
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Auto-tuning Interactive Ray Tracing using an Analytical GPU Architecture Model

Ganestam, Per; Doggett, Michael

Published in:
The ACM International Conference Proceedings Series

2012

Link to publication

Citation for published version (APA):
Ganestam, P., & Doggett, M. (2012). Auto-tuning Interactive Ray Tracing using an Analytical GPU Architecture
Model. In The ACM International Conference Proceedings Series

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://portal.research.lu.se/en/publications/d0ec480a-349c-47a8-b893-adfb01879f1e


Auto-tuning Interactive Ray Tracing using an

Analytical GPU Architecture Model

Per Ganestam

⇤

Lund University

Michael Doggett

†

Lund University

ABSTRACT
This paper presents a method for auto-tuning interactive ray tracing
on GPUs using a hardware model. Getting full performance from
modern GPUs is a challenging task. Workloads which require a
guaranteed performance over several runs must select parameters
for the worst performance of all runs. Our method uses an analyti-
cal GPU performance model to predict the current frame’s render-
ing time using a selected set of parameters. These parameters are
then optimised for a selected frame rate performance on the partic-
ular GPU architecture. We use auto-tuning to determine parameters
such as phong shading, shadow rays and the number of ambient oc-
clusion rays. We sample a priori information about the current ren-
dering load to estimate the frame workload. A GPU model is run
iteratively using this information to tune rendering parameters for a
target frame rate. We use the OpenCL API allowing tuning across
different GPU architectures. Our auto-tuning enables the render-
ing of each frame to execute in a predicted time, so a target frame
rate can be achieved even with widely varying scene complexities.
Using this method we can select optimal parameters for the cur-
rent execution taking into account the current viewpoint and scene,
achieving performance improvements over predetermined parame-
ters.

1. INTRODUCTION
Programming GPUs for high performance requires a careful bal-

ance of several hardware specific related factors that is typically
only achieved by expert users through trial and error. GPUs are
massively parallel devices with parallel compute capacity exceed-
ing other single chip devices and are still the best device for high
performance graphics [8]. There are currently many APIs for pro-
gramming GPUs all with their respective advantages and disadvan-
tages, but getting optimal performance from the GPU is still a chal-
lenging task that requires repetitive manual tuning. To reduce the
amount of trial and error required to achieve optimal performance,
general guidelines can be followed or different metrics can be con-

⇤perg@cs.lth.se
†mike@cs.lth.se

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
GPGPU-5, March 03 2012, London, United Kingdom
Copyright 2012 ACM 978-1-4503-1233-2/12/03 ...$10.00.

sidered to predict performance, but ultimately a trial and error pro-
cess is still prevalent. In this paper, we present a method that makes
this tuning process automatic using an analytical GPU model.

The current challenges of programming and getting efficient per-
formance from GPUs is likely to increase in the future as new de-
vices have increasily complex architectures. While new features,
such as shader cache hierarchies, make programming easier, getting
the best efficiency is still difficult. Also as pointed out by Owens
et al. [8], the cost of memory bandwidth in comparison to compu-
tational power is ever increasing. On future devices applications
will need to switch to modes that require more compute process-
ing, whereas on older devices a better trade off between memory
and compute is necessary. Power usage is also an important con-
sideration and Dally [4] points out that the power cost of a mem-
ory operation is an order of magnitude greater than compute op-
erations. Sometimes it is important to tune parameters for power
usage instead of just performance. Using a single set of parameters
for all devices is therefore inadequate and per device tuning is also
needed, resulting in an ongoing maintenance task.

We present a method for automatically tuning the parameters of
a parallel application running on massively parallel devices, GPUs.
Automatic tuning is performed by estimating the run time for a
given set of parameters using a GPU analytical model [7] and then
changing parameters and re-estimating until a chosen performance
target is met. A major advantage of this system over using feed-
back from the previous frame is that the rendering load based on
viewpoint can change dramatically between frames, hence a pre-
vious frame’s feedback loop could become inaccurate and highly
unstable. We model GPU performance across a range of GPU ar-
chitectures including older generations and different vendors by us-
ing the OpenCL API. We evaluate our auto-tuning method with a
ray tracing application, because it has a range of parallel properties
including a large amount of parallel work, high memory bandwith
usage, and a workload that can be sometimes coherent and some-
times incoherent.

