
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Nice Resource Reservations in Linux

Ohlin, Martin; Kjaer, Martin Ansbjerg

2007

Link to publication

Citation for published version (APA):
Ohlin, M., & Kjaer, M. A. (2007). Nice Resource Reservations in Linux. Paper presented at Second IEEE
International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks
(FeBID07), Munich, Germany.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/725e24d5-fd6f-4091-bc23-e67d0b528c0c


Nice Resource Reservations in Linux

Martin Ohlin

Department of Automatic Control

Lund University

Box 118, SE-221 00 Lund, Sweden

Email: Martin.Ohlin@control.lth.se

Martin A. Kjær

Department of Automatic Control

Lund University

Box 118, SE-221 00 Lund, Sweden

Email: Martin.A.Kjaer@control.lth.se

Abstract—Computing systems are becoming more and more
complex and powerful every year. It is nowadays not uncommon
to run several server applications on the same physical platform.
This gives rise to a need for resource reservation techniques,
so that administrators may prioritize some applications, or
customers, over others. This article gives a brief introduction
to the Linux kernel 2.6 task scheduler. The article also presents
an implementation of a scheduling mechanism, that in a non–
intrusive way introduces CPU bandwidth reservations for a task,
or a group of tasks, in the GNU/Linux operating system.
The scheduling mechanism is first tested using dedicated load

tasks, and then on a setup consisting of two Apache servers.

I. INTRODUCTION

Resource reservation has become an important tool for

modern IT–systems. For example, a Internet host (e.g. a web

hotel) guarantees to supply a certain amount of resources to

a number of service providers (e.g. web shops). Often several

service providers are hosted on the same hardware, but the host

must guarantee that each service provider receives the agreed

amount of resources, despite the behavior of the other service

providers. The specific type of resources can be one or more

of; network bandwidth, database access, memory allocation,

CPU bandwidth, and many more. Another example is when a

movie player on a PC needs a certain amount of CPU resources

while a virus scanner runs in the background.

On a single computer, the exact decision of how the

resources are split between the applications is often left to the

operating system. In most cases, this deference of command

can be seen as an advantage because it is not normally known

exactly how important they are relative to each other. For

example, it is not trivial to determine how important the mail

server is compared to the web server. However, in some cases,

it would be advantageous if there existed a mechanism to

specify exactly how important different tasks (or groups of

tasks) are compared to each other. Take for example the simple

case where two web servers are running on the same machine.

The first server is used by paying customers, and the other by

browsing customers. Then it would be advantageous to have

a mechanism to control the average response times, so that

the paying customers will always be satisfied, whereas the

browsing customers are still allowed to access the server if

there is spare capacity.

The so–called virtual hosting provides utilities to define

resource allocation by imposing a virtual operating system

between the host operating system and each service provider.

The resources allocated to each virtual server can be defined

by the host. This gives well defined resource isolation, but in

some case, a simpler, and possible cheaper, method might be

preferred.

The results described in this paper aim to obtain CPU–

bandwidth separation between different service providers

while keeping the overhead to a minimum. A feedback based

method is used to achieve CPU bandwidth reservation on a

kernel level, thus avoiding the need to make modifications

to the applications. Because it is implemented in the kernel

with an optimized algorithm, the overhead is fairly small. The

implementation makes use of the Linux prioritizing scheme to

assure a specified amount of CPU bandwidth to a given task.

The CPU reservations are obtained using existing operating–

system infrastructure.

As the source code of GNU/Linux is free, a number of

organizations have released their own versions of the operating

system. Some of these organizations are Debian, Fedora and

SuSE. GNU/Linux has for many years been a large competitor

in server systems, such as web, ftp, mail and file servers.

During the last years, the interest in GNU/Linux from commer-

cial companies has increased dramatically. Nowadays, large

enterprises such as IBM and Hewlett–Packard take active part

in the GNU/Linux development, and also ship GNU/Linux as

part of their large server and cluster systems.

The remainder of this paper paper is organized as follows.

Section II describes the objective of the control mechanism.

