries seen in experiments than division rules that divide
the mother cell asymmetrically. Oryzalin depolymerises microtubules and cell
division is suspended in experiment if oryzalin is applied to the plant. We test
the spring model with a series of simulations without cell division and we see
that the distribution of internal vertex angles converges towards 120◦, as seen
in experiments.

My contribution: I implemented the two-dimensional spring model and per-
formed all simulations. I did the following data analysis and contributed to the
manuscript.

Paper V

We analyse the proposed PIN1-dependent polarised auxin transport as a can-
didate for the pattern generating mechanism at the shoot apical meristem. The
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model previously presented by Jönsson et al. (2006) is generalised and analysed
by a stability analysis of the homogenous fixed point. The stability analysis
is used to find requirements for pattern generation and predictions about the
characteristics of final patterns. We compare the predictions with numerical
simulations and the numerical simulations confirm our predictions from the
analysis. We are able to predict the wave-length of the final pattern by lineari-
sation of the homogenous fixed point. The requirements on the generalisation
of the model are useful for further studies of polarised auxin transport as they
can tell what kind of mechanisms that can be used for for pattern generation.

In the model PIN1-cycling is regulated by feedback from auxin concen-
trations in neighbouring cells. We show that this mechanism works for both
exocytosis as well as for endocytosis. This result is of value as experiments
have shown that auxin can affect PIN1 endocytosis (Paciorek et al. 2005). We
also show that if PIN1-cycling is regulated, not by feedback from auxin con-
centrations in neighbouring cells, but by feedback from auxin concentrations
in neighbouring walls then the model is unable to generate patterns.

In our analysis we find that AUX1 is not needed for pattern generation
while PIN1 is crucial. Auxin-induced transport mediators are introduced and
our analysis shows that auxin-induced PIN1 stabilises the homogenous fixed
point while auxin-induced AUX1 functions in the opposite direction and desta-
bilises the homogenous fixed point. These results agree with previous studies
that show that auxin-induced PIN1 destabilises non-homogenous patterns and
removal of AUX1 results in loss of stability of non-homogenous patterns (Heisler
and Jönsson 2006).

The model is also able to generate patterns other than peaks, such as peaks
with stripes, stripes, and reentrant (inverted) peaks. The parameters for which
the model generates these patterns are found on the boundary in parameter
space that separates parameters that result in peak pattern and parameters
that result in no patterns.

My contribution: I implemented the model and performed all simulations
with the generalised model. I did the following data analysis and contributed
to the manuscript. The analysis of the model was done mainly by me with the
help from Bo Söderberg.
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Abstract

Background: Stem cells reside in the plant shoot meristem throughout its life and are the main regulators of above-
ground plant development. The stem cell maintenance depends on a feedback network between the CLAVATA
and WUSCHEL genes. The CLAVATA3 peptide binds to the CLAVATA1 receptor leading to WUSCHEL inhibition.
WUSCHEL, on the other hand, activates CLAVATA3 expression. Recent experiments suggest a second pathway
where CLAVATA3 inhibits WUSCHEL by binding to the CORYNE receptor. An interesting question, central for
understanding the receptor signaling, is why the clavata1-11 null mutant have a weaker phenotype compared with
clavata1-1 non-null mutant. It has been suggested that this relies on interference from the mutated CLAVATA1
acting on the CORYNE pathway.

Results: We develop two models for the CLAVATA-WUSCHEL feedback network including two receptor pathways
for WUS repression and differing only by the hypothezised mechanisms for the clavata1-1 non-null mutant. The
first model is an implementation of the previously suggested interference mechanism. The other model assumes
an unaltered binding between CLAVATA3 and the mutated CLAVATA1 but with a loss of propagated signal into
the cell. We optimize the models to data from wild type and four single receptor mutant experiments, and use
data from two receptor double mutant experiments in a validation step. Both models are able to explain all seven
phenotypes, and in addition qualitatively predict CLAVATA3 perturbations. The two models for the clavata1-1
mutant differ in the direct mechanism of the mutant, but they also predict other differences in the dynamics of the
stem cell regulating network. We show that the interference hypothesis leads to an abundance of receptors, while
the loss-of-signal hypothesis leads to sequestration of CLAVATA3 and relies on degradation or internalization of
the bound CLAVATA1 receptor.

Conclusions: Using computational modeling, we show that an interference hypothesis and a more parsimonious
loss-of-signal hypothesis for a clavata1 non-null mutant both lead to behaviors predicting wild type and six
receptor mutant experiments. Although the two models have identical implementations of the unperturbed
feedback network for stem cell regulation, we can point out model-predicted differences that may be resolved in
future experiments.
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Background
The development of animals and plants is depen-
dent on undifferentiated stem cells residing in spe-
cial locations called niches [1]. In a plant, stem cells
are maintained in the shoot apical meristem (SAM)
throughout its life, and the SAM is the source of all
aerial parts of the plant [2, 3].

Spatial regions of different expression patterns
and functions are found within the SAM. The cen-
tral zone is located at the tip of the apex and con-
sists of slowly dividing stem cells expressing the
CLAVATA3 (CLV3 ) gene. Due to cellular growth
and proliferation, stem cells from the central zone
move into the surrounding tissue where the spatial
location of each daughter cell is a main determinant
of cell fate. Located below the central zone is a small
group of cells that are believed to form a control
zone for the organization of the SAM. These cells
express the WUSHEL (WUS ) gene, which encodes
a homeodomain transcription factor and has been
shown to be required for maintaining stem cells in
the shoot [4]. Although not expressed in the same
cells, WUS and CLV3 regulate the expression of each
other. While WUS upregulates CLV3, the intercel-
lular peptide CLV3 acts together with the receptor
kinase CLAVATA1 (CLV1) in a signaling pathway
that downregulates WUS [4–7]. This feedback net-
work is a main regulator of stem cell maintenance in
the SAM. If the number of stem cells is low the CLV3
signal will be weak and expression of WUS will in-
crease, which in turn will induce CLV3 expression.
If instead there is an abundance of stem cells, WUS
will be downregulated and CLV3 expression will de-
crease.

Additional molecules have been identified as im-
portant for the stem cell regulation. The receptor-
like CLAVATA2 (CLV2) is involved in WUS re-
pression acting within the CLV3 signaling path-
way [8]. Müller et al. (2008, 2009) [9, 10] re-
cently identified a kinase CORYNE (CRN) that in-
teracts with CLV2 and together form a receptor for
CLV3. In addition, the BAM family of receptors
has an antagonistic effect compared to CLAVATA1
in stem cell regulation [11,12], and several members
of the CLE (CLAVATA3/ESR-related) ligand fam-
ily were shown to affect the SAM development in
perturbation assays [13]. The intracellular compo-
nents of the WUS-repressing signal are to a large
extent unknown, but POLTERGEIST (POL) and
POLTERGEIST-LIKE1 (PLL1) have been shown to
be important for mediating the signal [14].

Reduction in CLAVATA signaling leads to in-
creased WUS and CLV3 expressions and an increase
in number of stem cells and shoot size [15]. An-
other phenotype related to CLAVATA signaling is
the number of carpels produced in flowers. A num-
ber of clv1 alleles have been shown to have differ-
ent strenghts in these phenotypic traits. Somewhat
unintuitively, the clv1-11 null-mutant was shown to
have a weaker phenotype than the non-null clv1-1
mutant [16]. Müller et al. (2008) [9] also found that
the crn-1 clv1-1 double mutant showed weaker phe-
notype than the crn-1 clv1-11 double mutant. It
was suggested that the stronger phenotype of the
clv1-1 mutant compared to the null mutant is due
to a functional overlap between multiple receptors,
and that the dominant effect of clv1-1 could relate to
cross-talk with other receptors [16]. With the identi-
fication of CRN/CLV2, this receptor was suggested
to be the target for an interference by the mutated
CLV1 [9].

Several theoretical models have been used to in-
vestigate different aspects of the stem cell regula-
tory network in the SAM [17]. For example, spatial
models using static cell-based SAM templates have
been used to investigate how the WUS-activated
CLV3 expression region could be localized to the
central zone, and how WUS may be spatially acti-
vated via a pattern-forming mechanism [18,19]. The
intracellular WUS activation network has been fur-
ther investigated showing the importance of the hor-
mone cytokinin for WUS activation [20], and a cell-
population based model has been used to investigate
uncoupling of the sizes of the CLV3 and WUS do-
mains at different growth conditions [21].

None of the published models have included mul-
tiple receptor pathways for the WUS-repressing sig-
nal, and in this paper we use computational mod-
eling to investigate details of receptor and ligand
turnover, interactions, and signaling. We focus on
the differences in receptor mutants, where the main
question is how a clv1-11 null mutant can have a
weaker phenotype than a clv1-1 non-null mutant in
the context of phenotypes for a number of single and
double receptor mutants. We develop two models
capturing the main aspects of the negative feedback
loop for stem cell regulation. In the models, CLV3
binds to both CLV1 and CRN/CLV2 receptors, the
bound receptors propagate a combined signal re-
pressing WUS, and WUS induces CLV3 production.
The two models only differ in the implementation of
the clv1-1 non-null mutant. The first model is used
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to test the proposed idea of receptor interference as
an explanation of the differences in phenotypes of
clv1 mutants and the second model is used to test a
more parsimonious loss-of-signaling mutant hypoth-
esis. A motivation for the second model is that the
clv1-1 has been identified as a missense mutation in
the kinase part of the receptor [16].

A common problem for modeling biological sys-
tems is the abundance of unknown values for the
kinetic reaction parameters. To adress this problem
we use a parameter ensemble approach, where we for
each model extract a number of parameter sets, cho-
sen for the ability of the model (simulated with such
a set of parameter values) to explain data from mul-
tiple mutant experiments [22]. For each model of the
clv1-1 mutant, the parameter sets provide a semi-
global description of the model behavior, instead of
a more parameter value dependent description that
results if a single parameter set would be used.

We apply statistical tools on the parameter sets
to obtain predictions about biological properties of
the stem cell regulating network resulting from intro-
ducing the hypothezised mechanisms for the clv1-1
mutant.

Results and Discussion
We implemented the stem cell regulatory network as
a system of ordinary differential equations (ODEs)
using standard mass action kinetics for molecular
reactions (Fig. 1, Methods). The model consists
of two receptors, CLV1 and CRN (representing the
CRN/CLV2 receptor), that when bound to CLV3
repress WUS expression, and WUS-induced CLV3
expression.

Models of two clv1-1 hypotheses are both able to
explain data from wild type and six receptor mu-
tant experiments

To objectively obtain parameter values we compared
the models with experimental data from wild type
and the four receptor loss-of-function mutants clv1-
1, clv1-11, crn-1, and crn-1 clv2-1 (Methods). We
implemented clv1-11 and crn-1 clv2-1 as null mu-
tants, removing the receptors from the model, and
the crn-1 as a complete loss-of-signal mutant [9]
(Methods). The clv1-1 mutant is implemented as
either a loss-of-signal mutant (loss-of-signal model,
Fig. 1B) or by adding interference of the CRN recep-

tor pathway (interference model, Fig. 1C). To com-
pare phenotypic strength between a model and ex-
periments, we use WUS levels as a measure in the
models and compare with carpel numbers, which
represent an experimental estimate of phenotypic
strength, see e.g. [9, 16,20] (Methods).

We used an optimization algorithm to find candi-
dates for parameter values [23] and performed mul-
tiple optimizations to get an ensemble of parameter
(value) sets for each of the two models (Methods).
We performed 25,000 optimizations for each model
and kept only parameter sets for which the model
was able to reproduce data observed in the experi-
ments (Fig. 2). For the two models the optimization
algorithm found 21,968 (loss-of-signal) and 23,121
(interference) valid parameter sets (Fig. 2).

Given that the number of parameters in the
model exceeded the number of available experi-
ments, it was important to lower the tendency of
overfitting. Hence we applied double mutants as
an a posteriori validation step, where we compared
data from simulations with data from the two double
loss-of-function and null-mutants crn-1 clv1-11 and
crn-1 clv1-1 (Tab. 1), keeping only parameter sets
for which the models were able to explain the double
mutants (Fig. 3). We observed that for most param-
eter sets the models showed too strong phenotypes
for the double mutants (Fig. 3), and after the valida-
tion only 118 (loss-of-signal) and 531 (interference)
parameter sets remained. The strong double mutant
phenotypes in the simulations can be explained by
that there is no other dynamic input to the system
than the two pathways that are knocked out.

In conclusion, the loss-of-signal and interference
models are both able to reproduce data seen in wild
type, four single receptor, and two double receptor
mutant experiments.

The loss-of-signal hypothesis implies sequestration
of CLV3 for the clv1-1 mutant

The main difference between the two models is the
implementations of the clv1-1 mutant, which in each
case is described by a single parameter – k3,weak for
the loss-of-signal model and k8 for the interference
model. For the loss-of-signal model, we observed
that the average CLV1/CLV3 signal in the mutant
(k3,weak) is an order of magnitude smaller than the
wild type signal (k3) (Tab. 2), meaning that the
model indeed shows a loss-of-signal behavior. Like-
wise, we observed for the interference model that the
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Figure 1: A) A schematic drawing of the stem cell regulation model. B-C) Schematic drawings of the two
different models for the clv1-1 mutant. B) In the loss-of-signal model the strength of the signal from the
active CLV1-receptor is affected. C) In the interference model the two receptors form a complex without
function.

average interference strength in the mutant (k8) is an
order of magnitude larger than the receptor turnover
rates (t1 and t2) (Tab. 2). This simple sanity check
confirmed that the hypothesized clv1-1 -mechanisms
were used by the models in the parameter sets ob-
tained in the optimization and validation steps.

The stronger phenotype of the clv1-1 mutant re-
quires that the CRN pathway signal is weaker in
the clv1-1 mutant compared with the clv1-11 null
mutant. For the interference model this require-
ment is fulfilled by the interference mechanism it-
self since CRN receptors are made unavailable for
binding when interfered by the mutated CLV1 in the
clv1-1 mutant.

For the loss-of-signal model it is not as obvi-
ous how the CRN pathway signal can be weaker
in the clv1-1 mutant than in the clv1-11 null mu-
tant, but since the clv1-1 protein product still binds
CLV3 it could sequester CLV3, making it unavail-
able for the CRN pathway. This would indirectly
affect the signal strength of the CRN pathway. For
the clv1-11 null mutant no CLV1 is present to bind
to CLV3 leading to an increase of bound CRN re-
ceptors. To verify this intuitive explanation, we
investigated the amounts of free CLV3 and bound
CRN receptors in the different clv1 mutants. As ex-
pected we observed that both models had a lower
amount of bound CRN receptors in the clv1-1 mu-
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Figure 2: WUS equilibrium expressions in simulations of the clv1-1, clv1-11, crn-1, and crn-1 clv2-1 single
receptor mutants with the loss-of-signal (A-B) and the interference (C-D) models. Parameter sets obtained
from the optimization algorithm. Solid lines mark the regions that were selected in the optimization step
(Tab. 1).

tant than in the clv1-11 null mutant (Fig. 4A and
C), although the mechanisms for achieving this dif-
fered. Furthermore, the clv1-1 loss-of-signal mutant
had lower levels of free CLV3, confirming the seques-
tration of CLV3 (Fig. 4B). In contrast, for the inter-
ference model we observed no signs of CLV3 seques-
tration (Fig. 4D).

Taken together these results show that the loss-
of-signal model utilizes sequestration of CLV3 in the
clv1-1 mutant in order to generate a stronger pheno-
type than the clv1-11 null mutant. The interference
model, on the other hand, uses interference between
the receptor pathways and simulations suggest that
the model is less constrained by experimental data
to achieve this result (cf. Figs. 4A and C), as was
also indicated by the number of parameter sets that
passed the validation step for the two models.

The two clv1-1 hypotheses leads to differences in
properties of the stem cell regulating network

Each model had – after the optimization and valida-
tion steps – a large ensemble of parameters. Since
the wild type stem cell regulating networks of the
two models are identical, there are no a priori rea-
sons for the parameter values of the models – exclud-
ing the parameters unique for each implementation
of the clv1-1 mutant – to differ. To analyze differ-
ences in parameter values we generated a hypothesis-
neutral background distribution by optimizing the
model without using the clv1-1 mutant. We per-
formed 25,000 optimizations and for 24,686 param-
eter sets the model was able to reproduce the wild
type and the three single mutant experiments. These
parameter sets were used as a background parame-
ter distribution for the two models in the proceeding
analysis.

We performed a Principal Component Analysis
(PCA) on the joint parameters of the models. In-
terestingly, we observed that there was a clear sep-
aration both between the distributions coming from
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Mutants Carpels/Flower SE Threshold error
Wild-type 2.0 0.0 -
crn-1 3.9 0.1 0.1
clv1-11 3.9 0.1 0.1
crn-1 clv2-1 3.8 0.1 0.1
clv1-1 4.2 0.1 0.1
crn-1 clv1-11 5.3 0.1 0.5
crn-1 clv1-1 4.5 0.1 0.5

Table 1: Experiments used in the optimization and validation steps to find parameter values. The first four
mutants (above the line) are single-receptor mutants and are used in the optimization step. The remaining
two double mutants are left for the validation step. Carpel number values and standard errors from [9]. The
threshold errors are the errors used to find valid parameter sets in the optimization and validation steps.
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Figure 3: WUS equilibrium expressions in simulations of the crn-1 clv1-11 and crn-1 clv1-1 double mu-
tants with the loss-of-signal (A) and the interference (B) models with the parameter sets obtained from the
optimization step. Solid lines mark the regions that were selected in the validation step (Tab. 1).

the two models, and between those of the individ-
ual models and the background distribution (Fig. 5).
This showed that the introduction of the two hy-
potheses for the clv1-1 mutant leads to differences
in the properties of the stem cell regulating network.

To further analyze the differences between the
models we compared each parameter individually
between the two models and the background by us-
ing receiver operating characteristics (ROC) curves.
The area under the ROC-curves (AUC) quantify
differences between the three parameter distribu-
tions (Methods) [24]. We generated sorted lists
of the AUC values (Tab. 3), and some parameters
showed differences between either clv1-1 model and
the background.

To highlight features of each model we studied
the parameters that differed the most in more de-
tail to find out how they relate to biological mech-
anisms. We noted that the Hill parameters (K and

n) were among the top candidates for both hypothe-
ses (Tab. 3). These parameters tune the regulation
of WUS by the combined pathway (Methods). In
Fig. 3 we show that the validation step did intro-
duce large constraints on the parameters. It is likely
that fitting the parameters to the double mutant ex-
periments, led to a tighter regulation of these pa-
rameters. To confirm this, we did an AUC parame-
ter comparison between data after the optimization
step and data after the validation step, wherein both
Hill parameters appeared among the top three pa-
rameters (data not shown). We also did an AUC
comparison between the two models’ data sets, and
in this case the Hill parameters did not show up at
the top of the list (data not shown). As a conse-
quence of these results we did not look further into
these two parameters, but focused on the receptor
ligand dynamics.