This paper contributes a new method for auto-tuning using an
analtyical GPU model. Our method uses a feedforward controller
to improve the performance estimate achieved over what is possible
with just the GPU model. In addition, a simplified version of Hong
and Kim’s GPU model [7] is presented. This paper also presents
GPU modelling across both GPU vendors, NVIDIA and AMD.

2. PREVIOUS WORK
Early efforts to tune rendering performance include work by

Funkhouser et al. [6] which tunes the rendering algorithm using
predetermined geometry properties and previous frame rates to en-
sure a user-specified frame rate. By using a cost and benefit calcu-
lation for each object a target frame rate can be achieved by setting



appropriate LOD levels and adjusting image quality for each object
in the scene. In our approach we also control rendering parameters,
but use a GPU model to get accurate estimates of the final perfor-
mance for the current frame enabling much faster tuning.

Making efficient use of GPU hardware resources has always been
a challenging task and a large amount of research is devoted to the
discovery of improved tuning parameters for a particular algorithm
that have been found through trial and error or developer tools. But
recent efforts to find more general methods have been presented.
Using metrics such as the number of instructions and threads run-
ning on a GPU at one time, Ryoo et al. [9] shows how measures
of utilization and efficiency can be computed to predict which re-
gions of the complete space of available optimizations need to be
tested in order to find the optimal setting. This method reduces the
search time considerably, but still requires iterating over variables
to find the best optimizations. Their model also only works if the
application does not have memory bandwidth issues.

In recent years several efforts have been made to understand and
model GPU architectures. Hong et al. [7] propose an analytical
GPU model that can be used to estimate the performance of algo-
rithms by also taking into account the impact of memory opera-
tions. They count the number of memory transactions as well as
the actual address to better model the amount of parallelism avail-
able when memory requests happen on GPUs. They measure GPU
characteristics using microbenchmarking and can then make per-
formance estimates using their analytical model. We use this model
in this paper to tune our application. Bakhoda et al. [3] presents
a detailed GPU simulator which takes PTX instructions and ex-
ecutes them to analyze execution performance. Their simulator
gives accurate performance estimates but does not provide quick
estimates that can be used to rapidly tune performance before exe-
cution. Baghsorkhi et al. [2] present a GPU model that also models
important properties such as scratch-pad memory access and con-
trol flow divergence using a work flow graph. Further details of
GPU architecture including cache sizing can also been determined
via the use of micro benchmarking [10].

Recent results in auto-tuning show that using statically deter-
mined parameters for algorithms that run on GPUs always produce
poorer results than tuning those parameters to the GPU capabili-
ties [5]. Davidson et al. [5] also show that by running multiple
benchmarks of an algorithm, optimal performance can be achieved.
In this paper we improve upon this result by directly querying a
GPU model to determine the best parameters. This enables a wider
range of parameters to be checked, which is important for complex
algorithms such as ray tracing.

In this paper we tune the ray tracing algorithm for image synthe-
sis. Previous work in GPU ray tracing has also used statically de-
termined parameters or algorithm changes to improve performance.
Aila et al. [1] introduced the concept of persistent threading in or-
der to improve GPU utilization beyond that achieved by the hard-
ware work scheduler. They found that packet tracing was not much
faster than per-ray tracing even though per-ray introduces more in-
coherent memory accesses. To improve performance they created
scheduling threads on the GPU, called persistent threads, which
improved the performance two-fold by moving scheduling into the
GPU thread. Persistent threads are an example of a non-standard
performance optimization that programmers may not be aware of,
but could be incorporated into an auto-tuning system.

3. GPU PERFORMANCE MODEL
To estimate the performance of an algorithm on the GPU, we

use a GPU model based on Hong and Kim’s model. [7]. We use
Hong and Kim’s model on AMD GPUs as well as NVIDIA GPUs.

The model is deterministic and straight forward to implement. It
also executes quickly with practically no overhead, hence it is well
suited for real-time applications. In this section we present a shorten
version of their analytical GPU model. The properties of the pro-
gram and the device are measured as shown in Table 1. The num-
ber of cores, D

c

, is the number of Streaming Multicores (SM) for
NVIDIA GPUs and SIMDs for AMD GPUs.

Program
i

c

Number of compute instructions
i

m

Number of memory instructions
t

b

Number of threads per block
b

t

Number of blocks to run
b

o

Maximum blocks per core (occupancy)
Device
M

d

Device total memory bandwidth
D

c

Number of cores
D

tw

Device number of threads per warp
W

d

Device resource limited number of warps =
b

o

t

b

D

tw

C

i

Cycles to execute one instruction
Benchmarked
c

ml

Averaged memory latency cycles for one
memory operation

Table 1: Input variables used for the GPU model.