Section III describes some issues of the Linux scheduler

relevant for the resource allocation problem. In Section IV a

model of the scheduler is formed, and Section V describes the

controller implementation. In Section VI the control algorithm

is expanded to take the task’s state into account to avoid

integrator windup. Section VII presents experimental valida-

tion using test tasks, and Section VIII presents experimental

results where the reservation mechanism was implemented on

a setup with two Apache servers. Related work is presented in

Section IX, and finally, conclusions are stated in Section X.

II. OBJECTIVE OF CONTROL

The objective of the control in this paper is to achieve CPU

bandwidth reservations. Such reservations make it possible to

reserve fractions of the CPU to specific tasks or a groups

of tasks. In the Linux kernel, both processes and threads are

called tasks. Even POSIX threads created using the Native

POSIX Thread Library (NPTL) are called tasks. From the



kernels’ perspective, they are all schedulable entities. There-

fore, the method which will be presented can be used both for

applications made up of threads and of processes.

The developed method has been implemented as an add–on

to the Linux 2.6 kernel. A key factor in the current implemen-
tation has been to make it non–intrusive and to preserve the

way that the original scheduler works. This gives the benefit

that the new features can be used without compromising

existing functionality. The CPU bandwidth controller uses the

nice value as a control signal, and the tasks’ execution time

as a measurement signal. This forces the scheduler to give the

controlled tasks their specified amount of CPU bandwidth.

It may be argued that the presented problem can be solved

offline by specifying a static nice value for each task. This is

of course absolutely true, if the system is static and everything

is known beforehand. That is, if it is known exactly how many

tasks that are present in the system, and also their execution–

time demands. These premises are not likely to show up in

an ordinary Linux desktop or server system and therefore it

is necessary to introduce a feedback loop to cope with the

unknown. In an ordinary computer system there is a lot of

dynamics. This is due to the fact that tasks can arrive and

leave the system at any time. Tasks can also change their state

and in that way consume more or less execution time. When

running on multi–processor systems, tasks will also jump

between processors in a (from a spectators’ perspective) more

or less random pattern. This causes the execution environment

to change rapidly and therefore an ability to adapt to different

situations is necessary.

III. SCHEDULING OF TASKS

There are three different scheduling policies available in

Linux; SCHED_FIFO, SCHED_RR, and SCHED_OTHER. The

two former are for soft real–time scheduling policies, and the

latter is for normal time–sharing scheduling. Only the latter is

utilized in the work presented in this paper.

The Linux 2.6 kernel task scheduler has two priority queues,
one for active tasks, and one for expired tasks. The queues

are arrays of linked lists, one list for every priority. The

scheduler always chooses the list with the highest priority

in the active queue. Every task in the active queue of the

system gets to run a certain time before it is put in the expired

queue. This time is called a time_slice and the actual

size of it depends solely on the nice value given to the task

and not on the effective priority. Nice values in the interval

[−20 . . .0 . . . 19] are mapped to time slice sizes in the interval
[800 ms . . .100 ms . . .5 ms]. The size of the resulting time
slices can be seen in Figure 1. Note that the resulting time

slices do not scale linearly with the nice value.

A non–interactive task is moved to the expired queue when

it has used up its given time slice, an interactive task on the

other hand is reinserted into the active queue if there is no

risk of starvation in the expired queue. When there are no

more tasks left in the active queue, it is switched with the

expired one. The expired queue is considered to be starving

if the first expired task has had to wait for more than a fixed

−20−15−10−505101520
0

100

200

300

400

500

600

700

800

nice value

ti
m

e
_

s
lic

e
 (

m
s
)

Fig. 1. The size of time_slice as a function of the nice value. Notice
that the nice values are ordered from negative to positive values to indicate
increasing time_slice allocation.

time multiplied with the number of tasks in the active queue.

This makes the starvation–limit load dependent. It is also

considered to be starvation if a task with lower nice value

than the currently running task is in the expired queue.