We chose, somewhat ad hoc, to make a cut in
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Loss-of-signal Interference
Parameter Mean value Sensitivity Mean value Sensitivity

k1 2.6 ± 2.4 −0.35 ± 0.14 1.2 ± 0.6 −0.48 ± 0.10
k2 1.4 ± 1.0 0.12 ± 0.08 2.2 ± 1.4 0.32 ± 0.12
k3 3.6 ± 1.5 −1.0 ± 0.10 1.7 ± 0.9 −0.85 ± 0.13
k4 1.3 ± 0.9 −0.44 ± 0.10 1.0 ± 0.5 −0.49 ± 0.09
k5 2.3 ± 1.4 0.33 ± 0.12 2.3 ± 1.4 0.35 ± 0.10
k6 2.3 ± 1.2 −0.81 ± 0.08 1.8 ± 0.9 −0.77 ± 0.06
k7 1.2 ± 0.7 0.85 ± 0.13 1.3 ± 0.8 0.91 ± 0.09
K 2.47 ± 1.17 2.5 ± 0.6 2.2 ± 0.9 2.5 ± 0.7
n 5.1 ± 1.3 −0.19 ± 0.04 4.4 ± 1.2 −0.29 ± 0.08
t1 2.6 ± 1.2 0.61 ± 0.17 0.95 ± 0.48 0.32 ± 0.20
s1 1.3 ± 0.7 −0.62 ± 0.11 2.3 ± 1.0 −0.69 ± 0.08
t2 0.77 ± 0.55 0.24 ± 0.12 0.71 ± 0.36 0.21 ± 0.09
s2 1.9 ± 0.9 −0.67 ± 0.09 2.0 ± 0.9 −0.69 ± 0.05
t3 1.8 ± 0.9 −0.36 ± 0.21 3.9 ± 2.2 −0.15 ± 0.18
s3 2.1 ± 1.2 −1.2 ± 0.3 1.5 ± 0.6 −1.1 ± 0.2
t4 1.6 ± 0.8 1.8 ± 0.1 1.2 ± 0.6 1.6 ± 0.2
s4 0.65 ± 0.33 −0.76 ± 0.51 0.76 ± 0.35 −0.87 ± 0.59
dW 2.4 ± 2.2 −0.85 ± 0.12 2.1 ± 1.4 −0.90 ± 0.08
kW 1.4 ± 1.0 −0.15 ± 0.13 1.3 ± 0.84 −0.088 ± 0.088

k3,weak 0.15 ± 0.13 — — —
k8 — — 5.6 ± 4.8 —

Table 2: Model parameter properties for parameter sets remaining after the validation step. Mean value
columns: Averages and standard deviations of parameter values. Sensitivity column: Averages and stan-
dard deviations of wild type WUS sensitivities (Eq. 21). (loss-of-signal 118 parameter sets, interference 531
parameter sets).

AUC at 0.75 for this analysis. The comparison be-
tween the loss-of-signal hypothesis and the back-
ground emphasized two parameters: the strength of
the CLV1/CLV3 signal into the cell (k3) and the
CLV1 turnover rate (t1) (Fig. 6A-B). The compar-
ison between the interference hypothesis and back-
ground also highlighted two parameters, which in
this case were the production rates for the two re-
ceptors (s1, s2) (Fig. 6C-D).

In conclusion we have shown that parameter cal-
ibration of the different implementations of the clv1-
1 mutants imposes non-expected constraints on the
parameters of the respective models, and in the fur-
ther analysis we found four parameters, which were
the most discriminating between the models. These
four parameters will be used in the proceeding anal-
ysis to evaluate their consequences in a biological
perspective.

The WUS-repressing signal is dependent on both
receptor pathways with a slightly stronger CLV1-
dependence

The parameter that differed the most in the compar-
ison between the loss-of-signal and background dis-
tributions was k3 (Tab. 3), wherein it was larger for
the loss-of-signal model. This is not surprising since
k3 sets the strength of the signal from the bound
CLV1 receptor and the loss-of-signal mutant needs
to be able to reduce this signaling strength for the
clv1-1 mutant.

The selection of k3 may also be an indication
that it is important for the loss-of-signal model
that the CLV1/CLV3 pathway is stronger than the
CRN/CLV3 pathway. In our implementation the
strength of the former is given by k3 times the con-
centration of bound CLV1 receptors, and the latter
is given by k6 times the concentration of bound CRN
receptors. We observed that the CLV1 pathway in-
deed was slightly stronger for both models (Fig. 7)
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Figure 4: Equilibrium concentrations of bound CRN receptors and free CLV3 in simulations of the clv1-1
and clv1-11 mutants of the two models. A-B) Loss-of-signal model. C-D) Interference model. A) and C)
Concentrations of bound CRN. B) and D) Concentrations of bound CLV3.

and this effect was somewhat stronger for the loss-
of-signal model. However, the asymmetry between
the two pathways was fairly small and it is obvious
that the WUS-repressing signal is dependent on both
pathways. By only considering the wild type net-
work, one might assume that using double pathways
would mean that the strengths of the two could be
freely tuned: if the strength of one of the pathways
is increased, the increase could be compensated by
decreasing the other to obtain the same signal of the
model. This was however not what we observed in
our analysis. In contrast – when taking the mutants
into account – the simulations showed clearly that it
is important to divide the signal evenly among the
two pathways, with a slight asymmetry in favor of
the CLV1 pathway (Fig. 7). This is true for both
models, as was also suggested by the mutant experi-
ments since the clv1 phenotypes are slightly stronger
than the crn phenotypes (Tab. 1).

Degradation or internalization of the bound recep-
tor is implicated by the loss-of-signal clv1-1 hy-
pothesis

The second parameter highlighted for the loss-of-
signal model, from the comparison with the back-
ground distribution, was t1 (Tab. 3). The t1 pa-
rameter sets the turnover rate of the CLV1 recep-
tor, including the degradation of the bound receptor
(Methods). The loss-of-signal model typically had
a larger value of this parameter. Interestingly, this
was in accordance with our finding that the loss-
of-signal model without degradation of the bound
CLV1 receptor cannot explain all the mutants simul-
taneously (data not shown). Together these results
predict that for the loss-of-signal model to work the
bound CLV1 receptor needs to be removed from the
membrane, possibly via internalization.

Receptor trafficking has been suggested to be im-
portant for several cell-signaling pathways [25] and
endosomal functions play major role in plants [26].
Although there has been no experimental evidence
for CLV1 internalization, other receptors such as
FSL2 and BRI have been shown to be internalized
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[26]. Recent GFP-data of CLV1 indicates that CLV1
is located mainly in the plasma membrane but can
also be found in internal cell compartments [10]. The
model suggests that there should be a non-negligible
rate of internalization of the bound CLV1 receptor.

The interference hypothesis leads to large quanti-
ties of receptors

From the comparison between the interference model
and the background distribution it was seen that
the parameters for receptor production, s1 and s2,
are large in the interference model (Tab. 3). This
suggests that the interference model requires large
quantities of receptors to reproduce the differences
in phenotype of the clv1-1 non-null mutant and the
clv1-11 null mutant. An explanation could be that
for the receptor interference mechanism to be effi-
cient there must be enough receptors available. In
Fig. 8A the amount of free receptors was compared
with the amount of free CLV3 in wild type simula-
tions and we observed that there was an abundance
of receptors. It can be noted that large quantities
of both receptors are present (data not shown). We

also compared the background levels of receptors and
CLV3, and we observed that the background distri-
bution did not show any bias towards an abundance
of free receptors (Fig. 8C).

In addition, we compared the amount of unbound
versus free receptors (Figs. 8B and D), and only for
the interference model did we observe a bias towards
more free than bound receptors in the wild type sim-
ulations. From a biological point of view, the strat-
egy of having large amounts of free receptors might
not be advantageous given the metabolic cost asso-
ciated with the production of receptors. However,
the optimization algorithm does not take metabolic
costs into consideration and it might be that, if it
had, the result could be different. The addition of
metabolic cost would be an interesting improvement
of the optimization algorithm that could be tested.

At this point, we have examined all parame-
ters highlighted by the AUC value, but our thresh-
old value for choosing parameters to scrutinize was
somewhat ad hoc. Hence it could be of interest
to briefly look at the parameters that follow in the
sorted list (Tab. 3). For the interference model the
CLV3 production rate (s3) is lower and the unbind-
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Loss-of-signal vs. Background Interference vs. Background
Name Relation AUC Name Relation AUC

n LOS > Bg 0.93 n I > Bg 0.88
k3 LOS > Bg 0.86 K I > Bg 0.77
K LOS > Bg 0.84 s1 I > Bg 0.76
t1 LOS > Bg 0.83 s2 I > Bg 0.75
s2 LOS > Bg 0.70 s3 I < Bg 0.71
k5 LOS > Bg 0.67 k2 I > Bg 0.67
t4 LOS > Bg 0.66 dW I > Bg 0.66
k1 LOS > Bg 0.65 k5 I > Bg 0.66
t3 LOS < Bg 0.64 t3 I > Bg 0.66
s3 LOS < Bg 0.63 t4 I > Bg 0.61
s4 LOS < Bg 0.61 kW I < Bg 0.60
dw LOS > Bg 0.61 k7 I < Bg 0.58
k7 LOS < Bg 0.58 k4 I < Bg 0.58
kW LOS < Bg 0.57 s4 I < Bg 0.57
k2 LOS > Bg 0.57 k1 I < Bg 0.57
k4 LOS < Bg 0.56 k3 I > Bg 0.56
t2 LOS > Bg 0.56 k6 I > Bg 0.56
k6 LOS > Bg 0.54 t2 I > Bg 0.54
s1 LOS > Bg 0.51 t1 I < Bg 0.53

Table 3: The results from the analysis step, comparing parameter value distributions of the two models with
the background distribution. Parameters are sorted by area under ROC curves (AUC). The parameters un-
der the line has a p-value greater than 0.05 and are not statistically significant, where p-values are calculated
with a Wilcoxon rank-sum test. See also Fig. 6.

ing rate of the CLV1/CLV3 complex (k2) is higher
compared to the background distribution, acting in
directions of having low CLV3 and much unbound re-
ceptor, strengthening the conclusions in this section.
For the loss-of-function model the CRN production
rate (s2) and the unbinding rate of the CRN/CLV3
complex (k5), acting in the direction of having much
unbound CRN, which we could se in the simulated
data (data not shown). Unbound CRN favours the
possibility of sequestration of CLV3 in the clv1-1
mutant, strengthening our sequestration discussion
above.

In conclusion, our model analysis pinpointed the
receptor abundance as important for both receptors
in the interference model and also for the CRN re-
ceptor in the loss-of-function model. It would be
interesting to see how these predictions relate to ex-
perimental data, especially the somewhat counterin-
tuitive prediction that there is a large pool of inac-
tivated receptors.

Additional perturbations

Although the CLV3 feedback is simplified in the
model, it is of interest to analyze the model behav-
ior for different CLV3 perturbations since these have
been extensively studied in experiments. Loss-of-
function clv3 mutants show an increase in WUS ex-
pression, and gain-of-function mutants repress WUS.
Simulated perturbations where CLV3 production
was changed an order of magnitude up and down
are presented in Fig. 9. The models correctly pre-
dicted an increase of WUS as the CLV3 was lowered
and a decrease when CLV3 was increased. However,
it has been shown in more detailed CLV3 perturba-
tion experiments that it is possible to change CLV3
expression strength over a large range without any
apparent phenotypical effects [27]. This was not cap-
tured in our CLV3 perturbation simulations (Fig. 9)
and hence the model only qualitatively predicted the
perturbations. This did not come as a surprise since
we have focused our investigations on receptor mu-
tants.

In addition, the models’ robustness to param-
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eter perturbations were tested. We used a sensi-
tivity analysis to investigate the robustness of the
WUS levels (Methods) and the results are presented
in Tab. 2. Both models were robust to changes in
most parameters, an important feature given that
the stem cell regulation needs to be robust to en-
vironmental changes and stable over long periods of
time. The only parameters that had a sensitivity sig-
nificantly above one were K and t4, both parts of the
pathway between the signal and the WUS expression
(Methods). This part of the model is a crude approx-
imation of the internal pathway architecture. This
was the second time the internal signaling pathway
was highlighted (cf. n and K in Tab. 3), which indi-
cates the importance to further investigate this part
of the network, both in experiments and modeling.

Conclusions

The stem cell regulation in the plant shoot apical
meristem is a well studied system given its neces-
sity for above-ground plant development. The large
amount of mutant phenotype data together with sev-
eral gaps in knowledge of network details call for
computational modeling as a tool for understanding
the complex regulation at a systems level.

We have developed a model for the stem cell reg-
ulation based on the negative feedback loop between
CLV3 and WUS and focused on CLV3-receptor dy-
namics and mutants. The model takes into account
a negative regulation of WUS via two different –
although merging – receptor pathways, CLV1 and
CRN, as well as a WUS-induced CLV3 production.
Starting from the question how the clv1-11 null mu-
tant can be weaker in phenotype compared to the
non-null clv1-1 mutant, we scrutinized two models
implementing different hypothesized mechanisms for
the clv1-1 mutant.
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Figure 7: The parameters k3 and k6 set the strengths of the signals from bound CLV1 and CRN receptors.
To compare the strengths of the two receptor pathways we plot each parameter multiplied with respective
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The first tested mechanism for clv1-1 was that
the mutated CLV1 product interfered with the CRN
pathway, as previously suggested [27]. Due to the in-
terference, the CRN signal is decreased in the clv1-
1 mutant, as compared to the null mutant. Since
both pathways are decreased the phenotype becomes
stronger. We could also conclude that this hypothe-
sis led to the prediction that there is an abundance
of receptors in relation to CLV3.

In the second model the clv1-1 mutant was im-
plemented as a loss-of-signal mutant, i.e. the re-
ceptor still binds CLV3 but no signal is propagated.
We showed that the CRN signal is decreased in the
clv1-1 mutant compared to the null mutant due to
sequestration of CLV3 by the continued binding to
the CLV1-receptor. For this model to work it is nec-
essary that the bound CLV1 receptor is internalized
or degraded.

We have applied a parameter inference method
where the models were optimized to wild type and

four different single receptor mutants and later
tested against two double receptor mutants in a val-
idation step. From 25,000 optimization runs, only
a few hundred parameter sets were extracted, which
showed how the method constrained the models. In
addition, we generated hypothesis-neutral parame-
ter sets by optimizing to the wild type and three
single receptor mutants not including the clv1-1 mu-
tant. We continued our analysis with these three en-
sembles of parameters to get a semi-global compari-
son between the two models. The area under ROC-
curve was used as a statistical quantification of how
the two hypothesized clv1-1 mechanisms lead to dif-
ferences in parameter values, which was used to ob-
tain the conclusions described above. The adopted
approach for extracting parameter ensembles and
using statistical methods when comparing different
hypotheses is generally applicable for systems biol-
ogy modeling and provides an objective approach
for dealing with unknown parameters. A future im-
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Figure 8: Study of the amount of free receptors compared with the amounts of bound receptors and free
CLV3. A and C) Concentrations of free CLV3 compared with amounts of free receptors in simulations of
wild-type with the interference model (A) and the background distribution (C). B and D) Amounts of bound
receptors compared with amounts of free receptors in simulations of wild-type with the interference model
(C) and the background distribution (D).

provement could be to adopt machine learning tech-
niques of cross-validation by selecting different mu-
tants to be included in the optimization and vali-
dation sets and then merge into a single parameter
ensemble.

Our model represents a simplification of the sys-
tem, most notably by disregarding spatial factors
and not including all possible receptors known to
be important for WUS regulation. However, these
simplifications allowed us to investigate multiple re-
ceptors with an almost complete set of receptor mu-
tants. We were not able to discard any of the two
clv1-1 hypotheses, but still we were able to deliver
experimentally verifiable predictions for both hy-
potheses, also on general properties of the stem cell
regulating network that are indirect consequences of
the hypotheses that would have been difficult to pre-
dict by intuition alone. The loss-of-signal mecha-
nism has the advantage that it is more parsimonious
since it only affects the signaling capacity, which fits
well with the allele’s known mutation in the kinase

domain. The interference mechanism, on the other
hand, is less constrained and seems to have an easier
task in producing the mutant results. In the end it
is experiments that should resolve the issue and we
hope that this investigation can serve as an inspira-
tion both for new experiments and for modelers to
include multiple receptors in models of plant stem
cell regulation.

Methods
Models

In our models CLV3 binds to the receptors CLV1 and
CRN and thereby activates them. Activated CLV1
and CRN contribute to a signal X which inhibits
expression of WUS. WUS promotes production of
CLV3 and therefore enables for a self-regulating sys-
tem. CLV3, the receptors CLV1 and CRN, and the
signal X all have a basal level of production, while
WUS has basal production that can be repressed by
the X signal. All molecules have a concentration-
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dependent degradation rate. See Fig. 1A for a
schematic drawing of the wild type model. We use
mass action kinetics to get a mathematical repre-
sentation of the model in the form of a system of
ordinary differential equations. For the wild type
case the equations are

d[CLV1]
dt

=t1(s1 − [CLV1]) − k1[CLV1] · [CLV3]

+ k2[CLV1/CLV3] (1)
d[CRN]

dt
=t2(s2 − [CRN]) − k4[CRN] · [CLV3]

+ k5[CRN/CLV3] (2)
d[CLV3]

dt
=t3(s3 − [CLV3]) + kW [WUS]

− k1[CLV1] · [CLV3] + k2[CLV1/CLV3]
− k4[CRN] · [CLV3] + k5[CRN/CLV3]

(3)

d[CLV1/CLV3]
dt

= k1[CLV1] · [CLV3]

− k2[CLV1/CLV3] − t1[CLV1/CLV3] (4)

d[CRN/CLV3]
dt

= k4[CRN] · [CLV3]

− k5[CRN/CLV3] − t2[CRN/CLV3] (5)

d[X]
dt

=t4(s4 − [X]) + k3[CLV1/CLV3]

+ k6[CRN/CLV3] (6)

d[WUS]
dt

= k7
Kn

Kn + [X]n
− dW [WUS], (7)

where [CLV1] and [CRN] are concentrations of un-
bound receptors, [CLV3] is the concentration of the
CLV3 peptide, [CLV1/CLV3] and [CRN/CLV3] are
concentrations of bound receptors, [X] is the concen-
tration of the signal X, and [WUS] is the concentra-
tion of the transcription factor WUS.

The parameters k1, k2, k4, and k5 are reaction
constants for binding of CLV3 to CLV1 and CRN.
The parameters k3 and k6 set the strengths of the
signals from the activated receptors to the signal X.
Production and degradation of CLV1, CRN, CLV3,
and X are determined by the parameters t1, s1, t2,
s2, t3, s3, t4, and s4, while dw sets degradation of
WUS. Production of WUS, downregulated by X, is
controlled by parameters k7, K, and n. Note that
we do not have experimental estimates of parameter
values and it is mainly the relation between param-
eters that is of importance; hence we refrain from
specifying unit values on our parameters.