To compute the total number of cycles, several intermediate val-
ues are also computed as shown in Table 2. These intermediate val-
ues are computed using the same equations as Hong and Kim [7]
and the variable name from their model is also shown in the Table.

Hong09 variable
M

w

Memory bandwidth per warp BW_per_warp

c

c

Computation cycles Comp_cycles
c

m

Memory cycles Mem_cycles
c

t

Total execution cycles Exec_cycles_app
c

ml

Averaged memory latency Mem_L
c

dd

Averaged departure delay to is-
sue a memory instruction

Departure_delay

Table 2: Variables computed by the GPU model.

GPUs are throughput oriented architectures capable of running
thousands of program threads in parallel [8]. When a thread re-
quests data from memory the GPU switches to other threads to
ensure the GPU continues to do work while it waits for memory
to respond. This switching is done on a warp (called wavefront
for AMD hardware) basis. In the worst case, when data is not in
any on-chip cache and must be read from off-chip global memory,
the original thread must wait a memory latency period. This mem-
ory latency is measured using benchmarks for each chip and rep-
resented by the variable c

ml

in graphics core clock cycles. While
GPUs are capable of running multiple kernels, we assume that the
device is running only multiple instances of the same kernel pro-
gram. The maximum number of warps that are runnable on a core
is determined by available resources such as OpenCL private mem-
ory, OpenCL local memory (NVIDIA shared memory) and other
device specific features. We use the device specified parameter that
limits the number of blocks (groups of warps) per core to determine
this maximum which is called W

d

.



Our objective is to compute the number of graphics core clock
cycles that it takes to execute the specified program. When a warp
issues a global memory request, it is put to sleep and other warps
are run instead. While waiting for the sleeping warp’s memory re-
quest, the GPU can run the compute instructions from other warps.
We can compute the number of warps that run only compute in-
structions while waiting as

w

c

=
c

m

+ c

c

c

c

. (1)

This is the maximum amount of compute that can be done mea-
sured in warps. This must be capped by the maximum number of
warps, W

d

so we take min(w
c

,W

d

) and call it Compute Warp Par-
allelism (CWP ) [7].

Next, we consider how many memory operations could be per-
formed. First, we compute the maximum number of parallel warps
that can issue a memory operation while the first warp is sleeping.
The number of warps that can concurrently issue a memory opera-
tion is computed as follows:

w

md

=
c

ml

c

dd

. (2)

Each warp that makes memory requests uses some of the limited
memory bandwidth resulting in a maximum number of warps that
can run. This maximum number of warps is computed as

w

mb

=
M

d

M

w

D

c

. (3)

Again, these numbers of memory warps must be limited by the
maximum number of warps of the device, W

d

, so we take
min(w

md

, w

mb

,W

d

) and call it Memory Warp Parallelism
(MWP ) [7].

From this, we can compute the total number of cycles for the ker-
nel to run by multiplying the total of compute and memory cycles
per block by the total number of block repetitions required on the
device:

c

t

=
b

t

b

o

D

c

(C
i

w

t

(i
c

+ i

M

) + c

b

). (4)

The total execution equation requires two variables which are de-
termined by the limiting case for parallelism, compute warps w

t

,
and memory cycles per block c

b

. For these two variables, there
are three possible cases. The first case is when MWP > CWP ,
i.e., only CWP warps will be able to run because of the amount
of compute instructions, so the device is arithimetic bound. In this
case, the maximum number of warps that can run in parallel is de-
termined by device properties, and this is the main contributor to
the total number of cycles.

The second case is when CWP > MWP , i.e., only MWP

warps will be able to run because of the amount of cycles memory
instructions require, so the device is memory bound. The maximum
number of parallel warps is determined by MWP . The third case
is when the number of warps that can run in parallel for compute
and memory instructions are the same and equal to the device limit
of number of warps running, this case is refered to as balanced.
Once the type of limitation is worked out, w

t

and c

b

are determined
as shown in Table 3.

Arithmetic Memory Balanced

w

t

W

d

MWP1
i

m

MWP1
i

m

+ 1

c

b

c

ml

W

d

c

m

MWP

c

m

Table 3: Total execution time variables.