Tasks with the same priority are treated differently, depend-

ing on whether the scheduler considers them to be interactive

or not. Non–interactive tasks are not interrupted by tasks

with the same priority during execution of their time slice.

Interactive tasks on the other hand get their time slice split up

into smaller pieces, and are put at the end of the active queue

again and again until they have executed for their whole time

slice. The result is that interactive tasks are scheduled more or

less round–robin with tasks of the same priority, while non–

interactive tasks run non–preemptively.

For a more detailed description of the task scheduler, see [1].

IV. MODEL OF THE SYSTEM

To start with, we assume that a task always needs to run,

i.e., it is cpu–bound. We can then summarize the above in

a few points and build a model of the system to predict its

behavior.

• A task’s time slice depends solely on its nice value.

• Tasks are scheduled in order of priority.

• Tasks are moved from the active queue to the expired

queue when they have executed their whole time slice.

• The active queue is swapped with the expired when

empty.

According to the model, the fraction of execution time that

a task gets during one round of execution is calculated as:

fraction(i) =
time slice(i)

∑

∀j time slice(j)

where i and j denote task indices.



−20−15−10−505101520
0

10

20

30

40

50

60

70

80

nice value

%

Fig. 2. Comparison of the execution time model for Linux (+) and
measurements on a computer (◦). Notice that the nice values are ordered
from negative to positive values.

Example: If, for example, tasks 1, 2 and 3 have nice value
0 and task 4 has nice value −1, then task 4 will get:

fraction(i) =
420

100 + 100 + 100 + 420
≈ 58%

A. Evaluation of the Model

To show that the model is accurate, theoretical values from

the proposed model are compared to values received through

measurements. The experimental setup consists of four tasks

running in endless while–loops. Three of the tasks have nice

value 5, while the nice value of the fourth task is varied in

order to give it more or less CPU bandwidth compared to

the other tasks. The result can be seen in Figure 2. Using

lower nice values than −6 resulted in the system becoming
to sluggish to do any good measurements, therefore these are

left out. This sluggishness is probably due to the fact that

tasks with that low nice values are given so high priorities

that they conflict with the tasks interacting with the user. As

can be seen, the results from the experiments follow the model

very well.

V. CONTROLLER IMPLEMENTATION

The control signal, in this case the nice value, can only

change in discrete steps. This makes it impossible to keep

some references statically. But by using modulation tech-

niques, as for example Pulse Width Modulation (PWM), the

reference can be kept on average. Another thing that one

should be aware of is the nonlinearity in how the nice value

is mapped to the time_slice, as seen in Figure 1. This

makes it harder to follow references which forces the control

signal to oscillate over the interval [0,−1]. Ongoing work is
to compensate this by an inverse–nonlinearity, and thereby

reducing the oscillations. This will require more code to be

executed in the kernel, but the overhead is expected to be

fairly small.

A PI–controller with anti–windup has been implemented

using fixed point arithmetic in a kernel module. The PI–

controllers have a strong history in the control community

because it combines robustness and fast response, while being

relative simple to configure, even without exact knowledge

of the system to be controlled. In the future, more elaborate

schemes could be used that take into account more details

of how the scheduler works, as well as global knowledge

of the behavior of other tasks. By using a PI–controller in

this way, a PWM–like behavior is achieved automatically. The

implemented PI–controller is given by

u(k) = K
(

yref − y(k)
)

+ I(k) (1)

I(k) = I(k − 1) + TS

K

Ti

(

yref − y(k)
)

(2)

where the parameters K and Ti are the proportional and

integral control parameters, respectively. The variable u is the

control signal (the nice value), and y is the measurement

(the fraction of time given to the task). The variable k is

the discrete time index, such that t = kTS, where TS is the

sampling time. The PI controller consists of two components.

The proportional part (K(yref − y(k))) ensures fast reaction
to disturbances, but does not assure that the desired reference

is reached. The integral part (described by I) will accumulate

any error between the measurement and reference in a similar

manner as an incremental controller. This part is particular

beneficial when the system under consideration is not well–

known and predictable, as with computer systems. The specific

implementation uses the control parameters K = 0.01 and
Ti = 52, and sampling times of TS = 20 ms.
Since the control design is not based on a dynamical model,

there are no theoretical guarantees for performance or stability.