Our model is to be seen as a simplification of
the SAM. The SAM is divided into several spatial
regions each characterized by different gene expres-
sion patterns. Cells in the SAM also divide with
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time and move between different regions. We do not
address the positioning associated with the different
expression domains. While WUS, CLV1, and CRN
are expressed in the same cells, CLV3 is not [2, 3].
We include a simplified CLV3 feedback via a direct
connection from WUS and a direct binding of CLV3
to the receptors. The rationale for this simplification
is that the way the spatial signals are propagated is
not fully understood and would require adding mul-
tiple additional hypotheses (see e.g. [18, 19]). Our
implementation still covers the main feedback inter-
actions needed to investigate the behavior of the dif-
ferent receptor mutants that are the main target of
this work. The internal part of the signaling path-
way is in our model described by a single signal X.
Although the POL/PLL1 has been shown to be im-
portant for mediating the signal [14], the details of
the architecture is unknown and we point this out
by instead representing the signal with X.

The state of the CLV signaling network is in our
model measured via the WUS expression levels. In
the plant, WUS and CLV3 are known to be altered
when the CLV signaling is perturbed, both by an ex-
panding/decreasing expression region and in an in-
crease/decrease in levels [15], and our WUS measure
serves as a simplification of this.

Mutants

We are interested in several receptor mutants and we
implement them in different ways. The clv1-11 and
crn-1 clv2-1 mutants are both modeled by removing
all presence of CLV1 ([CLV1] = [CLV1/CLV3] = 0)
and CRN ([CRN] = [CRN/CLV3] = 0) respectively.
The crn-1 mutant is modeled by setting k6 = 0. The
remaining mutant of interest – clv1-1 – is treated
differently in two models.

In the loss-of-signal model the parameter k3 is
replaced by another parameter k3,weak for the clv1-1
mutant (Fig. 1B).

In the interference model an extra mechanism
is introduced (Fig. 1C). For the clv1-1 mutant, the
receptors CLV1 and CRN can form a complex and
when they do the complex is discarded. Mathemat-
ically an extra term is added to the time derivative
of CLV1 and CRN,

d[CLV1]
dt

= . . . − k8[CLV1] · [CRN] (8)

d[CRN]
dt

= · · · − k8[CLV1] · [CRN]. (9)

Computational Procedures

Our approach can be divided into three steps; an
optimization step, a validation step, and an anal-
ysis step. In the optimization step we use an opti-
mization algorithm to find parameter (value) sets for
which the models can reproduce the wild type and
the four loss-of-function mutants. In the validation
step we choose the subset of these parameter sets for
which the models also explain the two double mu-
tants. In this way we are reducing the problem of
overfitting to data, which usally hampers the predic-
tive power of the models.

After the validation step a large number of pos-
sible parameter sets remain. Instead of the more
usual approach of just choosing the parameter set
for which the model best matches experimental data,
we keep all parameters and look at the ensemble-
output of the model. In this way we get semi-global
robust predictions of the model behavior. However,
this leaves us with lots of possible parameter sets
which require further analysis. In the analysis step
of our computational approach we deploy a number
of computational and statistical tools to analyze the
ensemble of obtained parameter sets. In this way
we are trying to further analyze the behavior of the
models to find significant differences.

Optimization

A Simulated annealing algorithm was used to fit pa-
rameters to experimental data [28]. The algorithm
is divided into four steps.

1. An initial set of parameters, pinitial, is ran-
domly chosen from a uniform distribution.

2. A proposed new set of parameters pnew is
chosen by randomly picking a parameter and
changing its value by – with equal probabil-
ity – multiplying or dividing with a factor
1.01. An associated energy is calculated by a
parameter-dependent energy (objective) func-
tion E = E(p) (see below).
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3. The new parameter set pnew is kept with a
probability P = min(1, e−β(E(pnew)−E(pold))),
where β is a positive parameter inversely pro-
portional to a virtual temperature.

4. Step 2-3 is repeated while β is being increased
every thousand iterations by a factor 1.1, start-
ing from 1 until it ends at 10,000.

For every iteration, the energy associated with
the current parameter set is compared to the overall
best performing parameter set, i.e. the parameter
set with the lowest corresponding energy. When β
reaches its maximum value the algorithm stops and
the best performing parameter set is used as the so-
lution to the optimization problem.

Each optimization gives a proposed parameter
set. After each optimization the parameter set is
tested with the model against the experimental data.
If the model is able to reproduce the experimental
data within the errors supplied the parameter set is
kept, otherwise it is discarded.

Energy function

To compare phenotypic strength between models
and experiments, we use WUS levels as a measure in
the models and compare with carpel numbers from
experiments. Carpel numbers have been used exten-
sively in the literature as a measure of the pheno-
typic strength of perturbations to the CLV signal-
ing network (see e.g. [9, 16], and [20] for an exam-
ple where both RT-PCR measurements of WUS and
carpel numbers are reported).

To calculate the energy for a given parameter set
we first calculate the equilibrium of WUS concentra-
tion, [WUS]∗, for the wild type experiment, and for
the crn-1, clv1-11, crn-1 clv2-1, and clv1-1 mutant
experiments. The WUS levels for the mutant experi-
ments are normalized with the wild type WUS level.
The energy function is defined as

E =
∑

i

([WUSi]∗ − Di)
2
, (10)

where [WUSi]∗ is the normalized equilibrium WUS
expression for experiment i, Di is the expected value
from experiment, and the summation is over all mu-
tant experiments. The experimental values that we
have used to find parameters are presented in Tab. 1
[9].

Validation

To reduce overfitting we leave two double mutant
experiments out of the optimization step and in-
stead use them for a validation step. Simulations of
two double mutants crn-1 clv1-11 and crn-1 clv1-1
for the two models are compared with experimen-
tal data to find parameters that can be used to re-
produce the behavior of both the single and double
mutant experiments. In the validation step we use a
larger threshold for validating simulations compared
to what was used in the optimization step (Tab. 1).

Numerical solutions

We are interested in fixed point solutions to the sys-
tem, which are obtained by solving the system of
equations when all time derivatives are equal to zero.
At equilibrium the fixed point concentrations [X]∗,
[CLV1/CLV3]∗, and [CRN/CLV3]∗ are equal to

[X]∗ = s4 +
k3[CLV1/CLV3]∗ + k6[CRN/CLV3]∗

t4
,

(11)

[CLV1/CLV3]∗ =
k1

k2 + t1
[CLV1]∗ · [CLV3]∗, (12)

[CRN/CLV3]∗ =
k4

k5 + t2
[CRN]∗ · [CLV3]∗. (13)

The three fixed point concentrations [CLV1]∗,
[CRN]∗, and [CLV3]∗ are given by the solution to
the system of equations

0 =t1(s1 − [CLV1]∗) − b1[CLV1]∗ · [CLV3]∗

− k8[CLV1]∗ · [CRN]∗, (14)
0 =t2(s2 − [CRN]∗) − b2[CRN]∗ · [CLV3]∗

− k8[CLV1]∗ · [CRN]∗, (15)
0 =t3(s3 − [CLV3]∗) − b1[CLV1]∗ · [CLV3]∗

− b2[CRN]∗ · [CLV3]∗ + kW [WUS]∗, (16)

with k8 �= 0 for the clv1-1 mutant in the interference
model and k8 = 0 otherwise, and where

b1 =
t1k1

k2 + t1
and b2 =

t2k4

k5 + t2
. (17)

The equilibrium expression of WUS, [WUS]∗, is the
solution to

k7
Kn

Kn + [X]∗n − dW [WUS]∗ = 0, (18)
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To numerically find the equilibrium concentrations
we first consider Eq. 18 as a function f of WUS ex-
pression

f([WUS]) = k7
Kn

Kn + X∗([WUS])n
− dW [WUS],

(19)
where X∗ = X∗([WUS]) is a function of WUS given
by Eqs. 11-16. The equation f([WUS]) = 0 is solved
numerically by the bisection method [28]. As an in-
termediate step we solve the system of equations,
Eqs. 14-16, with Newton’s method [28]. We define
equilibrium as follows; the Newton’s method iterates
until |e| < 0.001, where

e =
(

d[CLV1]
dt

,
d[CRN]

dt
,
d[CLV3]

dt

)
, (20)

and the bisection method iterates until |f([WUS])| <
0.0001.

Sensitivity analysis
The models’ robustness to parameter perturbations
were tested by a sensitivity analysis [29]. If M is
a quantity of the system and p is a parameter, the
sensitivity Sp is defined as

Sp =
∂M

∂p

p

M
. (21)

The absolute value of Sp serves as a measurement
of how sensitive M is to perturbations in parameter
p. A greater value corresponds to a greater sensitiv-
ity. The sign of Sp tells if the response is positive
or negative in respect to a positive change of the
parameter. We use the equilibrium WUS concentra-
tion for the wild type network for our measurable
quantity during our sensitivity analysis.

Receiver under chacteristic curves
A receiver under characteristic (ROC) curve mea-
sures the overlap of the distributions of two data sets
A and B. The area under the ROC-curves (AUC)
quantify differences between A and B independent
of the number of parameter sets within the distri-
butions. By calculating the AUC we get a value
between 0 and 1, where 0 means that the values of
data set A are all greater than those of data set B,
0.5 means that the two sets come from the same dis-
tribution, and 1 means that all values of data set B
are greater than those of data set A [24].

Implementation and data set

The optimization algorithm, the numerical solver,
and the statistical tools are in house imple-
mentations and are publicly available upon re-
quest. Parameter data can be found at
http://www.thep.lu.se/~henrik/clvCrn/.
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Developmental Patterning by
Mechanical Signals in Arabidopsis
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A central question in developmental biology is whether and how mechanical forces serve as cues
for cellular behavior and thereby regulate morphogenesis. We found that morphogenesis at the
Arabidopsis shoot apex depends on the microtubule cytoskeleton, which in turn is regulated by
mechanical stress. A combination of experiments and modeling shows that a feedback loop
encompassing tissue morphology, stress patterns, and microtubule-mediated cellular properties is
sufficient to account for the coordinated patterns of microtubule arrays observed in epidermal
cells, as well as for patterns of apical morphogenesis.

The surface layers of plant tissues are
under considerable tension (1). This re-
sults from the fact that individual cells,

including those in deeper layers, are tightly bound
to each other through their cellulosic walls, on
which they exert turgor pressure (2). In addition,
plant cell walls resist stress (force per unit area)
differentially, depending on the direction of stress
(3). This anisotropy is a consequence of the di-
rection in which the rigid cellulose microfibrils
are laid down during wall synthesis (4). Because
this direction is often parallel to the cortical mi-
crotubules of the plant cell, it is thought that the
microtubules might serve as tracks along which
the cellulose synthase complexes travel (5, 6).
Green and others have proposed that cortical mi-
crotubule orientations correlate with anisotropic
stresses, but the existence of such a causal link
with morphogenesis has never been further in-
vestigated (7–11). We have chosen to dissect this
link in shoot apical meristems, a population of
stem cells that continuously generate aerial organs
while undergoing complex shape transformations
(12, 13) (fig. S1).

Morphogenetic role of the microtubules at
the shoot apex. To assess the functional impor-
tance of microtubules within the Arabidopsismeri-
stem, we depolymerized the microtubules with the
use of oryzalin and monitored the resulting cell
morphology (14). In the absence of microtubules,

the meristems kept growing but no cytokinesis
occurred, and giant polyploid cells formed (Fig.
1A) (14). Despite these changes, differentiation
and patterning were not drastically affected. We
observed slow-growing cells in the meristem and
fast-growing cells in the primordia, and phyllotaxis
was not altered 46 hours after complete de-
polymerization of microtubules (Fig. 1B and fig.
S2). Cell identity in the boundary domain be-
tween the meristem and new floral primordia did
not seem to be altered, as a boundary domain
reporter, pBOUND-GFP, was induced in this do-
main several days after the treatment (Fig. 1C and
fig. S2).

However, depolymerization of the micro-
tubules resulted in a distinct change in the geom-
etry of the cells. The final structure resembled
two-dimensional (2D) foams, which are purely
isotropic in nature. Notably, all the walls met at
angles of 120° and the curvature of the walls ap-
proached that of a soap-bubble network (Fig. 1A)
(15, 16). In addition, certain morphogenetic events
did not occur. In particular, the crease between
the meristem and primordia no longer formed
(Fig. 1, B to D, and fig. S2). Hence, although
microtubules may not be critical for develop-
mental patterns such as phyllotaxis, they are re-
quired for certain morphogenetic events such as
tissue folding.

In the presence of oryzalin, organ outgrowth
was still observed, which suggests that plant shape
is at least partially independent of microtubule-
based anisotropy. Because growth patterns are
thought to depend largely on the plant hormone
auxin (17–21), we next used a double drug treat-
ment where both microtubules and auxin trans-
port were inhibited. This led to the formation of a
spherical shoot tip (fig. S3A) (14), as might be ex-
pected if microtubule-controlled anisotropy operates
in parallel with auxin-driven growth rate patterns.

Cortical microtubule orientations and dynam-
ics are correlated with morphogenesis. To further
analyze the role of microtubules in morphogenesis,
we investigated microtubule dynamics in the meri-

stem via live imaging of plants expressing green
fluorescent protein (GFP) fused to the microtubule-
binding domain (MBD) of microtubule-associated
protein 4 MAP4 (22, 23). A quantitative analysis
of the cortical microtubules at the surface of more
than 30 meristems revealed three aspects of
microtubular arrays:

1) The microtubules at the meristem summit
were highly dynamic, constantly changing their
orientation at 1- to 2-hour intervals (Fig. 2, A to
C, and movie S1) (24, 25).

2) At the periphery and base of the meristem,
orthoradial (circumferential) cortical microtubule
arrays were dominant. This orientation was more
apparent when organ initiation was inhibited in
the presence of the auxin transport inhibitor
N-1-naphthylphthalamic acid (NPA) and seemed
to be the default orientation at the periphery in the
absence of floral primordia (fig. S4).

3) As flower primordia started to grow out, a
supracellular alignment of microtubules along the
boundary between the meristem and the primor-
dium appeared (Fig. 2, A and B, and fig. S4).
This configuration was stably maintained over
prolonged periods (up to 20 hours). Consistent
with these highly ordered and stable interphase
arrays, about 90% of the cells (n = 158, eight
meristems) in this zone displayed preprophase
bands and division planes in the same tangential
orientation. Microtubules were aligned during the
activation of pFIL::dsRED-N7 (18), a late marker
of floral primordium initiation, showing that the
alignment accompanies flower outgrowth (Fig. 2D).

Microtubule orientations align along predicted
principal stresses. In a multicellular setting, the
field of physical forces represents a potential source
of information for the cells to know their relative
position (7, 26–30). Several studies have sup-
ported the proposal that maximal stress directions
orient cortical microtubules, most probably via a
response to strain in the cell wall (8, 10, 31–33).
However, these studies do not address the link
with morphogenesis. In addition, it remains diffi-
cult to test the plausibility of such a hypothesis in
a tissue context.We therefore used a combination
of physical and mathematical approaches to ad-
dress these issues.

To assess whether stresses might orient mi-
crotubules, we first calculated the expected pattern
of stresses at the shoot apical meristem surface
by considering the apex at the tissue scale. Our
mechanical model of the meristem as a pressure
vessel—a shell inflated by an inner pressure—
depends on the following assumptions: (i) The
tissue is elastic [(34, 35) and our results], (ii)
the outer wall of the epidermal layer supports
the turgor pressure and acts as a limiting factor
for growth (36, 37), and (iii) the outer wall of
the epidermal layer is under a uniform pressure
from the inside (34). Using these properties, we
calculated the directions of principal stresses in
different domains of the shoot apex and found
that they are parallel to the observed cortical mi-
crotubule orientations (Fig. 3, A and B).
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To further investigate the correlation between
predicted stresses and microtubule orientations,
we designed a 3D cell- and wall-based tissue
model representing the surface of the L1 layer of
the shoot and incorporating the three assumptions
listed above. The model includes mechanisms
such as elastic wall mechanics, wall growth, cel-
lular mechanical anisotropy (microfibrils), stress
feedback, and growth and proliferation (fig. S5,
A and B) (38). Mechanical anisotropy is intro-
duced by defining a microtubule direction within
each 2D cell where the stiffness of the wall ma-
terial increases as the wall becomes more parallel
to the direction of the cortical microtubules. Stress
feedback is introduced by updating the micro-

tubule directions to align along maximal stress
directions, which for one cell is measured by the
directional weighted average of its wall stresses.
Note that strengthening of the walls (by aligning
microfibrils) counteracts the main stress intensity
but maintains the main stress direction.

The model faithfully reproduced the orthora-
dial and random microtubule alignments on syn-
thetic templates of the stem and tip of a dome,
respectively, and predicted alignment along the
crease for a saddle-shaped template (fig. S6).
Simulated microtubule directions in a template
extracted from a confocal data set also predicted
the experimentally seen boundary alignment zone
as well as the more random microtubule orienta-

tions at the apex (Fig. 3C). A growth model was
then introduced to examine microtubule orien-
tations during morphogenetic events, including
primordium growth and tip growth (38). Primor-
dium growth was initiated by locally decreasing
wall stiffness, leading to the outgrowth of a well-
defined bump. As the simulated primordium
formed, the model also predicted an orthoradial
microtubule alignment as observed in the region
between the meristem and the primordium (Fig.
3D and movie S2) as well as around the simu-
lated primordium, thus reproducing the alignment
zone between the meristem and the primordium.
Growth of the meristem and stem was simulated
by implementing growth at a rate that was depen-

Fig. 1. Morphogenetic
role of the microtubules.
(A) Effect of oryzalin
treatment on cell shape.
Walls tend to meet at
120° and become con-
vex or concave in cells
with less or more than
six walls, respectively, as
observed in a 2D foam.
Numbers of walls are in
red. Scale bar, 10 mm.
(B) Three-dimensional re-
constructions of GFP-LTI6b
meristems treated with
oryzalin immediately af-
ter the treatment (t0)
and 23 and 46 hours
later. Note the absence
of a crease at P1 and
the position of P0 follow-
ing the expected phyl-
lotactic pattern. Scale bar,
50 mm. (C) pBOUND-GFP
(green) expression 3 days
after the first oryzalin
treatment, in the absence
of a crease (arrowhead), in
a meristem stained with
the fluorescent lipophilic
dye FM4-64 (red). Scale
bars, 50 mm. (D) Longi-
tudinal optical sections
of an existing crease
being flattened over time
after oryzalin treatment
(red arrowhead). Scale
bar, 50 mm.
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dent on the distance to the apex (Fig. 3E and
movie S3) (39). In these simulations, the mi-
crotubule orientations were unstable at the apex
while the orientations on the stem stabilized in
a mainly orthoradial pattern, as was observed.
Finally, we tested whether the model could also
predict the effects of oryzalin treatment, simu-
lated by removing the anisotropic contribution to
wall mechanics. Both a loss of the crease in the
experimental template and ballooning of cells in a
pin-shaped growth simulation were qualitatively
predicted (fig. S3, B and C).

Cell ablation results in characteristic micro-
tubule reorientations. The results so far suggest
a scenario where the alignment of microtubules
to maximal stress directions modifies the orien-
tation of newly deposited cellulose microfibrils,
thereby regulating morphogenesis. We next tested
this scenario experimentally.