3.1 Parameters for Different GPUs
Several of the model parameters are measured using a series of

synthetic benchmarks with known numbers of compute and mem-
ory operations. The memory operations are either consectutive
memory accesses so that they will be combined, called coalesc-
ing or random addresses. More details about these benchmarks can
be found in Hong and Kim [7].

The measured memory parameters are memory latency, c
l

, de-
parture delay for coalesced memory access, c

dc

, and for uncoa-
lesced memory access, c

du

. These three values are varied to find
the best fit for the particular architecture. The coalesced memory
access takes into account the lower memory access time required
for shader loads and stores from different threads in the same warp.
These memory values and also the architectural parameters of three
different GPUs are shown in Table 4

GF 8800 GF 580 Radeon 5870
M

d

86 192 153
D

c

16 16 20
D

tw

32 32 64
C

i

4 2 4
Max b

o

8 8 24
F (GHz) 1.35 1.54 0.88
Benchmarked

c

l

420 550 500
c

dc

4 0.08 64
c

du

9.8 0.66 1

Table 4: GPU dependent variables.

In Table 4, for the Geforce580 architecture, we set C
i

to 2 to
account for the 2 instructions issued per SM resulting in a halving
of the effective cycle time for each instruction. The blocks per core
determined by occupancy is given as the maximum value for the
architecture ’Max b

o

’, in Table 4.

4. ESTIMATING WORKLOAD
Ray tracing renders an image of a 3D scene by tracing a path

from the eye into the geometry, intersecting with objects in the
scene. For a ray tracer to handle large complex scenes, a hierar-
chical data structure is typically used to improve the performance
of finding intersections. In particular we use a bounding volume
hierarchy (BVH) constructed using a surface area heuristic. Each
ray starts at the root node that contains a bounding box for the en-
tire scene. For each node that is intersected, the two child nodes
are read into memory, typically from global memory, and intersec-
tion testing is performed with their bounding boxes. This continues
recursively until the leaf nodes are reached. Once the ray reaches
a leaf node in the BVH, it intersects with the triangles contained
there. To estimate performance of ray tracing the algorithm is di-
vided into several major components such as the number of nodes



traversed, the number of nodes read in, and the number of triangles
intersected.

Since every scene is different and even viewpoints within a scene
vary greatly, we use a low resolution ray tracer to estimate the ray
tracing specific parameters. One of the benefits of working with
OpenCL is that we can easily make use of the CPU to quickly esti-
mate these values and not put extra load on the GPU.

4.1 Ray Tracing Parameters
Beyond the basic surface of the objects in the scene, the actual

lighting of the scene requires computation as well. To create a more
realistic scene, more complex computation is required. Different
techniques can be incrementally added to increase the realism and
in this paper, we control the level of realism based on the avail-
able hardware. We add shadow rays and ambient occlusion (AO).
Shadow rays trace a ray from the surface to each light source to
determine if the surface is in light or shadow. AO attempts to ap-
proximate the light that is reflected by the scene to a point by cal-
culating how much of a white hemisphere around the point it can
’see’. The visibility of the hemisphere is calculated by tracing a
selected number of rays in random directions and terminating them
at a set radius. We tune the performance of AO by adjusting the
number of rays and the terminating radius.

4.2 Estimating Shader Cache Performance
The NVIDIA Fermi architecture used in the GeForce 4XX and

5XX series includes an L1 and L2 cache hierarchy for global mem-
ory loads and stores from a kernel program. This memory hier-
archy improves performance significantly for our BVH based ray
tracer, as the BVH nodes are frequently stored in this cache. When
running the low resolution frame estimate, we store the final BVH
node for each ray. We count the number of rays that end at the same
node within a region of the screen and assume that rays that termi-
nate at the same node are likely to have taken a similar path through
the BVH and so when reading nodes from memory, the nodes are
likely to be already in the cache. This estimate of cache hits is rep-
resented by the variable m and used to estimate the performance
by modifying the instruction count.

4.3 Instruction Counting
We calculate the compute and memory instruction counts for our

ray tracing kernel on NVIDIA GPUs, by using the ability to save
the OpenCL kernel binary using clGetProgramInfo. The binary is
compiled using nvcc for the target architecture and the assem-
bler dumped using cuobjdump. For AMD GPUs we use the Ker-
nelAnalyzer application which compiles OpenCL directly into ma-
chine assembler code. To get the final number of instructions, we
break the kernel into instruction counts inside loops and outside
loops. These instruction counts are denoted by the variable i. Us-
ing the low resolution workload estimate, we compute an average
of the number of times each loop runs and denote these variables
as n.