However, the values of K and Ti have been chosen rather

conservatively to have large stability margins. This is imposed

because even small changes to the nice value can lead to

large changes in the achieved CPU–bandwidth. The effect of

changes to the nice value also varies with the number of tasks

in the system and their respective nice values in turn. The

fact that there are unknown parameters in the system makes it

good to have a conservatively tuned controller. Another thing

that makes a conservatively tuned controller preferable, is the

fact that measurements are not taken instantaneously, but over

an interval. The system must therefore be given some time to

react to the control signal before changing it again. Using a

large value on Ti, also has the bonus effect that measurements

are averaged. In the case where the controller saturates, the

control objective might not be met, since the controller lacks

actuation possibility. The integral part will remain within the

allowed control range due to the anti–windup scheme.

For more details on the controller implementation, see [1].

VI. TAKING THE TASK’S STATE INTO ACCOUNT

Up until now it has been assumed (for simplicity) that

a controlled task is always willing to run, i.e., it is cpu–

bound. This may be true in some cases, but obviously not

in all. Imagine for example that the controlled task is given



a reference of 50%, but does not need more than 40% due
to the fact that it is waiting on some I/O to occur the rest of

the time. The integral part of the PI controller will then add

up the difference, and increase the control signal in order to

remove the error. But as the task is unwilling to run, and the

system can not force it, the error will remain and the control

signal will, due to the integral effect, continue to rise until it

hits its limit. This is of course not a satisfactory behavior, and

could be avoided by taking the current state of the task into

account when controlling it. The strategy could be something

like: do not increase the control signal further if the task is not

not willing to run more. This is more or less an anti–windup

scheme which ensures that the integral part does not wind

up trying to enforce higher CPU allocation to a task than the

task demands. The remaining part of this section will give a

strategy for solving these kinds of situations.

A. Strategy

The idea to update the control signal only if the task is

willing to run, sounds good at first. It is, however, not as simple

as it first might seem. The obvious question to answer is: how

do we know if a task is willing to run more than it already

does? The idea used in the current controller implementation

is to sample the state of the task at the same time as the

execution time. The controller is then only executed if two

consecutive samples show that the task is in the “running”

state. This strategy works well if the task is usually in the

“running” state for a longer time than the time between two

consecutive samples of the controller. How long time a task

spends in its “running” state depends highly on its workload

during that time interval, but it also depends on the other tasks

in the system, as the task might get interrupted by a higher

priority task. This makes it hard to give any general rules

and hence draw any conclusions to be used for more accurate

control.

B. Why does the Strategy Work?

The reason why the strategy works, i.e., the control signal

does not saturate, is the following: A task with a low priority

will be in the “running” state for a long time. This is due to

the fact that it will be preceded and interrupted by tasks with

higher priorities. It will not switch from the “running” state

until it has finished its current work load. If the priority of the

task is increased, the task may not be preceded by as many

tasks as before and it will also not be interrupted by as many.

Hence, it will finish earlier and therefore be a shorter time in

the “running” state. In essence, a high priority gives a short

time in the “running” state. As the execution time demand is

constant, the ratio between executed time and time spent in

the “running” state will increase if the priority is increased.

At a certain point, an equilibrium will be reached, where the

reference is met during the period when the task is in the

“running” state, and hence the control signal will be constant.

Example: Fig. 3 shows the sampling points of the controller,

and the task’s state at those points. It also shows the task’s

execution trace and which of the sample intervals that are used

�������������� ��������Task Execution

Sampling Points

Task State

Controlled Intervals

CPU Bandwidth

rrrrrrr www

0% 0%0%0% 70% 100% 30%30% 90%

Fig. 3. Figure showing how the strategy described in Section VI-B for
controlling non–cpu bound tasks works.

by the controller. An r means that the task is in the “running”

state, and a w that it is in one of the “waiting” states. During

the controlled intervals, the ratio between executed time and

time spent in the “running” state is approximately 48%.