We began with a laser ablation approach. We
reasoned that by killing cells and thereby locally
eliminating turgor pressure and weakening cell
walls, we could induce characteristic changes in
stress and strain patterns. To obtain theoretical
predictions for the resultant stress patterns due to
laser ablation, we used the finite-element method
(FEM) to model the L1 layer of meristem cells
(38). The ablation is simulated as a loss of turgor
as well as diminution of elastic properties of the
walls of the ablated cells (fig. S5C) (38).

The simulation predicts rearrangement of prin-
cipal stress directions during ablation. Before the
removal of the cell, the principal stress patterns
depend more on the geometry of each individual
cell than on the relationship between cells (Fig.
4A, left). Assuming that the top wall is intact at
t = 0 hours and gradually weakens afterward, our
modeling predicted the maximal stress direction
(hence the microtubule orientations) initially to
be radial and then to become circumferential with
respect to the wound (Fig. 4A).

We used a laser to target cells within the cen-
tral zone of the meristem, where observed corti-
cal microtubule alignments and growth patterns
suggest that cell walls are largely mechanically
isotropic. Time-lapse analysis of cells surround-
ing an ablation site showed a slight initial expan-
sion of surrounding cells into the wound during
the first 1.5 hours after laser treatment, consistent
with a sudden imbalance in stresses due to loss of
turgor in the dead cell or cells (Fig. 4B andmovie
S4). During this time, no significant microtubule
reorientation was detected. However, starting at
1.5 hours and continuing to about 5.5 hours after
ablation, we subsequently observed microtubule
orientations to align circumferentially (Fig. 4B and
movie S4). These results match the predictions of
our model and are also consistent with previous
reports of circumferential microtubule rearrange-
ments in response to wounding (40, 41). The ab-

sence of an initial radial alignment suggests that
the initial stresses associated with radial expan-
sion are too transient to trigger a response.

Although these results support our hypothesis,
several alternative hypotheses could not be ex-
cluded at this stage. For instance, it is possible
that the microtubules may be reorienting perpen-
dicular to the observed initial cell deformations,
contrary to our stress alignment proposal. How-
ever, because the realignment occurs hours after
the initial radial deformation is initiated, this pos-
sibility seems less likely. Another hypothesis is
that the microtubules may not be responding to
mechanical stress but rather to unrelated bio-
chemical wound signals. To test this last scenario,
we first proceeded with ablations in the boundary
domain. We reasoned that local diffusion of a bio-
chemical signal in this domain and in the central
zone should be roughly similar, whereas in the
boundary the stress field generated by the abla-
tion should be in competition with the strong
tangential stress at the crease (fig. S7, A and B).
In contrast to central zone ablations, ablations in
boundary regions resulted in a lack of micro-
tubule reorientation in neighboring cells, or a de-
lay of reorientation lasting 7.5 hours or more in
some cases. In most cases (five of six experi-
ments), we could find at least one cell with no
circumferential microtubule orientation 7.5 hours
after ablation, and in two cases, no reorientations

Fig. 2. Microtubule patterns in the shoot apical meristem. (A) p35S::GFP-MBD
expression at the surface of a representative meristem 48 hours after NPA removal.
Scale bar, 20 mm. (B) Close-up of the same group of cells at the periphery of the
meristem, with mixed microtubule orientation before primordium initiation and a
coherent supracellular microtubule alignment 20 hours later as the primordium
grows out. The blue star marks the same position in both images. Scale bar, 10 mm.

(C) Cortical microtubule behavior in each cell of the meristematic dome every 2 hours for 16 hours before and after cell division (n = 144 cells, compiled from
five meristems). Blue, percentage of dividing cells at each time point; green, percentage of cells with one major orientation maintained between two time points;
red, percentage of cells with a changing microtubule orientation greater than 30° over two time points. (D) p35S::GFP-MBD (green) and pFIL::dsRED-N7 (red)
expression in the boundary (arrowhead) of a representative meristem at three time points. Scale bar, 20 mm.
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occurred in any of the surrounding cells 7.5
hours after ablation (fig. S7C). The variability
of the results could reflect the different stages
of boundary development or the exact position of
the ablated cells. We also tried a different set
of experiments in which two cells or patches of
cells, in close proximity but separated, were ab-
lated. We reasoned that diffusion of any type of
biochemical signal emanating from the ablated
regions would result in a relatively flat diffusion
gradient in the regions between them, and there-
fore that the microtubule arrays in these regions
should not be well defined (fig. S8, A and B). In
both cases, with ablations separated by multiple
cells or single cells, we found that the resulting
microtubule orientations for regions between the
ablation sites were well defined and clearly cir-
cumferential in nature (fig. S8C; four of four ex-
periments). This pattern matches our theoretical
predictions for stress patterns surrounding two
ablation sites but did not match our prediction for
response to a diffusion gradient. Although stress
is the simplest explanation, more complex, non-
mechanical cell-cell communication models are
still possible.

Application of constraints shows a cell-
autonomous microtubule response to stress.
To more directly ascertain the relationship be-
tween microtubule orientations and mechanical
signals, we pursued a second approach involving
the direct application of force to the meristem.
We designed growth chambers in which meri-
stems could be constrained between one fixed
teflon blade and one teflon blade attached to a
spring (Fig. 4, C and D). Using this device, we
were able to change meristem shape (Fig. 4E and
figs. S9A and S10). After the release of the con-
straint, themeristem reverted to its original shape,
showing its elastic properties, and later initiated
organs (fig. S9A). We predicted a weakly aniso-
tropic stress larger in the direction parallel to the
blades (fig. S10). Consistent with these calcula-
tions, only weak anisotropic changes in the shape
of individual cells were visible at the meristem
summit of the constrained meristems (Fig. 4F
and movie S5).

We next analyzed the behavior of the cortical
microtubules in each cell before and after the
constraint. This revealed that the number of cells
with unstable microtubules decreased relative to
observations of nonconstrained meristems (Fig.
4G, green histograms, and figs. S9B and S10).
Second, an analysis of microtubule orientation in
489 individual cells from 13 compressed meri-
stems showed that most cells reoriented their
microtubules toward the axis parallel to the blades,
either by stabilizing an orientation parallel to the
blades after compression or by rotating their
microtubules parallel to the blades (Fig. 4F, figs.
S10 and S11, and movies S5 and S6). These data
are consistent with our proposal that microtubules
align parallel to maximal stress directions. Although
the response was statistically significant under the
conditions tested here, it was also a noisy response
because even neighboring cells can have micro-

Fig. 3. Physical calculations and modeling of stress patterns in the meristem. (A) The meristem modeled
as a pressure vessel. Each point has a coordinate in the orthoradial (r) and meridional (s) direction and is
characterized by a curvature tensor (Css, Crr, Crs) and a stress tensor (sss, srr, srs), where R is the radius of
the cylindrical stem and of the apical dome, and P is pressure. (B) The direction of microtubules is in
agreement with the highest-stress orientations. The mechanical equilibrium of the outer layer imposes
∂ssss + ∂rsrs = 0, ∂ssrs + ∂rsrr = 0, and Csssss + Crrsrr + 2Crssrs = P, where ∂s is the partial derivative with
respect to s. In the following, we consider only special points (of local symmetry) for which (r,s) are
principal directions and Crs = 0, srs = 0. If the apical dome is represented as a spherical dome of radius R,
we obtain sss = srr = PR/2, meaning that the stress is isotropic (44). This is correlated with the absence of
preferential direction for microtubules in the apical dome. sN = PR/2 serves as a reference for stress and
d = |sss – srr|/sN as a measure of the anisotropy of stress. We represent the flanks of the meristem as a
cylinder of radius R. The stress is greater in the circumferential direction, srr = PR, than along the
meridian, sss = PR/2 (44), so that d = 1, thus leading to a strongly anisotropic stress on the flanks of the
meristem. We consider the center of the crease between a primordium and the apex as having radii of
curvature R along the axis of the crease, r, and –r in the perpendicular direction, s. The minus sign
denotes the inverted direction of curvature with respect to the rest of the meristem. The corresponding
curvatures are Css = –1/r and Crr = 1/R. The equations of equilibrium can be solved in the limit where r is
small relative to R: sss ≈ –Pr/2 and srr ≈ PR/2, so that d ≈ 1, thus leading to a strongly anisotropic stress
at the crease between a primordium and the apex. (C) Left: p35S::GFP-MBDmarking cortical microtubules
(green) and cell shape (red) at the surface of a meristem generating a young primordium (P). Scale bar,
20 mm. Right: Microtubule orientation (red bars) in the 2D stress-feedback model on cells extracted from
the confocal data, notably reproducing the original microtubule orientations in the boundary. (D)
Simulation of an auxin-induced primordium. The 2D stress-feedback model results in alignment of
microtubules orthoradially around the growing primordium. (E) Tip-growing simulation with the stress-
feedback model generating a growing stem. Microtubules align mainly orthoradially on the stem, which
has a regular shape.
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tubules with radically different orientations (Fig.
4F and movie S5). We propose that this varia-
bility reflects the cell-autonomous nature of the
response and that this follows from the likely
different mechanical configurations of different
plant cells.

Concluding remarks. We have described a
link betweenmechanical forces and development
in plants. Recent work has also revealed such a
relation in animals. In particular, the phenome-
non of wound-induced actin alignment in epithe-
lial sheets closely parallels the alignment of plant
microtubules around a wound, with both responses
presumably functioning to reduce or heal tissue
damage (42). Unlike animals, however, plant tis-
sues seem to react to oriented forces by conferring
anisotropic properties to their extracellular matrix.
As a result, plant tissues seem to react to mechan-
ical forces as solids, whereas animal tissues react
as fluids. From a physical perspective, this points
to a basic difference between the two kingdoms.

On the basis of our results, we propose that
two fundamental regulatory circuits control
plant morphogenesis at the shoot apex. First, a
microtubule-dependent, cell-autonomous mecha-
nism mechanically reinforces cells against maxi-
mal tension directions along the meristem surface,
most likely via the regulation of load-bearing cel-
lulose fiber deposition and by the addition of new
walls generated by oriented mitosis in these direc-
tions. This mechanism is required for specific mor-
phogenetic events such as tissue folding and the
maintenance of a cylindrical stem. However, in
contrast to previous proposals (36, 43), this stress-
dependent control of morphogenesis at the meri-
stem can be uncoupled from the control of differ-
ential expansion rates, because the rapid outgrowth
of organs at particular locations continues despite
microtubule depolymerization. This second pro-
cess involves the creation of differential auxin
concentrations through polar transport and possi-
bly synthesis (17–21). We therefore propose that
auxin-dependent patterning operates at least
partially independently of, and in parallel to, the
microtubule-controlled anisotropy. Our experi-
mental results and models show that these two
mechanisms are sufficient to explain all observed
complex shape changes at the meristem.
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A Competitive Inhibitor Traps LeuT
in an Open-to-Out Conformation
Satinder K. Singh,1 Chayne L. Piscitelli,1,3 Atsuko Yamashita,4* Eric Gouaux1,2

Secondary transporters are workhorses of cellular membranes, catalyzing the movement
of small molecules and ions across the bilayer and coupling substrate passage to ion gradients.
However, the conformational changes that accompany substrate transport, the mechanism by which
a substrate moves through the transporter, and principles of competitive inhibition remain unclear.
We used crystallographic and functional studies on the leucine transporter (LeuT), a model for
neurotransmitter sodium symporters, to show that various amino acid substrates induce the same
occluded conformational state and that a competitive inhibitor, tryptophan (Trp), traps LeuT in an
open-to-out conformation. In the Trp complex, the extracellular gate residues arginine 30 and
aspartic acid 404 define a second weak binding site for substrates or inhibitors as they permeate
from the extracellular solution to the primary substrate site, which demonstrates how residues that
participate in gating also mediate permeation.

Secondary active transporters are ubiquitous
integral membrane proteins that couple
the potential energy stored in preexist-

ing ion gradients to the concentrative uptake
of polar and charged molecules across the lipid
bilayer of the cell (1–3). Members of the solute
carrier 6 (SLC6) family of sodium-coupled trans-
porters, also known as neurotransmitter sodium
symporters, make up one of the most widely
investigated and pharmacologically important
classes (4, 5). SLC6 proteins play a central role
in diverse physiological processes, ranging from
the maintenance of cellular osmotic pressure (6)
to the reuptake of small-molecule neurotransmit-

ters in the brain (7). SLC6 dysfunction is im-
plicated in numerous debilitating illnesses, such
as depression (8), obsessive-compulsive disorder
(9), epilepsy (10), autism (11), orthostatic intol-
erance (12), X-linked creatine-deficiency syn-
drome (13), and retinal degeneration (14). The
transport activity of these molecular machines
can be inhibited by many different compounds,
including tricyclic antidepressants (TCAs) (15),
selective serotonergic reuptake inhibitors (15), anti-
convulsants (16), and cocaine (17).

Unraveling the molecular principles that de-
fine a substrate (a molecule that can be trans-
ported) versus a competitive inhibitor (a molecule
that can displace the substrate but is not itself
transported) is intimately linked to the larger
goal of elucidating transport mechanism and
ultimately to the development of new therapeutic
agents. The leucine transporter (LeuT), a prokary-
otic SLC6 member (18), provides an opportu-
nity to couple functional and structural data to
uncover the molecular mechanisms of transport
and inhibition. Recently, a model for noncom-
petitive inhibition was derived from a com-
bination of steady-state kinetics (19), binding,

and crystallographic studies with LeuT and three
TCAs (19, 20). The structures of LeuT bound
to the TCAs clomipramine (19), imipramine
(19), or desipramine (19, 20) revealed that each
of these drugs binds to LeuT in the extracellular
vestibule, about 11 Å above the substrate and
directly above the extracellular gating residues
R30 and D404 (19–21), stabilizing the occluded
state in a closed conformation. Zhou et al. have
proposed that the TCA-binding site observed
in LeuT is equivalent to the primary TCA site in
the serotonin transporter (SERT) and the nor-
epinephrine transporter (NET), the therapeutic
targets in humans. However, in SERT and NET,
TCAs are competitive inhibitors (22–24), and
their binding site probably overlaps with the
substrate-binding site (25). Therefore, we suggest
that the LeuT-TCA complexes do not provide a
model for competitive inhibition of eukaryotic
SLC6 transporters.

Here we show that LeuT is capable of trans-
porting many hydrophobic amino acids and
that a fundamental requirement for a molecule
to be a substrate is that it must fit within the oc-
cluded substrate-binding cavity. Molecules such
as tryptophan (Trp) that can bind but are too
large to be accommodated within the occluded-
state cavity are not substrates but instead are
competitive nontransportable inhibitors. Struc-
tural analysis of the LeuT-Trp complex reveals
that Trp traps LeuT in an open-to-out confor-
mation and unveils the movements that ac-
company transition from the occluded to an
open-to-out state. Molecular insights gleaned
from our studies are especially relevant to the
transporter mechanism because many other
transporter families, including SLC5 (26), have
the same fold as LeuT and probably share mech-
anistic principles.

Substrate screen of LeuT. To identify a com-
petitive inhibitor of LeuT, we examined the
ability of a spectrum of amino acids to dis-
place [3H]Leu binding from purified detergent-
solubilized LeuT and inhibit [3H]Leu transport
by LeuT reconstituted into lipid vesicles (Fig.
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Abstract. Statistical properties of cell topologies in two-dimensional
tissues have recently been suggested to be a consequence of cell divi-
sions. Different rules for the positioning of new walls in plants have been
proposed, where e.g. Errara’s rule state that new walls are added with the
shortest possible path dividing the mother cell’s volume into two equal
parts. Here, we show that for an isotropically growing tissue Errara’s rule
results in the correct distributions of number of cell neighbors as well as
cellular geometries, in contrast to a random division rule. Further we
show that wall mechanics constrain the isotropic growth such that the
resulting cell shape distributions more closely agree with experimental
data extracted from the shoot apex of Arabidopsis thaliana.

1 Introduction

Cell division in plants has been studied by plant biologists for over one hundred
years (see review in [1]). From simple microscope observations biologists have
formulated rules for cell division. During mitosis plant cells are divided into two
daughter cells by introducing a dividing cell wall. Hofmeister suggested a rule
where new cell walls are formed perpendicular to the main axis of growth, i.e.
perpendicular to the main axis of the cell [2]. Sachs noted that new walls form
almost perpendicular to old walls [3]. Similarly to Hofmeister’s rule, Errara’s rule
state that the division is along the shortest path dividing the mother cell into
two parts of equal volume [4]. More recently, experiments where spherical cells
have been compressed into oval shapes agrees with these rules [5,6]. It has also
been seen that the arrangement of cytoskeletal structures reveal the placement
of new cell walls [1].

Many biological tissues develop in two-dimensional sheets. The epidermal
layer in plants is an example, where anticlinal divisions and the lack of cell migra-
tion assure the two-dimensional structure of the layer. The epidermal layer can
then be described by a network of connected polygons (cells), edges (walls) and
vertices, where the connections are updated at divisions only. The predominant
existance of three-vertices leads to the average number of cell neighbors (walls)
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to be six following Euler’s rule. But the average can be fulfilled by many neighbor
distributions, and already in the 1920’s F. T. Lewis studied this in growing and
proliferating cucumber epithelia [7,8]. He found that although most cells had six
neighbors (47%), the distribution was not symmetric, with more five-sided cells
(25%) compared to seven-sided (22%). He also noted the non-existance of trian-
gular cells as well as cells with more than nine neighbors. Recently, Gibson et.
al. found similar asymmetric distributions in epithelial cell layers in several an-
imal tissues including epithelia from Drosophila melanogaster wing primordium
[9]. Interestingly, they also introduced a probabilistic model where a discrete
Markov chain was used to describe topological updates due to cell divisions and
the model was able to predict the experimental distribution of the number of
cell neighbors.

The approach by Gibson et al. focused on the topology of the cells in the tissue,
but disregarded details of cellular geometry, growth and proliferation. Here, we
use a two-dimensional cell-based tissue growth model to analyze how explicit
division rules and wall mechanics lead to different topological as well as cellular
shape distributions. We assume isotropic growth, and mainly study tissues with
quite homogeneous cell sizes. This resembles the situation in the plant shoot
apex, and we compare our models with novel data from the Arabidopsis thaliana
shoot apical meristem.

Our model allow us to compare Errara’s classical division rule (new walls
are placed such that the cell is divided into two equally sized daughters along
the shortest path) with a random-direction division rule. We also investigate
how wall mechanics constraining the purely isotropic growth affect the topol-
ogy and cell geometry. We compare the resulting tissues with the distributions
of the number of neighbors (topology) as well as cell shapes (geometry) from
experimental data.

2 Materials and Methods

2.1 Experimental Data

The model results are compared with the experimental data presented in Gibson
et al. [9], as well as new data from the shoot apex in Arabidopsis thaliana (Fig. 1).
The shoot data was extracted from a confocal projection using the merryproj
software [10]. It is interesting to note that although the statistics is sparse, the
overall topological distribution in the shoot data is very similar to the Drosophila
case as well as the Lewis data [7,8].