The total number of compute instructions is calculated as:

i

c

= i

ct

(a
t

a

r

+ p

t

) + i

ci

(p
i

+ a

w

t

v

a

r

) + i

cco

,

where the variables are described in Table 5.
The estimated ratio m is used both to divide between coalesced

and uncoalesced memory instructions and to measure cache perfor-
mance. This is possible due to the similarity of probability to have
a coalesced memory access and a cached memory fetch. The total

Instruction count variables
i

c

Total number of compute instructions
i

ct

Compute instructions per traversal
i

ci

Compute instructions per intersection
i

cco

Constant compute instructions
i

m

Total number of memory instructions
i

t

Initial number of memory instructions
i

mt

Memory instructions per traversal
i

mi

Memory instructions per intersection
i

mco

Constant memory instructions
i

mu

Uncoalesced memory instructions
i

mc

Coalesced memory instructions
m Memory coalescing estimate
m

2 Memory cache performance estimate
p

t

Number of primary ray traversals
p

i

Number of primary ray intersections
t

v

Number of visible triangles
a

t

Number of AO node traversals
a

r

Number of AO rays
a

w

AO intersection cost
a

m

Total AO memory instructions
a

ca

AO cache performance estimate

Table 5: Compute and memory instruction count variables.

number of memory instructions are calculated as follows:

i

t

= (i
mt

p

t

+ i

mi

p

i

+ i

mco

)(1−m

2),

a

ca

= 1−min(1, 2(
a

t

+p

t

23
1)),

a

m

= a

ca

(i
mt

a

t

a

r

+
t

v

i

mi

a

r

2
),

i

mu

= i

t

(1−m) + a

m

,

i

mc

= i

t

m,

The total number of memory instructions is i
m

= i

mc

+ i

mu

.

4.4 Tuning Ray Tracing Parameters
The GPU model is used as a feed forward controller which up-

dates itself iteratively to find the best fitting parameters and then
sends those to the actual ray tracer. The error is calculated between
the current model estimated frame time and a target reference frame
time and ray tracing parameters are adjusted to improve the error.
Since the simulated ray tracer and model executes quickly they up-
date several times within one frame of the ray tracer, hence it is
possible to recover from sudden changes in view direction. As an
example, viewing a plain wall with few node traversals and trian-
gle intersections, the model adapts by increasing the number of AO
rays. If the view is turned around 180 degrees to view some more
complex geometry the actual frame rate would drop severely, but
since the model updates several times before the frame is rendered
the number of AO rays are matched so that frame rate stays con-
stant. Ray tracing features that are adjusted to match the reference
frame rate are shadow rays and the number of AO rays.

Figure 1 illustrates how the GPU model is utilized to tune the
ray tracer as a feed forward controller. The model control loop runs
several times per frame and iteratively updates x until the error e,
from model output y to reference r, is as small as possible. Changes
in x result in switching shadow and AO on or off and adapting the
number of AO rays so that a fixed frame rate is maintained.

The feed forward model simulates the ray tracer with some error
due to unmodeled behaviours. This error can be greatly reduced



+

-1

r e x x
yModel

Controller
GPU

Model
Ray Tracer

Figure 1: Auto tuning the ray tracer using the GPU model and
a feed forward controller.

with help of a slow outer feedback loop. A controller compensates
the model by comparing the model predicted execution time with
real ray tracer execution time. In figure 2 the inner loop containing
the GPU model also receives real execution time y2 and a feedback
controller compensates for the error e2 between model execution
time and real execution time reducing the error from model y1 to
reference r further.

+

-1

r e1 x1 x1
y1

Model
Controller

GPU
Model

Ray Tracer

+Feedback
Controller

y2

e2

x2

Figure 2: Model errors are improved by introducing a slow
outer feed back loop.

5. RESULTS
We auto tune ray tracing parameters for three different GPUs,

namely, NVIDIA Geforce 580, NVIDIA Geforce 8800 and the
AMD Radeon 5870. We use two data sets, a fairy scene shown
in Figure 3 and a cabin scene shown in Figure 4. With our imple-
mentation of surface area heuristics BVH the fairy scene contains
174,117 triangles and requires a BVH depth of 28. The cabin scene
contains 422,635 triangles and requires a BVH depth of 34. The
increased complexity of the cabin scene results in more traversal
iterations and triangle intersections resulting in longer rendering
times. In particular on the Radeon 5870 the cabin scene results in
ray tracing stack nodes spilling from the shader’s on-chip registers
out to global memory, resulting in slower performance.