VII. EXPERIMENTS WITH LOAD TASKS

Experiment 1 and 2 have been performed on a single CPU

desktop computer. At the same time as the experiments were

made, there were a number of tasks in the system, e.g.,

X, Firefox, Thunderbird, XEmacs and so on. All bandwidth

measurements have been filtered through a moving average

window of 4 s. The filtering is done because of the fact that
when a task executes, it gets 100% of the CPU–bandwidth and
then it gets 0% when it does not execute. Filtering through a
moving average window shows the CPU–bandwidth during

that window and this is also what one wants to achieve.

Running the experiments on a computer with more than one

CPU will gain results similar to the ones seen in this section,

except that there will considerably more load disturbances, as

those seen in Experiment 1.

Experiment 1: The setup in this experiment consists of four

tasks running in endless while–loops. Two of the tasks have

their nice values set to five, and act as background load. The

third and fourth task’s nices values are used as control signals

to keep the measured bandwidth at the desired references.

The references for both of the tasks are kept at 25% initially.
At time 182, the reference for the first task is changed from
25% to 50%. At around time 320, the reference is changed
back to 25%. The result of the step response for the first task
can be seen in Figure 4. The coupling between the two tasks

is visible in Figure 5, which shows the disturbance on the

second task resulting from the step on the first one. No feed–

forward term is used in the controller. This experiment shows

the PWM nature of the control signal and the results of the

quantization in the nice value. In Figure 4, it can be seen

that the control signal is constant both before and after the two

steps. But when the reference is set to 50%, the control signal
fluctuates a lot. Also note that there is much less oscillation

in the CPU–bandwidth when the reference is set to 25% than
to 50%. This is due to the fact that some references cannot be
kept stationary because the nice value is discrete.

Experiment 2: This experiment consists of one periodic

task that executes for approximately 40 ms and then sleeps for
60 ms repeatedly. This results in a task that uses at most 40%
of the CPU even if it is alone in the system. Controlling such

a task requires the state of the task to be taken into account

as described in Section VI. Two load tasks of the same type

used in Experiment 2 are also present in the system.



150 200 250 300 350 400 450
0

10

20

30

40

50

60

70
CPU Bandwidth of Task 1

%

time (s)

150 200 250 300 350 400 450
−5

0

5
Control Signal of Task 1

n
ic

e
 v

a
lu

e

time (s)

Measurement
Reference

Fig. 4. Step response of the CPU bandwidth (task 1) when controlling two
tasks in Experiment 1.

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70
CPU Bandwidth of Task 2

%

time (s)

150 200 250 300 350 400 450
−5

0

5
Control Signal of Task 2

n
ic

e
 v

a
lu

e

time (s)

Measurement
Reference

Fig. 5. Step response of the CPU bandwidth (task 2) when controlling two
tasks in Experiment 1.

As can be seen in Figure 6, the proposed scheme works

well in practise. In the beginning of the plot, the reference is

higher than the task demands, and at time 55 it is set to an
even higher value, but the control signal still behaves well.

It can also be seen that the controller is still able to follow

reference changes when they are lower than 40%.

The observant reader may notice the delay and the following

under–shoot at time 160. Also note that this behavior does not
show up at any of the other step changes in the plot. This

is not an integrator windup as might first be thought, but is

instead due to the fact that the system has marked the task as

interactive and therefore given it an additional bonus. When

the task after some time is marked as non–interactive, it loses

its bonus and this results in the under–shoot.

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80
CPU Bandwidth

%

time (s)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20
Control Signal

n
ic

e
 v

a
lu

e

time (s)

Measurement
Reference

Fig. 6. Step responses for a non cpu–bound task when taking the task’s state
into account in Experiment 2.

VIII. EXPERIMENT WITH APACHE SERVERS

This experiment aimed to test the scheduling mechanism on

a more realistic application. The test is not included to suggest

that the mechanism is the best solution for the given example,

but only to demonstrate that the method works for a problem

including more advanced behavior than the previous tests.