2.2 Tissue Model

The model is a two-dimensional model where the spatial degrees of freedom are
for vertices, which are connected via edges that represent cell walls. Each cell
is described by a polygon, i.e a number of vertices together with corresponding
edges. The vertex positions are updated viscously, where we assume that veloc-
ities are proportional to the forces acting upon them. The cell walls are treated
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Fig. 1. Data from an image of the meristem of Arabidopsis is compared with data
from Drosophila presented by Gibson et al.. A) The original image taken with confocal
microscopy. Cell walls are marked manually. B) The template extracted from the image.
C) The distribution of the number of neighbors for Arabidopsis thaliana marked with
filled black squares (�) (110 cells) and Drosophila melanogaster marked with empty
white squares (�) (2,172 cells) [9].

as mechanical springs. We describe the dynamics with a system of ordinary dif-
ferential equations originating from an isotropic growth term, wall mechanics,
and plastic wall growth. The contribution from wall springs is described by

dvi

dt
= kw

∑
j∈C(i)

uij

|uij |
( |uij | − Lij

Lij

)
, (1)

where vi is the position of vertex i, kw is a material constant setting the strength
of the wall springs, Lij is the resting length of the wall spring between vertex i
and j, and uij = vj − vi. The summation is over vertices connected via edges
to vertex i.

Cell walls under tension grow plastically. The change in resting length of a
wall spring is

dLij

dt
= kgΘ

( |uij | − Lij

Lij

)
, (2)
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where kg is a constant setting the rate of growth and Θ is the ramp function
defined as

Θ(x) =
{

x if x ≥ 0
0 if x < 0 . (3)

A radial force is used to model isotropic growth of the tissue originating from
internal cell pressure. The force on a vertex is described by

dvi

dt
= krvi , (4)

where kr is a constant setting the strength of the radial force.
To decrease computational time, cells on the boundary of the tissue are re-

moved if a cell is outside a given threshold radius, Rt.

Division Rules. If the area of a cell exceeds a threshold value, Dt, the cell is
divided into two daughter cells. At division, two new vertices are added at two
different walls in the cell, and a new wall connects the vertices. The resting length
of the new wall is set to the distance between the two vertices. In addition, the
walls at which the new vertices are added are split into two, and the new resting
lengths are set proportionally to the split distance such that Lnew

1 +Lnew
2 = Lold.

The new wall dividing the cell into two daughters is defined by a spatial
position and a direction. As an approximation of dividing the cell into two almost
equally sized daughters, the new wall is passing through the center of mass of
the dividing cell. The direction of the new wall is determined from two different
rules. In the first rule, called random direction, a random (uniform) direction
is chosen. In the second rule, called shortest path, the direction of the dividing
wall is chosen such that the path through the cell is the shortest possible. This
is the model definition of the Errara rule. To avoid four-vertices, walls that are
closer to a vertex than a threshold, wtLij is moved away from the vertex to the
threshold position.

2.3 Simulations

The system of ordinary differential equations is solved numerically with a 5th
order Runge-Kutta ODE solver using adaptive stepsize. Data is sampled at ten
different time points. As we remove cells at the boundary a new generation of cells
is present at each time point. The number of cell neighbors are collected for all
cells, excluding cells at the boundary. Five different intial states are used for each
model to gather statistics. The initial states are all one single cell represented by
a regular polygon with three, five, seven, nine, or eleven vertices. Data from the
50 different time points is averaged to give final distributions for each model.

We use in house developed software allowing for discrete updates between each
time step taken by the numerical ODE solver. In these updates we check cells
for division and removal. Parameter values used in the simulations are presented
in Table 1.
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Table 1. Parameter values used during simulations

Parameter With mechanics Without mechanics

kw 0.05 -
kg 0.01 -
kr 0.05 0.05
Dt 1 1
Rt 10 10
wt 0.1 0.1

3 Results

3.1 Comparing Different Division Rules

First we compared the topology distributions from the two different cell divi-
sion rules. The result is presented in Figs. 2A and C, where the data from the
simulations are presented together with the experimental distributions. For both
division rules the distributions have their maximum at six cell neighbors, but
while the distribution for the shortest path division rule match the experimen-
tal data well, the distribution for the random direction division rule is broader
compared to the experimental data.

3.2 Removal of Spring Wall Mechanics

To study how removal of wall mechanics affects the distribution of cell neighbors,
we kept the radial force that drives the isotropic growth, but removed the cell
wall springs.

The result is presented in Figs. 2B and D. What might be found surprising
is that the differences between the distributions with and without wall spring
mechanics are very small. This is true for both the shortest path division rule
and the random direction division rule.

3.3 A Quantative Measurement of Cell Shapes

A striking result from our simulations is that even if the mechanics has no or
little effect on the distributions, there is an obvious visual difference of cell shapes
between simulations with and without mechanics. Examples of cell shapes from
simulations with the two different division rules are presented in Fig. 3. Clearly,
the cell shapes emerging using the shortest path division rule is more plant-
like, and also the simulations with mechanics look more like cellular tissue in
comparison with the non-mechanical simulations.

To quantify differences in cell shape, we measure the ratio between the length
of the boundary of a cell squared and the area of the cell. In Fig. 4 this measure
is presented for different simulations and compared with the in vivo data. First,
it can be seen that the shortest path division rule generally has a closer match
to the experimental values than the random direction division rule. The random
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Fig. 2. Distributions of number of neighbors for simulations with different division rules
with and without mechanics. Filled black squares (�) marks results from simulations
while empty white squares (�) marks experimental data. A) Shortest path division
rule with mechanics. B) Shortest path division rule without mechanics. C) Random
direction division rule with mechanics. D) Random direction division rule without
mechanics.

direction division rule not only differ more in the average value, but it also has a
much larger spread among cells. A closer inspection also reveals that simulations
with mechanics is closer to the experimental values than simulations without
mechanics.

4 Discussion

We have used a simple two-dimensional cell-based tissue growth and proliferation
model to investigate the dependence on cell division rules on statistical proper-
ties of cell topology and geometry. We used an isotropically growing tissue and
showed that one of the classical rules for plant division (Errara’s rule), where
new plant walls appear at the shortest path that divides the cell in two equally
sized dughter cells, indeed do produce a skewed topology distribution seen in
vivo with an average of six neighbors but with more five than seven neighbor
cells (Fig. 2A). On the contrary, the ’control’ model with new walls placed in a
random direction did not follow this distribution (Fig. 2C).

For each division rule we performed two sets of simulations, one with wall
mechanics and one without. While the non-mechanics simulations follow pure
isotropic growth, wall mechanics constrains the growth via a wall growth model.
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A) B)

C) D)

Fig. 3. Examples of simulations with different division rules. Simulations with the
shortest path division rule with (A) and without (B) mechanics. Simulations with the
random division rule with (C) and without (D) mechanics.

When comparing distributions of number of neighbors there was no difference
between the sets with mechanics and the simulations without mechanics, al-
though a visual difference could be seen, where the simulations with mechanics
produced more plant-like cells (Fig. 3).

To investigate this further we quantified cell shapes and compared with novel
data from the Arabidopsis shoot apex. We could again see that Errara’s division
rule produced a statistical distribution very similar to our measured data, while
the random division rule produced far more asymmetric cell shapes. In this
case, we could also see a small difference between simulations with or without
mechanics, where including wall mechanics generated shapes more similar to the
in vivo data (Fig 4).

In conclusion, we have showed that statistical properties of cell topology and
shape indeed can be used to discern among different model hypotheses for cell
proliferation. Interestingly, divisions at random directions do not lead to correct
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Fig. 4. Mean and standard deviation for the ratio between length of cell boundary
squared and cell area. The data point marked with a cross (×) shows the experimental
data. Other data points marked with a vertical dash (|) show results from simulations.
Simulations have been done with the two different division rules, with and without
mechanics.

topology or cell geometries, while Errara’s classical cell division rule do agree
with the statistical properties from experimental data. Of course, statistical
agreement is only a first test which many hypotheses may pass, and ultimately
the hypotheses must be compared with statistics of single cell data. Still, we have
presented a useful methodology, where explicit and mechanistic hypotheses that
combine into a cellular plant growth and proliferation model can be compared
on merits based on experimental data.
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Abstract

Cell proliferation affects both cellular geometry and topology in a
growing tissue, and hence rules for cell division are key to understand
multicellular development. Epithelial cell layers have for long times been
used to investigate how cell proliferation leads to tissue-scale properties,
including organism-independent distributions of cell areas and number of
neighbors. We use a cell-based two-dimensional tissue growth model in-
cluding mechanics to investigate how different cell division rules result in
different statistical properties of the cells at the tissue level. We focus on
isotropic growth and division rules suggested for plant cells, and compare
the models with data from the Arabidopsis shoot. We find that several
division rules can lead to the correct distribution of number of neighbors,
as seen in recent studies. In addition we find that when also geometrical
properties are taken into account other constraints on the cell division
rules result. We find that division rules acting in favor of equally sized
and symmetrically shaped daughter cells can best describe the statistical
tissue properties.

Introduction

Multicellular development is governed by cellular differentiation and morpho-
genesis. Cellular differentiation has mainly been described as a process of gene
regulation and molecular signaling between cells, although signaling via mechan-
ical interactions due to the morphogenesis has recently been suggested [1–4].
Both molecular and mechanical signaling between cells in a growing tissue are
affected by cell division. Therefore, cell division is one of the means for an
organism to regulate different aspects of development [5].

In many growing epithelial tissues, cells divide perpendicular to the surface
and this allows for a detailed study of cell topology (quantified by the number of
neighbors for each cell) and geometry (cell shapes and sizes) in these monolay-
ered tissues. Such a tissue may hence be described as a two-dimensional sheet
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defined by vertex points representing wall junctions, one-dimensional edges rep-
resenting cell walls, and two-dimensional faces representing cells. Epithelial
tissues are dominated by three-cell vertices and according to Euler’s law the
average number of neighbors is therefore equal to six. In the 1920’s, F.T. Lewis
showed that cucumber epithelium has a skew distribution of number of neigh-
bors, dominated by hexagonal cells (47%) and with more five-sided cells (25%)
than seven-sided (22%) [6, 7]. He also noted that the distribution was quite
narrow, ranging from four- to eight-sided cells. More interestingly, surprisingly
similar topologies have been found in epithelia of many species ranging over
different kingdoms [8]. An important question is how these topological distri-
butions can emerge at a tissue level from cell division.

The epidermal layer in plants provides a beneficial model system for investi-
gating cell division without cellular reorganization, since plant cell walls govern
tissue rigidity and there is no sliding between cells. Hence, cell division is the
only way to affect the topology of the tissue and proper cell division is needed
for developmental processes in the plant [5]. When a plant cell divides, a new
cell wall is added between the two daughter nuclei. In the epidermal cell layer
new walls are anticlinal, preserving the two-dimensional structure of the tissue.
Also, at the shoot apical meristem (SAM) summit, growth is isotropic [9, 10],
and the tissue may be represented by a two-dimensional sheet with isotropic
growth.

Rules for determining the position and direction of new cells walls in plants
have been proposed for more than a century [5, 11–14]. Hofmeister (1863) sug-
gested that cells divide perpendicular to the main axis of growth, which also
correlates with the main axis of cell extension in many plant tissues. Sachs
(1878) noted that new walls form nearly perpendicularly to older walls. Errara
(1888) proposed that cells behave similarly to soap bubbles, and that cells are
divided by the shortest path dividing the cells into two equally sized daughters.
More recently, cell growth and proliferation have been investigated in more de-
tail at the plant shoot, and while clear directional patterns can be found at the
periphery where new organs form, strain is isotropic and proliferation directions
are omnidirectional at the apex [9,10]. Division planes in mother and daughter
cells can be related where orthogonal division directions are common [9, 10].
Recently, a correlation between the directions of cortical microtubules (MTs)
and the cell division plane has also been found [4,15]. At the SAM summit the
MT directions are dynamic and suggested to be random [4]. Two main rules for
orienting MTs in plants have been proposed; perpendicular to maximal strain
directions, and parallel to maximal stress directions [4, 16].

What biological mechanisms that determine positions and directions of cell
division are still unknown, and it may very well be that different mechanisms
act in different organisms and even in different tissues of the same organism.
Cell division rules have been investigated in mathematical models for a long
time [14]. Mathematical models of cell division have recently been used to show
that different division rules lead to specific topological distributions on a tissue-
scale, and that a subset of the division rules successfully reproduce the common
topology distribution found in the epithelium of several organisms [8,17]. These
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models have neglected geometrical properties, but an important property of the
successful models was symmetric cell division, i.e. the vertices of the mother
cell are distributed evenly among the daughter cells.

We have previously introduced a two-dimensional spring-based model to
take also geometrical aspects into account and compared simulated tissues with
data from the Arabidopsis SAM [18]. We were able to show that although cell
wall-mechanics is not important for the resulting topology, simulations with me-
chanics resulted in better shaped cells. Here we continue to use the spring-based
model to test different division rules and compare results with experimental
data. Using the spring-based model we are able to investigate consequences for
both topology and geometry of using the different division rules.

Definitions of division rules and tissue properties

At cell division the mother cell is divided into two daughter cells by introducing
a new wall, which is described by a division plane. How the division plane is
located is determined in the model by a division rule. A division rule consists
of two mechanisms; one to determine the division center and one to determine
the division direction. The division plane is then the straight path that goes
through the division center parallel to the division direction.

In this work we are studying two different mechanisms for determining divi-
sion centers,

• Center of Mass (COM). The division center is the center of mass of
the mother cell.

• Random. The division center is a random point within the mother cell
drawn from a uniform distribution.

The COM rule will produce daughters with quite symmetric sizes, while the
Random rule allows for asymmetrically sized daughters. In addition, we are
studying four different mechanisms for determining the division direction,

• ShortestPath. The direction is the shortest path through the division
center. Combined with the COM mechanism for determining the division
center this is our representation of Errara’s rule [13].

• RandomDirection. The direction is randomly chosen from a uniform
distribution.

• Orthogonal. The division direction is orthogonal to the direction of the
previous cell division, following patterns seen in plant tissues [9, 10].

• StrainPerpendicular. The direction is perpendicular to the direction
of strain in the mother cell (Methods). This rule is our representation of
Hofmeisters cell division rule [11].

The division directions are important for determining the shapes of the daugh-
ter cells, where the ShortestPath favors more symmetrically shaped daughter
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cells, while RandomDirection has no such bias. The two types of mechanisms
are combined into division rules with the following notation DivisionDirec-
tion|DivisionCenter.

We are interested in two different types of tissue properties.

• Topology. We quantify the topology of the tissue by the distribution of
number of neighbors.

• Geometry. We quantify the geometry of the tissue by distributions of
cell shapes and sizes.

Results and Discussion

We performed series of simulations with isotropic growth using a two-dimen-
sional spring-based model, and with different division rules (Methods, Intro-
duction). Cells outside a boundary were removed and statistics was gathered
from snapshots of simulated tissues at different time points, neglecting cells at
the boundary of the tissue. We analyzed the topologies and the geometries of
simulated tissues and compared with experimental data to test different divi-
sion rules. We also investigated how well tissues fitted to Lewis’ law, which
states that a linear relationship exists between number of neighbors and areas
of cells [7]. Finally, we also simulated an oryzalin experiment by continuing
tissue growth after suspending cell division [19].

The COM mechanism for determining the division center
is superior to the Random mechanism in reproducing the
topology of experiments

First we studied topologies resulting from simulations with the different divi-
sion rules and compared them with data from the Arabidopsis SAM (Figure 1A,
Tab. 1). It can be seen that all division rules using the Random mechanism for
the orientation of the division center generate distributions of number of neigh-
bors that were wider than the one for the experimental data. To quantify the
difference between the topology resulting from each model and the experimental
topology, we defined a fitness measure (Methods, Fig. 2A). As can be seen, there
is a clear separation between models using the COM mechanism and models
using the Random mechanism, where the former have a better fitness. One
interesting feature of the experimental number of neighbor distributions is the
skewness. Although all models display a skewness in the distribution of number
of neighbors, where the number of five-neighbor cells is always larger than the
number of seven-neighbor cells (Fig. 1A), the skewnesses associated with mod-
els using the COM mechanism are weaker compared with experimental data
(Tab. 1).

Among the rules using the COM mechanism, there was a slight advan-
tage for the ShortestPath|COM and the StrainPerpendicular|COM di-
vision rules. An interesting result is that the fitness is not fully correlated with
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Figure 1: Distributions of number of neighbors and internal vertex angles
from simulations with different division rules. Error bars represent standard
deviation. A) Distributions of number of neighbors. Experimental data from
Arabidopsis thaliana is also presented for comparison. B) Distributions of in-
ternal vertex angles before and after suppression of cell division.

Division rule Standard deviation Skewness
Orthogonal|COM 0.73±0.04 0.14±0.13
ShortestPath|COM 0.76±0.04 0.20±0.14
Arabidopsis thaliana 0.90 0.53
StrainPerpendicular|COM 1.0±0.0 0.39±0.20
RandomDirection|COM 1.1±0.1 0.29±0.17
Orthogonal|Random 1.4±0.1 0.54±0.16
Random|Random 1.6±0.1 0.41±0.13
ShortestPath|Random 1.9±0.1 0.41±0.08

Table 1: Standard deviation and skewness of distributions of number of neigh-
bors. Standard deviation and skewness have been measured for each simulated
tissue and the values presented are average values with standard deviation as
errors.
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the mechanism for determining the division direction. While the Shortest-
Path|COM division rule had best fitness, the ShortestPath|Random divi-
sion rule generally performed badly. This shows how important a proper mech-
anism for determining the division center is as a top performing mechanism for
orienting the division direction can easily be turned into the worst by changing
the mechanism for determining the division center.

In conclusion, our results show that division rules that divide mother cells
into almost symmetrically sized daughters result in topologies with better fit-
ness to experimental data than division rules that generated more asymmetric
daughter sizes. This feature was particularly important for generating narrow
distributions – as seen in the experimental data – and agrees with what have
been shown with non-geometrical models for which a symmetric division of cell
vertices has been shown to be important for narrow distributions [8, 17].

ShortestPath and Orthogonal division directions produce
most plant-like cell shapes

For simulated tissues generated by division rules with symmetric division (us-
ing the COM mechanism), topology alone could not be used to discern among
the division rules studied in this work. Instead, we also analyzed geometrical
properties, where one can note that cells at the Arabidopsis apex have quite
symmetrical shapes as measured by the cell area divided by the total cell wall
length squared [18]. This shape measure revealed that – for all proposed di-
vision rules – cells of the SAM were more symmetrically shaped than cells of
simulated tissues (Fig. 2B). Cell shapes of each division rule were differently
shaped (Fig. 3 for examples). The division rules that generated cell shapes
closest to the experimental data were those with systematic rules for dividing
the cell such that the wall is directed perpendicularly to the main axis of the
cell (Fig. 2B). The ShortestPath division rule does this explicitly, and the
Orthogonal division rule does it implicitly since the isotropic growth together
with cell division perpendicular to the last division plane will approximate the
shortest path. Interestingly, both these rules have been suggested for plant cells.
A third division rule suggested for plant cells is to divide the cell perpendicular
to the principal strain direction, but with isotropic growth the maximal growth
direction is ambiguous, and the rule led to cell shapes similar to those obtained
by choosing a random division direction (Fig. 2B).

In conclusion, our results suggest that epithelial cells in an isotropically
growing tissue tend to divide such that symmetrically shaped daughter cells
are favored. Our results also emphasize that while using a given division rule
can result in a topology very similar to what is found in experiments, the same
division rule might not correctly reproduce geometrical properties, in this case
cell shape. For example, using the StrainPerpendicular|COM division rule
results in a topology resembling the one of an Arabidopsis meristem, but the
same series of simulations produce cells with a different shape distribution com-
pared with the experimental data. A final note is that an absolute requirement
for any of the division rules to generate cell shapes similar to what is seen in
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Figure 2: Topological and geometrical properties of simulated tissues. A)
The fitness of each division rule. The fitness quantitatively measures how well
resulting tissues of simulations with a given division rule reproduces the distri-
bution of number of neighbors compared with experimental data of Arabidopsis
thaliana. B) Results from the quantitatively measurement of cell shape (Meth-
ods). The numerical values for the shape measurement range from zero (“flat”
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Figure 3: Example images of tissues from simulations with different division
rules. The stars in the tissues from the oryzalin experiment identify cells before
and after cell division has been suspended. The width and height of all images
are ten length units.
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the experimental SAM data is that the walls have mechanical properties [18].

Analysis of cell size distributions via Lewis’ law reveals
small discrepancies between the models and the data

Another geometrical property of the tissue is cell sizes. We used Lewis’ law [7]
– stating that a linear relationship exists between number of neighbors and
areas of cells – to compare the distributions of cell areas from our simulations
with the distribution of the SAM (Fig. 4). The experimental data displayed an
almost perfect fit to the linear function defined by Lewis’ law. The data from
the simulations showed a linear dependence between number of neighbors and
areas, but the slope deviated slightly from Lewis’ law. For example, the two
best performing models sofar – ShortestPath|COM and Orthogonal|COM
– have a lower slope compared with Lewis’ law. This is an indication that the
COM positioning mechanism may generate too symmetrically sized daughters,
and will hence not allow for as large deviations in cell area as seen in experiments.
Partly, this result depends on our definition of a constant maximal cell size in the
model (Methods). If the daughter cells are equally sized, the resulting tissues
will have cell areas bounded below by a factor one half of this maximal area. But
the ShortestPath|COM and Orthogonal|COM models also have narrower
distributions of number of neighbors compared with experiments (Tab. 1), which
is another indication that the cell divisions of the models are too symmetric.
In the plant cell the position of the division plane is guided by the nucleus,
which is often located centrally in the cell, although not exactly at the center
of mass. Hence, the positioning of the division plane may be at a random
position close to the center of mass, which can be interpreted as something in-
between our COM and Random positioning mechanisms. Interestingly, this
may increase the slope of the cell areas as a function of number of neighbors for
the ShortestPath division rule (cf. Figs. 4C and D) while this may not be
the case for the Orthogonal division rule (cf. Figs. 4E and F).

The tissue model qualitatively reproduces the behavior of
experiment where cell division is impaired

The microtubules of the shoot meristem can be depolymerized by application of
oryzalin [19]. In the experiments lack of microtubules resulted in inhibited cell
division. Cells still grow and the internal vertex angles converge towards 120◦.

We performed a series of simulations without cell division to test our model
for this perturbation experiment. First we performed a first series of simulations
with the ShortestPath division rule and then, using the tissues from the first
series as initial states, we performed a second series of simulations, but this
time without cell division. The virtual time of each of these simulations in the
second series corresponded to about three generations of cell division. Example
images of tissues from simulations before and after suspension of cell division
are presented in Fig. 3.
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Figure 4: Cell area plotted as a function of number of neighbors for differ-
ent division rules. Cell areas are normalized such that the average cell area –
including all cells of the tissue – is equal to unity. Presented data is average
values together with standard deviations. The diagonal line is the relationship:
Cell area = (n − 2)/4, where n is number of neighbors, defining Lewis’ law [7].
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Distributions of internal vertex angles before and after disabling cell division
converge towards 120◦ for simulated tissues (Fig. 1B). We also compared the
shapes of cells before and after disabling cell division in the model (Fig. 2B).
Cells in simulated tissue before division is suspended are less symmetrically
shaped than cells in the unperturbed experiment, but cells after division is
suspended are more symmetrically shaped than cells in the experiment, showing
that cell divisions act “against” symmetrically shaped cells.

Conclusions

Already in the 1920s F.T. Lewis noted statistical properties of the topology
and geometry of epithelial plant tissue, which later have been seen also in other
species. At the same time, the discussion on rules for determining cell division
planes in plants has been ongoing since the 19th century. We have used a model
of a two-dimensional growing tissue which includes mechanical properties to test
several of these rules against experimental data of topological and statistical
properties of the epidermal layer of the shoot apical meristem of Arabidopsis
thaliana.

Our results suggest that epithelial cells in an isotropically growing tissue
tend to divide such that the daughter cells are symmetric both in size and
in shape, which depends on positioning a new wall close to the center of the
cell and to divide along some approximation of a shortest path. It is well
known that a shortest path rule for dividing plant cells is not a general rule
of generating division directions. Examples exists for which this rule performs
badly, e.g. in the boundary region between the shoot apical meristem and
forming primordium [4]. It was suggested that the microtubules in these regions
align in directions following the principal stress direction, and the divisions
tended to be along this direction, independent of cell shape. It may very well
be that different mechanisms interact and that in regions of isotropic growth,
where stresses are isotropic, a shortest path rule might be the result.

We have shown that statistical comparisons are useful when comparing dif-
ferent division rules, but by comparing the models with live imaging data it will
be possible to test different division rules at a cellular level. Models – such as
the one presented here – will be essential to be able to compare rules not only
depending on the cell itself, but also for testing hypotheses based on variables
depending on the tissue neighborhood such as growth and mechanical-based
mechanisms.

Materials and Methods

The model

The two-dimensional spring-based model is a mechanical model for the epider-
mal layer of plant tissue. Cells are represented by vertices connected by edges
representing cell walls. The edges are treated as mechanical springs and give
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the mechanical properties of cell walls. The vertices are treated as being in
a viscous medium; their velocities are proportional to the forces acting upon
them.

The contribution of forces from walls acting on vertex i is

dvi

dt
= kw

∑
j∈V(i)

uij

|uij |
( |uij | − Lij

Lij

)
, (1)

where vi is the position of vertex i, kw is a constant that determines the stiffness
of walls, uij = vj−vi, and Lij is the resting length of the wall connecting vertices
i and j. The summation is over all vertices connected via edges to vertex i.

Cell walls grow under tension. Resting lengths of cell walls are in the model
increased as walls are being stretched,

dLij

dt
= kgΘ

( |uij | − Lij

Lij

)
, (2)

where kg is a constant that sets the rate of growth and Θ is the ramp function
defined as

Θ(x) =
{

x if x ≥ 0
0 if x < 0 . (3)

For the StrainPerpendicular division rule the direction of division is
parallel to the strain pattern of a cell. We calculate the direction of strain of a
cell using circular statistics according to

θc =
1
2
atan

(∑
w∈W(c) fwsin (2θw)∑
w∈W(c) fwcos (2θw)

)
, (4)

where θc is the direction of strain of cell c, fw = (|uij |−Lij)/Lij is the magnitude
of strain of wall w, and θw is the direction of wall w. The summation is over all
walls of cell c.

The focus of this work is to model the development of the shoot apical
meristem. Turgor pressure and internal growth is represented by a radial force,

dvi

dt
= krvi, (5)

where kr is a constant which determines the internal growth rate. The model
is an approximation of the meristem and the further cells are located from the
origin the less accurate is the representation of cells in the epidermal layer. Cells
outside a threshold radius, Rt, are therefore removed.

Cell division

A cell is divided into two daughter cells if its area exceeds a threshold value,
Dt. The division plane is defined by a spatial position and a direction. The
division plane is then the straight path that passes the spatial position in the
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Parameter Standard simulations Oryzalin simulations
kw 0.05 0.05
kg 0.01 0.01
kr 0.05 0.05
Dt 1.0 -
wt 0.1 -
Rt 7.0 -

Table 2: The different sets of parameter values that was used in the different
types of simulations.

given direction. A division rule determines how the division plane is located
(Introduction). At each cell division two new vertices are added to two walls of
the mother cells and a new cell wall is added connecting these two vertices. The
resting length of the new cell wall is set to be equal to the distance between the
two vertices. The two original walls of the mother cell are split into two walls
each and the resting lengths of the new walls are set proportionally to respective
length such that Lnew

1 + Lnew
2 = Lold. If the distance between a new vertex and

a three-vertex is shorter than a threshold, wtLij , then the vertex is moved to
the threshold position. This measure is taken to avoid four-vertices.

Numerical simulations

A fifth-order Runge-Kutta ODE solver using adaptive stepsize is used for all
simulations. The initial states that are used in the simulations are obtained in
the following way. First an initial state of one single cell is created. This single
cell is then used in a longer simulation and from this simulation 25 snapshots of
the tissue are captured and stored to be used as initial states. This process is
repeated with 13 different initial single cells represented by regular polygons of 3
to 15 vertices. In total 325 initial states are created and used in the simulations
of each division rule. The ShortestPath|COM division rule is used in the
simulations to generate initial states as the division rule has in previous studies
proved itself to generate plant-like tissues [18].

The average numbers of cells (with standard deviations) at one snapshot in
simulated tissues were; 237±45 (ShortestPath|COM), 437±66 (Shortest-
Path|COM), 231±43 (RandomDirection|COM), 310±48 (RandomDirec-
tion|Random), 235±42 (Orthogonal|COM), and 282±46 (Orthogonal|
Random), 218±39 (StrainPerpendicular|COM). Cells on the boundary of
the tissue were neglected.

Parameter values are presented in Tab. 2. We have performed a robustness
analysis by performing series of simulations with parameter values perturbed
by an order of magnitude. The analysis showed that the results are robust to
these parameter perturbations (data not shown).
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Experimental data

We compare simulations of the model with experimental data from Arabidopsis
thaliana. The experimental data consists of a tissue with 110 cells and is taken
from [18].

Data analysis

After each simulation data is gathered from the resulting tissue. There are three
types of data that are gathered; number of neighbors, internal vertex angles,
and a measurement of cell shape. While gathering data we neglect cells at the
boundary since such cells can be affected by the boundary condition.

The measurement of cell shape is here defined as the ratio between cell
area and the total length of cell walls squared. The numerical value of this
measurement ranges from zero for cells without area, to (4π)−1 for circular
cells.

We introduced a fitness test to quantify how well a simulated tissue repro-
duces the distributions of number of neighbors from experiments. The fitness is
defined as

Fitness =

[∑
i

(ni − n∗
i )

2

]1/2

, (6)

where ni is the fraction of cells in the tissue with i neighbors, and n∗
i is the

corresponding fraction measured from experimental data.
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a b s t r a c t

Large-scale pattern formation is a frequently occurring phenomenon in biological organisms, and

several local interaction rules for generating such patterns have been suggested. A mechanism driven by

feedback between the plant hormone auxin and its polarly localized transport mediator PINFORMED1

has been proposed as a model for phyllotactic patterns in plants. It has been shown to agree with

current biological experiments at a molecular level as well as with respect to the resulting patterns. We

present a thorough investigation of variants of models based on auxin-regulated polarized transport

and use analytical and numerical tools to derive requirements for these models to drive spontaneous

pattern formation. We find that auxin concentrations in neighboring cells can feed back either on

exocytosis or endocytosis and still produce patterns. In agreement with mutant experiments, the active

cellular efflux is shown to be more important for pattern capabilities as compared to active influx. We

also find that the feedback must originate from neighboring cells rather than from neighboring walls

and that intracellular competition for the transport mediator is required for patterning. The importance

of model parameters is investigated, especially regarding robustness to perturbations of experimentally

estimated parameter values. Finally, the regulated transport mechanism is shown to be able to generate

Turing patterns of various types.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In nature, spontaneous pattern formation is a common and
important result from dynamic interactions. Several mechanisms
have been proposed for generating regular patterns where the
reaction–diffusion mechanism has proven to be capable of
generating patterns of different forms such as peaks and stripes.
The idea of reactions of morphogens within cells combined with
different molecular diffusion rates as a main regulator of
biological development was introduced by Turing (1952) already
in the 1950s. Gierer and Meinhardt (1972) also discussed the
mechanism in terms of local activation and long-range inhibition.

One of the most studied and intriguing patterns found in
nature is the regular placement of plant organs resulting in
phyllotactic patterns. Leaf and flower primordia are initiated at
the flank of the shoot leading to patterns of different whorled or
spiral symmetries. Especially the spiral pattern has been of
interest in many studies for hundreds of years with its connection
to the golden mean and the Fibonacci sequence (Adler et al., 1997;
Jean and Barabé, 1998). Mathematical analysis has shown that
these patterns can naturally occur as a consequence of initiation

on a ring, continuous spatial growth of the system, and a regular
spacing mechanism (Douady and Couder, 1992; Mitchison, 1977;
Smith et al., 2006a). Several mechanisms have been proposed for
the spacing mechanism, using mechanical as well as molecular
arguments. A purely mechanical argument relies on the outer
layer of cells being seen as a two-dimensional continuous sheet,
which can buckle in a phyllotactic pattern due to compressive
stresses (Green et al., 1998; Shipman and Newell, 2005). It
represents a global view where an optimal configuration results in
patterning of the static shoot (or other organ). The molecular view
mostly has included growth and an inhibition from earlier
primordia where for example reaction–diffusion mechanisms
have been proposed (Chapman and Perry, 1987; Meinhardt,
1982). Recently, also combinations of molecular and mechanical
mechanisms have been investigated in a continuous model
(Newell et al., 2007).

Experimental data have highlighted the importance of the
plant hormone auxin in the initiation of new primordia, as its
concentration peaks at the positions where new primordia form
(Benkova et al., 2003; Heisler et al., 2005; Smith et al., 2006b).
Reducing the auxin transport leads to failure of phyllotaxis, which
pinpoints the importance of transport in the process. Especially
the PINFORMED1 (PIN1) membrane protein, which mediates
cellular efflux of auxin, is integral in the patterning process since
its loss-of-function mutant displays no organs in the inflorescence
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(Okada et al., 1991; Reinhardt et al., 2000). PIN1, which cycles
between cytosol and membrane compartments (Geldner et al.,
2001), is polarized towards sites of new primordia and away from
older, and hence can transport auxin against a concentration
gradient (Barbier de Ruille et al., 2006; Heisler et al., 2005;
Reinhardt et al., 2003). Single mutants of auxin influx mediators
have shown less phyllotactic phenotypes, and no apparent
polarization is seen in the shoot cells. Recently, quadruple
mutants of the AUX1/LAX influx mediators showed irregularities
in the phyllotactic pattern, although the organ formation was not
completely stopped (Bainbridge et al., 2008).

The underlying mechanism for creating polarized PIN1 cycling
is to a large extent unknown, and it is still unsettled whether a
single mechanism is acting throughout different plant tissues.
Interestingly, a hypothesis with auxin itself feeding back to the
PIN1 polarization can result in patterning dynamics. If auxin in
neighboring cells attracts PIN1 to the cell membrane in respective
direction, it can be enough for generating a pattern with a
parameter dependent wavelength, i.e. one of the requirements for
phyllotactic patterning (Jönsson et al., 2006; Smith et al., 2006b).
In Jönsson et al. (2006), it was shown that the relative strengths of
the active PIN1 mediated transport and the passive diffusion-like
transport is a main determinant of the possibility of patterning
and of the wavelength of the patterns. Another proposed
mechanism for generating patterns in plants is that of auxin-
fluxes feeding back to active efflux, which mainly have been used
to describe venation, e.g. Feugier et al. (2005), Fujita and
Mochizuki (2006), Mitchison (1980), and Sachs (1981).

In this work we extend the analysis of the auxin-concentration
feedback model, investigating more detailed requirements for
pattern formation from this regulated transport mechanism. We
pursue the relation between the feedback mechanism and
transport mechanisms, where also cellular influx is included.
We demonstrate the mechanism’s generality with dynamics
very similar to reaction–diffusion models, where patterns other
than peaks can be formed. We also thoroughly investigate the
patterning behavior in the parameter region surrounding experi-
mentally estimated values, and especially investigate its robust-
ness to single and multiple parameter perturbations.

2. Materials and methods

2.1. The model

Although the model presented in this paper may be involved in
various pattern mechanisms in nature, it was initially inspired by
plant phyllotaxis. Hence, the model is introduced in this context,
and based on experimental knowledge of auxin transport from
earlier work. The main mechanisms in the model are the passive
and active auxin transport, and the mechanisms for localizing
transport mediators on cell–wall membranes. We also introduce
generalizations and simplifications of the model used in our
analysis and simulations.

2.1.1. Auxin transport

In plant phyllotaxis, auxin is assumed to act as a morphogen,
directed to the sites of primordia formation (Benkova et al., 2003;
Heisler et al., 2005; Reinhardt et al., 2003). The auxin transport
model is based on the chemiosmotic theory (Rubery and
Sheldrake, 1974; Raven, 1975) where auxin dissociation leads to
an anion ða�Þ and a protonated (aH) form (Fig. 1A). The fractions of
auxin in its two states are assumed to be in equilibrium in each
compartment, where different pH values in the cytosol and wall
compartments result in the fractions f cella� , f cellaH , fwall

a� , and fwall
aH .

While the protonated form of auxin can passively cross the

cell–wall membrane, the anion cannot and it is actively trans-
ported across the membrane mediated by PIN1 for cell efflux, and
AUX1 for cell influx. The passive transport is assumed to be
unsaturated, while the PIN1/AUX1 mediated active transport can
be saturated. The auxin flux from a cell compartment ðiÞ to a wall
compartment ðijÞ is described by

Ja;i!ij ¼ paHðf cellaH ai � fwall
aH aijÞ

þ pPINWijPij NðFÞ f cella� ai

KP þ f cella� ai
� Nð�FÞ fwall

a� aij

KP þ fwall
a� aij

 !

þ pAUXWijAij Nð�FÞ f cella� ai

KA þ f cella� ai
� NðFÞ fwall

a� aij

KA þ fwall
a� aij

 !
, (1)

where ai is the concentration of auxin in the cytosol compartment
in cell i and aij is the concentration of auxin in the wall
compartment located between cells i and j (Kramer, 2004; Swarup
et al., 2005; Jönsson et al., 2006; Heisler and Jönsson, 2006). Pij

and Aij are the surface densities of PIN1 and AUX1 on the
membrane compartment in cell i facing cell j. paH, pPIN, and pAUX
are permeabilities for the three different means of transport. KP

and KA are constants setting the levels of saturation. Wij is the
ratio between the area of the membrane in cell compartment i

facing wall compartment ij and the volume of cell compartment i.
NðFÞ is defined as

NðFÞ � FeF

eF � 1
where F ¼ zVF

RT
, (2)

and represents the electrochemical factor for transport across a
membrane potential V where z is the valence of the ion, R is the
gas constant, F is Faraday’s constant, and T is the temperature.
Since the ratio NðFÞ=Nð�FÞ is large, PIN1 (AUX1) acts as an efflux
(influx) transport mediator. In addition to the cell–wall transport
apoplastic (wall–wall) diffusion also occurs, although we dis-
regard this in our model (see Section 2.2).