The setup represents a hosting system where two service

providers are hosted on the same physical hardware. The

objective is to separate the two service providers such that one

service provider can operate unaffected of a request overload

at the other service provider.

Experiment 3: A Pentium 4, 1 GB memory, 3 GHz PC,

with a Linux Fedora 5 operating system and kernel 2.6.17.

was used as host computer. Two Apache servers, version

2.2.2, configured by using the prefork module, were installed

on the server as two distinct service providers. Using this

configuration, a request was handled by one process (child).

If all existing processes were occupied, Apache dynamically

started new processes, and likewise, closed some if there

were too many idle processes. This means that the number

of processes associated with one Apache server changed over

time. The controller was configured to set a common nice

value to all the processes of a given Apache server. Also, the

time allocated to all the processes of one Apache serve were

summed to give the time fraction measurement. In this manner,

a single–input single–output system was obtained as required

by the control structure. Only one of the Apache servers

was controlled with the proposed scheduling mechanism. The

controlled and uncontrolled server were listening on port 80

and 81, respectively. The setup is illustrated in Figure 7.

Traffic was generated from 12 client computers (Athlon,

1.5 GHz PC), grouped into three equal groups consisting of

four client–computers each. The traffic was generated using

the traffic generation software CRIS [2]. All clients requested

the same PHP file (generating a response with 7000 characters)



Port

80

Server

Uncontrolled

Client

#12

Client

#1
· · ·

Port

81

Controlled

Server

Arrival intensity

Time

Arrival intensity

Time

100 Mbit switched network

TCP/IP layer

Host computer

Fig. 7. Experimental setup for experiment 3.

with exponentially distributed inter–arrival times, and were

configured to timeout after 10 s. During the experiment, all the

computers were connected on a 100 Mbit switched Ethernet

network.

At the beginning of the experiments, client group I started

sending requests to the controlled server and client group II

started to sent requests to the uncontrolled server. Both groups

sent approximately 160 requests/s. This traffic did not give rise

to CPU–overload, but left approximately 25% CPU bandwidth

free. A server is considered to be overloaded when the requests

can not be served within the timeout of the clients due to lack

of CPU resources. After 173 s, client group III started to send

approximately 160 requests/s to the uncontrolled server. The

computer did not have sufficient CPU capacity to maintain

operation of both servers. The averaged arrival–intensity is

shown in the uppermost sub–figure of Figure 8. The traffic

going to the uncontrolled server was the combined traffic from

client group II and III.

Under the initial operation none of the servers were over-

loaded but as the request rate to the uncontrolled server was

doubled, the computer lacked the CPU bandwidth to serve

all requests. Preferably, only the server being exposed to the

extra traffic should become overloaded, while the other server

should remain operational.

The middle and bottom sub–figures of Figure 8 show the

response times of the controlled server and the uncontrolled

server, respectively. In the case where the controller was

inactive, both servers became overloaded when the traffic

increased. After the increase of traffic, the response times of

both servers increased dramatically and all clients started to

timeout. Consistent timeouts from the clients were observed.

In the case where the CPU resource allocation was controlled

by the proposed scheduling mechanism (reference set to 45%

CPU bandwidth), only the uncontrolled server became over-

loaded. The controlled server continued to perform with simi-

lar response times. Client timeouts were observed consistently

only on the uncontrolled server’s requests. Two single timeouts

were observed on the controlled server’s requests. The small

140 150 160 170 180 190 200 210
100

200

300

Time (s)

A
rr

iv
a

l 
ra

te
 (

re
q

/s
)

Arrival rate

 

 

Controlled server

Uncontrolled server

140 150 160 170 180 190 200 210
0

20

40

60

Time (s)

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Response time for controlled server

 

 

Inactive controller

Active controller

140 150 160 170 180 190 200 210
0

20

40

60

Time (s)

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Response time for uncontrolled server

 

 

Inactive controller

Active controller

Fig. 8. Results from experiment 3 on two Apache servers. Top: Average
arrival rates. Middle: Response time for the controlled server with and without
feedback control. Bottom: Response time for the uncontrolled server. All
variables were measured at the clients and were filtered with a moving average
window of 200 requests.

jump observed in the response time of the controlled server

(middle sup–figure of Figure 8) at around 200 s is assumed to

be due to some disturbance from other tasks in the operating

system.

This experiment showed that the scheduling mechanism

can be used to affect the response time of a web server

application. The setup with two different servers with different

client groups can be used in applications where different sites

are hosted on the same physical computer, but where the

performance of one server must be independent of the behavior

of the other server. In this experiment we have not considered

how such a system should be setup in a real application. For

instance, we do not consider how the traffic to the two servers

is separated. However, the experiment shows that the two

servers can be separated by means of the proposed scheduling

mechanism. The setup does not aim to control the response

time. If this was the objective, a second control loop would

have to be included, defining the reference for the CPU–

bandwidth controller.

IX. RELATED WORK

Reservation based scheduling is not a new concept and

has been around in one form or another for many years.

The concept has been called fair–share scheduling [3], [4],

[5] but is also known under the name proportional–share

scheduling [6], [7], [8], [9]. A good summary of this field,

together with more details can be found in [10].

The idea of using the nice value as a way to enforce CPU

fractions has been known before. One early implementation

is the Watson Share scheduler [11], implemented on top



of a standard AIX operating system at the Compute Power

Server Cluster at IBM. It is also mentioned in [12] and [13]

as something that in UNIX can be done in theory, but is

complicated in practice because of the non–linear relationship

between nice, the number of processes and the CPU fraction

received. Provided that the number of jobs in the system is

fixed, and that they are all present from the same time and

onward, a deterministic analysis of the steady state shares

is possible. [14] shows how this can be used to statically

calculate the base priorities on a uniprocessor in the presence

of decay–usage scheduling in UNIX. [15] extends this analysis

to the multiprocessor case.

An interesting Linux kernel project in this area is Class–

based Kernel Resource Management (CKRM) [16] and [17]

which aims at providing differentiated service to resources

such as CPU bandwidth, memory pages, I/O and incoming

network bandwidth. It accomplishes CPU reservations by

scaling the time_slice value and re–queuing tasks. Parts

of this project is used in “SuSE Linux Enterprise Server 9”,

but not the CPU controller.

Resource allocation and reservation in web server applica-

tions is nothing new. An example is [18] where virtual serving

on one physical computer is used to guarantee certain quality

of service metrics for several client classes under chancing

load conditions. An often used actuation method is admission

control, where requests are denied in order to avoid overload

and to guarantee certain performance metrics for the accepted

requests [19], [20], [21].

X. CONCLUSIONS

An exposition of the Linux 2.6 scheduler has been done and
a feedback–based method for controlling the CPU bandwidth

given to tasks in Linux has been presented. The presented

method has been shown to work, both for cpu–bound and

non cpu–bound tasks. A number of experiments have been

performed in order to show that the technique works in real-

ity. The experiments indicate that CPU bandwidth allocation

can be obtained with the proposed scheduling mechanism.

Furthermore, the mechanism can be used to separate the

performance of two Apache servers running on the same

physical computer—that is, one server remains operational

while the other server is overloaded.

REFERENCES

[1] M. Ohlin, “Feedback Linux scheduling and a simulation tool for wireless
control,” Department of Automatic Control, Lund University, Sweden,
Licentiate Thesis ISRN LUTFD2/TFRT--3240--SE, June 2006.

[2] M. Andersson, A. Hagsten, and F. Neisler, “Crisis request generator for
internet servers,” in Proc. Fourth Swedish National Computer Network-
ing Workshop, Lule, Sweden, 2006.

[3] R. B. Essick, “An Event-Based Fair Share Scheduler,” in Proc. of the
Winter 1990 USENIX Conf. USENIX, 1990, pp. 147–162.