We will do a generalized analysis and will not restrict
ourselves to Eq. (1) but rather consider a general functional form
of the mediated auxin transport described by

Ja;i!ij ¼ paHðf cellaH ai � fwall
aH aijÞ þ pPINWijPijNðFÞhðaiÞ

� pAUXWijAijNðFÞhAðaijÞ, (3)

where hðaiÞ is an auxin-dependent function for mediated efflux
and hAðaijÞ is the corresponding function for influx. Note that we
disregard PIN1-mediated transport into the cells and AUX1-
mediated transport out of the cells.

2.1.2. Protein cycling

In the model the proteins mediating auxin transport are
assumed to cycle between cytosol and membrane compartments
(Fig. 1B, Geldner et al., 2001). The influx mediator AUX1 is
assumed to localize symmetrically on all membranes while the
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: IAA in cell iai
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aH

Fig. 1. Illustration of the model. (A) Transport of auxin. (B) The hypothesis that

leads to pattern generating dynamics.
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membrane localization of the efflux mediator PIN1 is dependent
on auxin in neighboring cells. In accordance with previous models
(Heisler and Jönsson, 2006), cycling of PIN1 and AUX1 between
the cytosol compartment i and the membrane compartment ij is
described by

JA;i!ij ¼ kA1W
�1
ij Ai � kA2Aij, (4)

JP;i!ij ¼ kP1W
�1
ij ð1� cPÞ þ cP

anj
Kn
H þ anj

 !
Pi � kP2Pij. (5)

Ai and Pi are the concentrations of AUX1 and PIN1 in the cytosol
compartment in cell i, kA1, kA2, kP1, and kP2 are AUX1 and PIN1
cycling rates, KH and n sets the saturation of PIN1-cycling, and cP
sets the balance between symmetric and auxin-dependent cycling
of PIN1. We will look at a generalized form for PIN1 cycling and
define the functions f exo and f endo for the functional forms of the
auxin dependence on exocytosis and endocytosis, respectively,
leading to

JP;i!ij ¼ W�1
ij f exoðajÞPi � f endoðajÞPij. (6)

2.1.3. Production and degradation

This paper focuses on the regulated transport aspects of the
model, and thus we use a somewhat simplistic description of
production and degradation. We introduce constant homoge-
neous PIN1 and AUX1 concentrations and constant auxin produc-
tion and degradation described by

dai
dt

¼ ca � daai þ transport contributions, (7)

for each cell i, where ca is the constant rate of production, and da is
the rate of degradation. It has been shown that auxin-regulated
PIN1 and AUX1 production influences the stability of the patterns
(Heisler and Jönsson, 2006; Merks et al., 2007), which will be
discussed in Section 3.1.4.

2.2. Model simplifications

Three assumptions are made that simplify the analysis of the
model and better illuminate the results. The first assumption is
that PIN1- and AUX1-cycling between the cytosol and the
membranes is fast compared to auxin dynamics (Jönsson et al.,
2006; Heisler and Jönsson, 2006). With this assumption we get
the fixed point surface densities of PIN1 ðP�

ijÞ and AUX1 ðA�
ijÞ by

setting JA;i!ij and JP;i!ij in Eqs. (4) and (6) to zero. The fixed point
surface densities of PIN1 are

P�
ij ¼ PijW

�1
ij Ptotal where Pij ¼

f ðajÞ
1þPk2Ni

f ðakÞ
and

f ðajÞ ¼
f exoðajÞ
f endoðajÞ

(8)

and the fixed point surface densities of AUX1 are

A�
ij ¼ AijW

�1
ij Atotal where Aij ¼

kA1
kA2

1þPk2Ni

kA1
kA2

. (9)

Ptotal ðAtotalÞ is the total concentration of PIN1 (AUX1) in the cell
compartment. The summation is done over the set of indices of
neighboring cells ðNiÞ. The second assumption is to disregard
apoplastic diffusion. Hence, the question of the importance of the
apoplastic diffusion cannot be addressed. Our comparisons
between the simplified model and previous efforts (Heisler and
Jönsson, 2006) do not suggest that this is a problem, at least at
experimentally estimated parameter values. A discussion on the

importance of apoplastic diffusion in plant tissue can be found in
Kramer (2006). Finally, we assume that all cells (and walls) are of
equal size and have the same number of neighbors. Hence Wij ¼
W and Aij ¼ A for all i and j.

The fixed point expressions are used for the surface densities of
PIN1 and AUX1 in Eq. (3). Taken together, the model equations
become

dai
dt

¼ W
X
k2Ni

ðpaHfwall
aH aij � paHf

cell
aH aiÞ

�W
X
k2Ni

pPINNðFÞPikPtotalhðaiÞ

þW
X
k2Ni

pAUXNðFÞAAtotalhAðaikÞ þ ca � daai, (10)

daij
dt

¼ W
Vcell

Vwall
ðpahf cellaH ðai þ ajÞ � 2paHf

wall
aH aij

þ pPINNðFÞPijPtotalhðaiÞ þ pPINNðFÞPjiPtotalhðajÞ
� pAUXNðFÞAAtotalhAðaijÞ � pAUXNðFÞAAtotalhAðaijÞÞ, (11)

which can be rewritten as

dai
dt

¼
X
k2Ni

ðd2bik � DaiÞ �
X
k2Ni

PikPtotalhðaiÞ

þ
X
k2Ni

GAAtotalhA
Vcell

Vwall
bik

� �
þ Ca � daai, (12)

dbij
dt ¼ Dðai þ ajÞ � 2d2bij þPijPtotalhðaiÞ þPjiPtotalhðajÞ

� GAAtotalhA
Vcell

Vwall
bij

� �
� GAAtotalhA

Vcell

Vwall
bij

� �
, (13)

where bij ¼ ðVwall=VcellÞaij is a rescaled auxin concentration in the
wall and t is a dimensionless time parameter. Vcell and Vwall are
the volumes of the cell and wall compartments, respectively.
Parameters D and d2 can be interpreted as ratios between rates of
passive diffusion-like transport and the active PIN1-dependent
transport. G is the ratio of AUX and PIN permeabilities and Ca and
da are rescaled auxin production and degradation rates, respec-
tively. The exact parameter definitions and values can be found in
Table 1.
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Table 1
Parameter values used for the unperturbed model.

Parameter Value Unit

D ¼ paHf
cell
aH

pPINNðFÞ
0.00035 –

d2 ¼ paHf
wall
aH Vcell

pPINNðFÞVwall

– –

k1 ¼ kp1
kp2

ð1� cpÞ
0.20 –

k2 ¼ kp1
kp2

cp
1.8 –

KH 1.0 mM
n 1.0 -

KM ¼ KP=f
cell
a�

1.0 mM

Ca ¼ ca
pPINNðFÞW

0.0012 mM

da ¼ da
pPINNðFÞW

0.0012 –

G ¼ pAUX
pPIN

– –

t ¼ tpPINNðFÞW – –

W 0.2 mm�1

The parameter values are estimates from experiments where available, and taken

from previous models (Kramer, 2004; Swarup et al., 2005; Jönsson et al., 2006;

Heisler and Jönsson, 2006). Values are not given for parameters without influence

on our results.
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2.3. Analysis methodology

We consider a model on a regular lattice. Each cell (i) is
assumed to be located on an associated lattice point xi. It has an
even number m of nearest neighbours. We denote by ep the
relative position vector to the pth neighbor cell, which has the
label j ¼ jpi and hence the location xj ¼ xi þ ep. jpi represents
the index j of the pth neighbor cell of cell i.

Between each neighbor pair i; j there is a wall compartment ðijÞ
located at the mid-point xij ¼ ðxi þ xjÞ=2 ¼ xi þ ep=2 ¼ xj � ep=2.

The dynamics is linearized by considering small deviations
ðai; bijÞ ¼ ðaþ �i; bþ �ijÞ from the homogeneous fixed point con-
centrations ða; bÞ obtained by requiring the right-hand sides of
Eqs. (12) and (13) to vanish. Linear versions of Eqs. (12) and (13)
then result by neglecting terms higher than linear in the �’s,
yielding

d�i
dt ¼ � da þ

X
k2Ni

ðDþ E1Þ
0
@

1
A�i � E2

X
k2Ni

�k þ D2

X
k2Ni

�ik, (14)

d�ij
dt

¼ ðDþ E1 þ E2 þmE3Þð�i þ �jÞ

� E3
X
l2Ni

�l þ
X
l2Nj

�l

0
@

1
A� 2D2�ij, (15)

where D2 ¼ d2 þ GAAtotalh
0
AðaÞVcell=Vwall and

E1 ¼ f ðaÞPtotalh
0ðaÞ

ð1þmf ðaÞÞ ; E2 ¼ f 0ðaÞPtotalhðaÞ
ð1þmf ðaÞÞ2

and

E3 ¼ f ðaÞf 0ðaÞPtotalhðaÞ
ð1þmf ðaÞÞ2

, (16)

while f 0 and h0 are the derivatives (with respect to auxin
concentration) of f and h, respectively.

The analysis of the solution to the equation system in Eqs. (14)
and (15) is easier performed if transformed into Fourier space. The
auxin fluctuations in the cells and walls are transformed
according to

�k ¼ 1

2p
X
i

�ie�ik�xi , (17)

�k;p ¼ 1

2p
X
i

�i;jpi e
�ik�xijpi , (18)

leading to the system of ODEs

_�k ¼ �ðda þmðDþ E1 þ E2SðkÞÞÞ�k þ 2D2

Xm=2

p¼1

cos
1

2
k � ep

� �
�k;p, (19)

_�k;p ¼ 2 cos
1

2
k � ep

� �
ðDþ E1 þ E2 þmE3ð1� SðkÞÞÞ�k � 2D2�k;p,

(20)

where SðkÞ denotes the ‘‘lattice form factor’’

SðkÞ ¼ 1

m

Xm
p¼1

eik�ep ¼ 2

m

Xm=2

p¼1

cosðk � epÞ, (21)

obeying jSðkÞjp1.
By introducing sk defined as

sk � 2

m

Xm=2

p¼1

cos
1

2
k � ep

� �
�k;p, (22)

the non-trivial part of Eqs. (19) and (20) simplifies to

_�k
_sk

" #
¼

�ðDA þmðDþ E1 þ E2SðkÞÞÞ mD2

ðSðkÞ þ 1ÞðDþ E1 þ E2 þmE3ð1� SðkÞÞÞ �2D2

" #
�k
sk

" #
.

(23)

(The remaining part trivially decays as e�2D2t.) The matrix in
Eq. (23) can be diagonalized to yield a pair of eigenvalues lk1, lk2,
in addition to the trivial eigenvalue lk0 ¼ �2D2. For the
perturbations of auxin concentrations in cell compartments the
final solution to the linearized differential equation then becomes

�iðtÞ ¼
X
ka

ckae
lkat cosðk � xi þ dkaÞ, (24)

where cka and dka are scalar functions determined by the initial
conditions. If at least one (real part of an) eigenvalue for some
wave vector k is positive then the homogeneous fixed point is
unstable and we expect patterns with a related spatial wavelength
to emerge.

2.4. Numerical simulations

All simulations have been done by using in-house developed
software utilizing a 5th order Runge–Kutta numerical ODE-solver
(Press et al., 1992). Parameter values for the models used in
different simulations and calculations are presented in Table 1. For
the numerical simulations we used a model assuming fast auxin
dynamics. The auxin concentrations in the wall compartments are
integrated out from the equations. Fixed point expressions for the
wall concentrations of auxin are substituted into Eq. (3). This
assumption leads to a model for auxin concentrations in cell
compartments described by a system of non-linear ordinary
differential equations.

dai
dt

¼ 1

2

X
k2Ni

Dðak � aiÞ þ
1

2

X
k2Ni

ðPkiPtotalhðakÞ �PikPtotalhðaiÞÞ

þ Ca � daai, (25)

where

hðaiÞ ¼
ai

KM þ ai
and f ðaiÞ ¼ k1 þ k2

ani
Kn
H þ ani

. (26)

The simplified cell–cell model is analyzed in Appendix A. The
stability requirements are identical to those of the cell–wall based
model.

3. Results

3.1. The feedback model is capable of spontaneous pattern

generation with parameter dependent characteristics

The model presented in Eqs. (12) and (13) (or Eq. 25) is capable
of spontaneous pattern generation. When experimental estimates
for the transport parameters are used, peaks with distances of
about 5–7 cells are generated (Fig. 2A). A similar behavior was
also described in Heisler and Jönsson (2006) for the non-
simplified model including wall compartments and apoplastic
diffusion. By varying parameter values it is possible to change the
wavelength of the pattern (e.g. Fig. 2B). More generally, it is of
interest to see the model’s capability of generating patterns other
than peaks. As examples of this, additional patterns are presented
in Fig. 2C and D, showing stripes and reentrant peaks, the latter
being patterns with low-concentration spots. In Section 3.2 we
will discuss parameter regions leading to different patterns.

By investigating the characteristic equation for the system
described by Eq. (23) we extracted requirements for the model to
generate patterns. The characteristic equation yields an eigenva-
lue with a positive real part and a non-trivial solution if and only if
the inequalities

ðD� ðE2 þ 2mE3 � E1ÞÞ2
8E3

4da (27)
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and

DoE2 þ 2mE3 � E1 (28)

are true, which can be found by investigating the signs of the
trace and the determinant from Eq. (23). We can directly
see that the passive auxin transport from cell to wall as
well as the auxin degradation must not be too large for patterns
to form.

To further evaluate the generated patterns, we investigated
how the typical distances between peaks evolve as parameter
values are changed. This was done for cells located on a two-
dimensional hexagonal lattice. From Eqs. (21) and (A.3) we see
that for such a lattice the wave vectors k ¼ ðkx; kyÞ corresponding
to the greatest (degenerate) eigenvalue fulfill

1

3
2 cos

kx
2

� �
cos

ffiffiffi
3

p
ky

2

 !
þ cosðkxÞ

" #
¼ S�. (29)

Fig. 3A displays the function in Eq. (29) plotted with contour
curves. For small wave numbers the hexagonal structure of the
lattice has no visual effect while large wave numbers conform to
the structure. Fig. 3B presents a numerical Fourier transform of a
pattern generated using the parameter values from Table 1. The
analytic prediction of the dominating wave vectors is marked in
the figure showing a good match between the (linear) analysis
and the final pattern.

3.1.1. Mediated efflux is more important than influx for pattern

capabilities

Experimental results have indicated that efflux mediators, in
particular PIN1, are more important than influx mediators,
especially AUX1 (Reinhardt et al., 2003; Bainbridge et al., 2008)
for organ initiation. From the model’s capability to generate
patterns from perturbations of the homogeneous fixed point, we
can see that PIN1 enters Eqs. (27) and (28) such that higher
concentration levels of PIN1 increase the possibility of pattern
generation. Too low PIN1 levels will lead to no patterns. On the
other hand the requirements in Eqs. (27) and (28) are independent
on AUX1 concentration levels. Thus AUX1 does not contribute at
all to the model’s capability of generating patterns.

3.1.2. Feedback through reduced endocytosis generates patterns

The polarized transport models presented in previous works
have focused on the hypothesis of PIN1 exocytosis (cycling rate
from cytosol compartments to the wall membrane) regulated by
auxin in neighboring cells. Here we look at a more general
feedback model where either exocytosis or endocytosis (cycling
from wall membrane to cytosol compartments) is regulated by
auxin in neighboring cells. A reason for this generalization is that
auxin has been shown to be able to affect PIN1 endocytosis in
plant tissue (Paciorek et al., 2005). Assuming fast PIN1 cycling the
equilibrium surface density of PIN1 on the membrane ðP�

ijÞ is given
by Eq. (8) where the feedback on exocytosis and endocytosis is
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Fig. 2. Model simulations. (A) Using parameter values from experimental estimates of auxin transport the model generates peaks with a distance of around 5–7 cells. (B)

Changing parameter values changes the average distance between peaks. In this case the value of k2 has been changed to 0.90 and the average distance between peaks has

increased. Other patterns than peaks can be generated by adjusting parameter values, for example (C) stripes ðKM ¼ 1:7Þ or (D) a reentrant peak pattern ðKH ¼ 0:6Þ.
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described by f exo and f endo, respectively. It is trivially seen that
only the ratio f ðajÞ ¼ f exoðajÞ=f endoðajÞ is important, and the
conclusion is that the model has the same behavior if endocytosis
is reduced as if exocytosis is increased from a signal originating
from auxin in the neighboring cell.

3.1.3. Constraint on the feedback and efflux capability

An important question is what kind of feedback functions can
generate patterns. Since the feedback mechanism in plants is
unknown it is important to know what the requirements are for
phyllotaxis; also if the model is to be used for other biological
systems these constraints on the feedback are of interest.
Unexpectedly, the analysis shows that the requirement on the
feedback is tightly connected to the mechanism for active
efflux transport. Neglecting degradation of auxin (i.e. da ¼ 0), a
positive value for the parameter D with an unstable homogeneous
fixed point (such that patterns are generated) is possible if and
only if

f 0ðaÞ
f ðaÞ

�
h0ðaÞ
hðaÞ 4

mf ðaÞ þ 1

2mf ðaÞ þ 1
(30)

is fulfilled, which can be found by substituting Eq. (16) into
Eq. (28). If this requirement is not fulfilled no physically mean-
ingful parameter values can be found that yield patterns. The
right-hand side of Eq. (30) is bounded by 1

2 and 1.
As an illustrative example, consider a feedback function of the

form f ðaÞ / aa (a measures the ‘strength’ or cooperativity of the
feedback signal) with a linear efflux function ðhðaÞ / aÞ. Then the
left-hand side of Eq. (30) is equal to a. Thus such a feedback
function can be used for polarization in a pattern generating
model only if a4 1

2.
The tight relation between the feedback and the efflux

transport shown in Eq. (30) is quite interesting. If the efflux is
assumed to be saturable and described by a Michaelis–Menten
function, h0=h is equal to K=ðaðK þ aÞÞ which is less or equal to 1=a
corresponding to a linear h. Compared with linear efflux transport,
the saturable efflux described by a Michaelis–Menten function
increases the possibility for pattern generation.

To further investigate the inequalities in Eqs. (27) and (28), we
performed a number of simulations using different parameter sets
to generate numerical statistics for pattern generation and
compare with the analytical prediction of boundaries. Following
previous efforts, we used the functions from Eq. (26) to describe
feedback and saturable efflux. The results from these simulations
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are presented in Fig. 4. As expected, the numerical simulations
follow the analytical prediction very well.