[4] J. Kay and P. Lauder, “A fair share scheduler,” Communications of the
ACM, vol. 31, no. 1, pp. 44–55, 1988.

[5] G. J. Henry, “The Fair Share Scheduler,” AT&T Bell Laboratories
Technical Journal, vol. 63, no. 8, pp. 1845–1857, October 1984.

[6] L. L. Fong and M. S. Squillante, “Time-Function Scheduling: A Gen-
eral Approach to Controllable Resource Management,” IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY 10598,
Tech. Rep. RC 20155 (89194), August 1995.

[7] I. Stoica and H. Abdel-Wahab, “Earliest Eligible Virtual Deadline First
: A Flexible and Accurate Mechanism for Proportional Share Resource
Allocation,” Norfolk, VA, USA, Tech. Rep., 1995.

[8] C. A. Waldspurger and W. E. Weihl, “Stride Scheduling: Determinis-
tic Proportional-Share Resource Mangement,” Massachusetts Institute
of Technology, MIT Laboratory for Computer Science, Tech. Rep.
MIT/LCS/TM-528, June 1995.

[9] ——, “Lottery Scheduling: Flexible Proportional-Share Resource Man-
agement,” in First Symp. on Operating Systems Design and Implemen-
tation (OSDI). USENIX Association, 1995, pp. 1–11.

[10] J. de Jongh, “Share Scheduling in Distributed Systems,” Ph.D.
dissertation, Delft University of Technology, 2002. [Online]. Available:
http://www.pds.ewi.tudelft.nl/pubs/ph d/dejongh.pdf

[11] C. Moruzzi and G. Rose, “Watson Share Scheduler,” in Proc. of the
Fifth Large Installation Systems Administration Conf. (LISA ’91). San
Diego, USA: USENIX, 1991, pp. 129–133.

[12] J. L. Hellerstein, “Challenges in Control Engineering of Computing
Systems,” in Proc. of the 2004 American Control Conf., vol. 3, 2004,
pp. 1970– 1979.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, “Control
Engineering for Computing Systems,” IEEE Control Systems Magazine,
vol. 25, no. 6, pp. 56–68, dec 2005.

[14] J. L. Hellerstein, “Achieving Service Rate Objectives with Decay Usage
Scheduling,” IEEE Trans. Software Eng., vol. 19, no. 8, pp. 813–825,
1993.

[15] D. H. J. Epema, “Decay-Usage Scheduling in Multiprocessors,” ACM
Trans. Comput. Syst., vol. 16, no. 4, pp. 367–415, 1998.

[16] CKRM, “Class-based Kernel Resource Management (CKRM),” Home
page: http://ckrm.sourceforge.net/, 2006.

[17] S. Nagar, R. V. Riel, H. Franke, C. Seetharaman, V. Kashyap, and
H. Zheng, “Improving Linux resource control using CKRM,” in Proc.
of the 2004 Linux Symp., vol. 2, Ottawa, Ontario, Canada, July 2004,
pp. 511–524.

[18] W. Xy, X. Zhu, S. Singhal, and Z. Wand, “Predictive control for
dynamic resource allocation in enterprise data centers,” in Proc. Conf.
on Management of Integrated End-to-end Communications and Services,

NOMS, Vancouver, Canada, April 2006, pp. 115–126.
[19] X. Chen, H. Chen, and P. Mohapatra, “Aces: An efficient admission

control scheme for qos-aware web servers,” Computer Communications,
vol. 23, no. 14, pp. 1581–1593, 2003.

[20] S. C. Lee, J. C. Lui, and D. K. Yau, “A proportional-delay diffserv-
enabled web server: admission control and dynamic adaptation,” Parallel
and Distributed Systems, IEEE Trans., vol. 15, no. 5, pp. 385–400, 2004.

[21] M. Andersson, J. Cao, M. Kihl, and C. Nyberg, “Admission control
with service level agreements for a web server,” in Proc. of IASTED Int.
Conf. on Internet and Multimedia Systems and Applications (EuroIMSA),
Grindelwald, Switzerland, February 2005.