3.1.4. Auxin-induced production of transport mediators influences

the patterning capability

It has previously been shown that auxin-induced PIN1 and
AUX1 production has an effect on the stability of the formed
patterns (Heisler and Jönsson, 2006; Merks et al., 2007). While
auxin-induced PIN1 destabilizes the inhomogeneous patterns by
inducing a translation of the peaks, auxin-induced AUX1 acts
oppositely and can stabilize the instabilities caused by auxin-
induced PIN1. Here, we investigate how patterning capability
(i.e. the instability of the homogeneous fixed point) depends on
auxin-induced production of PIN1 and AUX1.

Assume the total PIN1 concentration in a cell Ptotal to be an
increasing function of the auxin concentration. From Eqs. (12) and
(13) we can write the product between the total concentration of
PIN1 and the efflux transport function as ĥðaÞ ¼ PtotalPðaÞhðaÞ
where Ptotal is now a reference concentration and PðaÞ is a
dimensionless increasing function. In Eq. (30), h0ðaÞ=hðaÞ is
replaced by

ĥ
0ðaÞ
ĥðaÞ

¼ P0ðaÞ
PðaÞ þ

h0ðaÞ
hðaÞ X

h0ðaÞ
hðaÞ , (31)

and we can see that auxin-induced PIN1 production stabilizes the
homogeneous fixed point, i.e. it has a negative effect on the
patterning capability of the model. A similar investigation for
auxin-induced AUX1 leads to ĥAðaÞ ¼ AtotalAðaÞhAðaÞ where again
AðaÞ is an increasing function of a. This affects D in Eq. (14) and
(15) which is replaced by

D̂ ¼ D� GAAtotalA
0ðaÞhApD. (32)

From Eqs. (27) and (28) it follows that auxin-induced AUX1
destabilizes the homogeneous fixed point, i.e. it has a positive
effect on the patterning capability of the model.

3.2. Robustness of the model

After investigating the pattern capability of the model, we now
turn to investigate in more detail the characteristics of the
patterns. We use the wavelength as a measure and also investigate
which types of patterns that result.

Model robustness was first tested by calculating the local
sensitivity of each parameter, defined by

Sensitivity ¼ qL
qp

p

L

����
����, (33)

where p is a parameter and L is the predicted wavelength. L can be
derived from Eq. (29). Fig. 5 presents the predicted sensitivities. It
can be seen that L was very robust to perturbations of parameters
related to production, degradation, and transport rates. On the
contrary, the predicted wavelength is more sensitive to para-
meters used for defining the auxin feedback to PIN1 polarization
and the saturation of efflux. Especially, the parameter cp has a
large sensitivity, which might be due to its somewhat unnatural
definition as a ratio ð½0 : 1�Þ between symmetric and polarized
PIN1 cycling. The parameters k1 and k2 represent the actual
symmetric and polarized cycling rates and the model is more
robust to variations in these parameters.

We further performed a semi-global approach using series of
numerical simulations to study the robustness of the final
wavelength against parameter perturbations. For each series we
kept all parameters except one fixed to the values stated in Table 1.
The non-constant parameter was varied two orders of magnitude
around the original value. Ten simulations were performed for

each unique set of parameter values. We applied a Fourier
transform to each resulting pattern and identified the wavenum-
ber with the largest amplitude to estimate the typical wavelength
of the pattern. The results are presented in Fig. 6 along with the
linear analysis prediction. The average wavelengths extracted
from simulations are close to the analytic result, and the
parameter dependence of the final pattern follows the results
from our sensitivity analysis. The wavelength of the final pattern
is more sensitive to the feedback parameters than to other
parameters. Note that the auxin degradation ðdaÞ restricts the
possible wavelengths available to the model by decreasing the
parameter region where patterns appear (cf. Eq. (27)).

From the simulations done for Fig. 6 we noticed that the
parameter space is divided into regions of different kinds of
resulting patterns. We investigated more closely two regions of
interest. Series of simulations for two narrow regions in the
parameter space are presented in Fig. 7. The Michaelis–Menten
constant for auxin transport KM and the Hill constant for PIN1
cycling KH are varied and we have used visual inspection to
identify different types of patterns. The types of patterns are
changing from peaks, to peaks and stripes, then to stripes, and
finally to reentrant peaks before the homogeneous fixed point
becomes stable. This clearly shows that different kinds of patterns
can be formed with the regulated transport model, although the
parameter space is dominated by patterns with peaks. We have
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not analytically identified requirements for stripe formation,
although stripes have only appeared in simulations where the
feedback signal is saturated. This can be compared to stripe
formation in reaction–diffusion models where the stripes can
appear when the self-enhancement is saturated (Meinhardt,
1995).

3.3. Model simplifications suggest parsimony of the model

mechanism

3.3.1. Wall feedback is not capable of generating patterns

The proposed model suggests that the feedback from auxin to
PIN1 polarization comes from neighboring cells. This means that
the signal transmitting the information has to pass through the
cell walls (see Supplementary Information in Jönsson et al., 2006
for a suggested mechanism). We also tested a model where the
feedback comes from auxin in the walls, only separated by a thin
membrane from the cytosol compartment. The analysis of such a
model is presented in Appendix B. Although this model can have
an unstable homogeneous fixed point, the eigenvalue distribution
shows that the resulting patterns have a fixed wavelength of two

cells independent of parameter values and hence the model is not
suitable as a model for phyllotaxis.

3.3.2. Competition of attracting PIN1 to the membrane is important

Another important requirement for the model to be capable
of creating phyllotactic patterns is the competition among
intracellular wall membrane compartments for PIN1. This results
from the feedback acting on the cycling rates of PIN1 (there is a
competition among the membranes for a constant total amount of
PIN1). A model where auxin feeds back directly on the membrane
PIN1 is described in Appendix C. Although such a model is capable
of generating patterns, the linear dependence on SðkÞ (as in the
wall feedback model) only allows for uninteresting patterns with
a wavelength of two cells, independent of parameter values. A
simulation of a generated pattern can be seen in Fig. 8.

The competition in the original model leads to an interaction
with next-neighbor cells and provides a necessary requirement for
the model to generate patterns of the desired form. Interestingly,
competition is also important for models where auxin fluxes feed
back on PIN1 polarization. Here the PIN1 competition is important

ARTICLE IN PRESS

0

2

4

6

8

10

0.0011e-04 4
D

0

2

4

6

8

10

k1

0

2

4

6

8

10

1 10
k2

0

2

4

6

8

10

KH

0

2

4

6

8

10

n

0

2

4

6

8

10

KM

0.1 1

0.1 101 0.1 101

0. 1 101

Fig. 6. Estimated wavelengths of generated patterns as functions of different parameters. The parameters D, k1, k2, KH, n, and KM are changed individually while keeping the

other parameters fixed. For each unique set of parameter values 10 numerical simulations were performed, and the average and standard deviation is plotted. The solid

black line gives the analytical prediction of the dominating wavelength for the system close to the homogeneous fixed point. Red data points (marked with black arrows)

mark simulations with the parameter values from Table 1. Black squares mark data points for whose convergence towards a stable fixed point were extremely slow. Dashed

vertical lines show the analytical boundary between regions with stable/unstable homogeneous fixed points. The boundary is given by Eqs. (27) and (28). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

P. Sahlin et al. / Journal of Theoretical Biology 258 (2009) 60–70 67



for creating veins with high auxin concentrations (Feugier et al.,
2005).

4. Discussion

We have analyzed a model based on a positive feedback on
polarized transport as a mechanism capable of generating large-
scale patterns from its local interactions. We have shown that the
model is capable of generating different spatial patterns such as
peaks, stripes and reentrant peaks that have parameter-depen-
dent wavelengths. Our linear analysis together with numerical
simulations shows that the analysis is useful for predicting the
dynamics, and also the final patterns. We used this to make
several predictions.

The analyzed mechanism of pattern generation is inspired
from molecular data in plant shoot cells, where it is suggested as a
part of the initiation of new primordia. Auxin peaks lead to
differentiation of the tissue into organs and the generation of
phyllotactic patterns. Although the model predictions of PIN1
polarization patterns and reversal dynamics complies with
current experimental data, the proposed signal mediating the
feedback from auxin to PIN1 polarization is yet to be identified.
We have investigated different possibilities and restrictions for

such a feedback signal. We showed that the feedback works also
when acting on PIN1 endocytosis (from membrane to cytosol),
which is important since auxin has been shown to affect PIN1
endocytosis (Paciorek et al., 2005).

When analyzing the model using experimental estimates of
parameters, we found that the patterns are very robust against
parameter perturbations relating to transport rates. This is
comforting since the estimates are from different plant species
and tissues, but it also makes more plausible the possibility that a
plant could introduce the feedback mechanism within an already
working environment for auxin transport, without the need of
adjusting these parameters with the risk of disrupting other
functions where auxin transport is important. The patterns were
shown to be more sensitive to parameter perturbations relating to
the feedback mechanism, which is a result depending on using
parameters from our previous study (Heisler and Jönsson, 2006).
Our results suggest how to change these parameter values if
higher stability is a main objective (e.g. increasing the Hill-
coefficient in the feedback mechanism). This would be at the cost
of a possibility to tune the wavelength of the patterns, as well as
reaching diverse patterns.

To further investigate the constraints on the feedback
mechanism, we introduced a general functional form describing
the mechanism. This permitted us to identify feedback mechan-
isms that allow for the emergence of patterns from a homo-
geneous state. Our conclusion is that the feedback has to be
sensitive enough to differences in neighboring auxin concentra-
tions. Given that we could show that a sub-linear feedback is
sensitive enough, this allows for a large variety of possible
biological mechanisms. Interestingly, the constraint on the feed-
back mechanism is tightly coupled with the PIN1-dependent
transport mechanism. This provides an example showing the
importance of modeling biological mechanisms correctly. For
example, the choice between a linear and a saturated transport
may render fundamentally different results.

Our analysis also gives predictions for the dependence on the
transport mediators PIN1 and AUX1. In agreement with experi-
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ments, PIN1 is crucial for the patterning to appear, and lowering
the amount of PIN1 about 10-fold from our estimated value would
lead to a parameter region where the homogeneous fixed point is
stable. Interestingly, AUX1 does not appear in our requirements
for generating patterns in our model. This is in agreement with
experiments (Bainbridge et al., 2008), where upon removing AUX/
LAX proteins primordia were still initiated although the pattern
was less stable (as discussed below). In the model case, this is due
to the completely symmetric distribution of AUX1 at different
membranes for a cell, but the fact that we have disregarded
apoplastic diffusion may also be of importance. When introducing
auxin-induced production of the transport mediators, the analysis
showed that with induced PIN1 periodic patterns occurred over a
reduced parameter range, while the parameter region was
increased when inducing AUX1. Together with our previous
results (Heisler and Jönsson, 2006) this suggests that auxin-
induced PIN1 acts to stabilize the homogeneous fixed point while
destabilizing the non-homogeneous pattern. Auxin-induced AUX1
acts in the opposite direction, and the loss of pattern stability
upon removing AUX1/LAX has also been seen in experiments
(Bainbridge et al., 2008).

The presented model is not the most parsimonious way to
create a feedback from auxin to PIN1 localization in the
membranes. We have investigated several simplifications of the
model. We presented results showing a model where auxin in
the wall feeds back to PIN1 polarization, and a model where auxin
feeds back directly to the PIN1 in the membrane without
competition of PIN1 within a cell, and both fail to generate
desired patterns. Although proving that a simpler mechanism for
regulated transport to be able to generate patterns is intractable,
our analysis indicate that the proposed model includes the
necessary features of a pattern generating model. All our attempts
to simplify the model further have led to the loss of interaction
from auxin in the next-neighboring cells, which is a requirement
for the model to generate non-trivial patterns.

Finally, we have shown that the model is also able to generate
other types of patterns than peaks. Stripes and reentrant peaks
can also appear, which may have implications in other biological
systems. A peak pattern seems to be natural for the proposed
mechanism, and other patterns can be created in rather narrow
parameter regions in-between the peaked pattern and no pattern
regions. An interesting note is that this seems to be similar to flux-
based models used for venation, where the venation patterns
appear in a parameter region in-between a no-pattern region and
a ‘patch’-like pattern (Fujita and Mochizuki, 2006).

Two mechanisms have been suggested for patterning in plants
where auxin feeds back to PIN polarization. As discussed before, a
flux-based mechanism has been suggested mainly for canalization
and vein formation, while the concentration-based model ana-
lyzed here has been proposed for phyllotaxis. Whether PIN
polarization is tissue-specific is still an open question, but recent
work has investigated the possibility of a unified description
(Merks et al., 2007; Stoma et al., 2008).

The concentration-based model can be considered as a novel
mechanism for spontaneous pattern generation in biology, and
complements suggested mechanisms used in reaction–diffusion
models. Its capabilities are very similar to those of reaction–diffu-
sion models, but as it ‘replaces’ the need of intracellular nonlinear
reactions and diffusion with a regulated active transport we do
not regard it as a reaction–diffusion model. The regulated
transport mechanism can be realized using a few elementary
biochemical processes and hence provides a plausible mechanism
for pattern formation in biology. Especially, the molecular data of
phyllotaxis indicate the presence of this mechanism. Another
system where moving uphill in concentration is present is
chemotaxis, where e.g. bacteria move against a signal gradient

and form patterns, which has been investigated in mathematical
models (e.g. Keller and Segel, 1970).

The usefulness of the analyzed model will be determined by
the actual use in biology, but our analysis provides distinct
predictions for which biological mechanisms to search for within
a given system and which requirements that need to be fulfilled in
the system. This hopefully introduces some new perspectives in
the field of developmental modeling.
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Appendix A. Stability analysis of model with cell compartments

The analysis is performed by means of a linearization around
the homogeneous fixed point. The cells are assumed to be located
on a regular lattice and all cells are assumed to have m neighbors
(an even number). To analyze the stability of the homogeneous
fixed point we consider a small perturbation ai ¼ aþ �i and
neglect all terms of second order or higher. Eqs. (8) and (25) then
turn into a system of ordinary linear equations
d�i
dt

¼ 1

2
ðDþ E1 � E2 �mE3Þ

X
k2Ni

ð�k � �iÞ

� 1

2
E3
X
k2Ni

X
l2Nk

�l �
X
l2Ni

�l

0
@

1
A� da�i, (A.1)

where E1, E2, and E3 are defined in Eq. (16). In Fourier space
Eq. (A.1) is diagonalized and corresponds to

_�k ¼ m

2
ðDþ E1 � E2 �mE3ÞðSðkÞ � 1Þ

�

�m2

2
E3SðkÞðSðkÞ � 1Þ � da

�
�k ¼ lk�k, (A.2)

where SðkÞ is defined in Eq. (21). If at least one eigenvalue lk of the
system is positive, then the homogeneous fixed point is unstable
and we expect patterns to emerge. The set of wave vectors that
corresponds to the maximal (typically degenerate) eigenvalue is

O ¼ kjSðkÞ ¼ S� ¼ Dþ E1 � E2
2mE3

� 	
. (A.3)

For the perturbation of auxin concentrations in cell compart-
ments the final solution to the linearized differential equation is
analogous to Eq. (24), but with a single eigenvalue for each wave-
vector k. The requirements for a non-trivial positive eigenvalue
are the same as given in Eqs. (27) and (28).

Appendix B. Stability analysis of model with feedback from
neighboring wall compartments

With feedback from the wall compartments the full model
with cell and wall compartments can be expressed as in Eq. (3)
with the exception that

P�
ij ¼ PijW

�1
ij Ptotal where Pij ¼

f ðaijÞ
1þPk2Ni

f ðaikÞ
and

f ðaijÞ ¼
f exoðaijÞ
f endoðaijÞ

. (B.1)
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The linearized system of ordinary differential equations is

d�i
dt

¼ � da þ
X
k2Ni

ðd1 þ E1Þ
0
@

1
A�i þ ðD2 � E2Þ

X
k2Ni

�ik, (B.2)

d�ij
dt

¼ ðDþ E1Þð�i þ �jÞ � E3
X
l2Ni

�il þ
X
l2Nj

�jl

0
@

1
A

þ 2ð�D2 þ E2 þmE3Þ�ij. (B.3)

In Fourier space the system of equations is equivalent to

_�k ¼ � ðDA þmðDþ E1ÞÞ�k þ 2ðD2 � E2Þ
Xm=2

p¼1

cos
1

2
k � ep

� �
�k;p (B.4)

_�k;p ¼ 2ðDþ E1Þ cos
1

2
k � ep

� �
�k � 4E3 cos

1

2
k � ep

� �Xm=2

q¼1

cos
1

2
k � eq

� �
�k;q

� 2ðD2 � E2 �mE3Þ�k;p. (B.5)

With the definition of sk in Eq. (22), Eqs. (B.4) and (B.5) can be
expressed as

_�k
_sk

" #
¼

�ðda þmðDþ E1ÞÞ mðD2 � E2Þ
ðSðkÞ þ 1ÞðDþ E1Þ �2ðD2 � E2 þ E3SðkÞÞ

" #
�k
sk

" #
. (B.6)

The characteristic equation for the matrix in the RHS of Eq. (B.6)
can only yield trivial positive eigenvalues as the coefficients in the
quadratic equation are linear in SðkÞ.

Appendix C. Analysis of a model without PIN1 competition

A model where auxin feeds back directly on PIN1 in the
membrane can be described by

dPij

dt
¼ fþðajÞ � f�ðajÞPij, (C.1)

and represents a model without competition. The simplified auxin
transport model is again described by Eqs. (12) and (13) with

PijPtotal ¼ WijP
�
ij ¼ Wf PðajÞ where f PðajÞ ¼

fþðajÞ
f�ðajÞ

. (C.2)

The linearized system of ordinary differential equations is

d�i
dt

¼ �ðda þmðDþ C1ÞÞ�i � C2

X
k2Ni

�k þ D2

X
k2Ni

�ik, (C.3)

d�ij
dt ¼ ðDþ C1 þ C2Þð�i þ �jÞ � 2D2�ij, (C.4)

where C1 ¼ Wf 0Ph and C2 ¼ Wf Ph
0.

In Fourier space Eqs. (C.3) and (C.4) are equivalent to

_�k ¼ �ðda þmðDþ C1 þ C2SðkÞÞÞ�k þ 2D2

Xm=2

p¼1

cos
1

2
k � ep

� �
�k;p,(C.5)

_�k;p ¼ 2ðDþ C1 þ C2Þ cos
1

2
k � ep

� �
�k � 2D2�k;p. (C.6)

Using the definition of sk in Eq. (22), Eqs. (C.5) and (C.6) can be
expressed as

_�k
_sk

" #
¼

�ðda þmðDþ C1 þ C2SðkÞÞÞ mD2

ðDþ C1 þ C2Þð1þ SðkÞÞ �2D2

" #
�k
sk

" #
. (C.7)

The characteristic equation for the matrix in Eq. (C.7) can only
yield trivial positive eigenvalues as the coefficients in the
quadratic equation are linear in SðkÞ.
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