Figure 5 shows the frame time results of an animation of 100
frames of our two scenes. The times shown in the graphs are the
actual measured frame time (red), the GPU model predicted frame
time (green) and the outer feedback loop corrected model time
(blue). For each GPU and scene a different reference frame time
is set. This reference frame time is user selected and we set it to
values to enable a reasonable number of AO rays. Lower reference
times are possible, but if the frame time is too low, auto-tuning
will switch to the lowest possible settings. The GPU model times
follow the curve shape of the actual times accurately, but in some
cases with a significant offset. The average model to execution time
error for the fairy scene is 6.3, 4.8 and 2.1 percent and for the cabin
scene it is 11.1, 12.8, and 19.9, for the three GPUs used. The GPU
model alone does reasonable well with the fairy scene, but the er-
ror increases with the cabin scene. The offset between frame time
and model time is removed when the outer loop feedback is used

Figure 3: Fairy scene.

Figure 4: Cabin scene.

resulting in the new ’Model FB’ estimated time. The average er-
ror of this improved feedback model time compared to the original
execution time for the fairy scene is 1.1, 0.7, and 0.2 percent and
for the cabin scene it is 1.7, 0.2, and 1.3, for the three GPUs used.
Now with the feedback the error is reduced significantly for both
scenes.

As a comparison we also ran the animation on both scenes on the
GF 580 without any auto-tuning. Before measuring we manually
tuned the first frame to execute at 100 ms. These settings were then
kept during the animation. For both the fairy and the cabin scene
the initial errors from target to real execution time were within 1
percent, however as the animation progressed the errors changed
and for the fairy execution time increased and for the cabin exe-
cution time decreased. At the last frame both scenes had an error
close to 20 percent and the average errors over the animation are
for the fairy 10.5 percent and for the cabin 13.2 percent. These
measurements are only a comparison for this animation since with-
out auto-tuning the errors can grow arbitrarily large depending on



 95

 100

 105

 110

 115

 120

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

s)

Frame Number

GeForce 580 Fairy Frame Times

Actual
Model

Model FB

 290

 300

 310

 320

 330

 340

 350

 360

 370

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

s)

Frame Number

Radeon5870 Fairy Frame Times

Actual
Model

Model FB
 1800

 1850

 1900

 1950

 2000

 2050

 2100

 2150

 2200

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

s)

Frame Number

GeForce 8800 Fairy Frame Times

Actual
Model

Model FB

 75

 80

 85

 90

 95

 100

 105

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

s)

Frame Number

GeForce 580 Cabin Frame Times

Actual
Model

Model FB
 240

 260

 280

 300

 320

 340

 360

 380

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

s)

Frame Number

Radeon5870 Cabin Frame Times

Actual
Model

Model FB
 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 0  10  20  30  40  50  60  70  80  90  100

Ti
m

e 
(m

s)

Frame Number

GeForce 8800 Cabin Frame Times

Actual
Model

Model FB

Figure 5: Frame times for different GPUs and scenes for a 100 frame animation. The reference time for the graphs for the fairy
scene on the top row are 100ms, 333ms and 2000ms, and for the cabin scene on the bottom row, they are 100ms, 333ms and 4000ms.

the initial view direction and tuning.

Figure 6: Frames from fairy animation.

Three frames from 1st, 50th and 100th frame of the two anima-
tions are shown in Figure 6 and Figure 7. Both animations rotate
around the scene while moving in towards the center. The cabin
animation starts with the tree filling a small part of the scene and
finishes with the camera right next to the tree. When rendering the
tree, the prediction of the rendering works well, due to the very
constant distribution of primitives across the screen.

Figure 7: Frames from cabin animation.

Figure 8 shows the auto-tuned number of AO rays parameter,
GPU model to execution time percentage error and the outer loop
feedback corrected model percentage error. The number of AO

rays is tuned in order to ensure the target frame rate as specfied
in Figure 5. The number of AO rays is similar across the different
GPUs because the rendering time is determined by the current view
point which is the same for each GPU. The GPU model error fol-
lows a similar curve for the two scenes even though different GPUs
are used, showing that the model works well, but estimating the
workload of ray tracing is still challenging for some views. This
could be improved by increasing the resolution of our low resolu-
tion presampling pass, which on multi-core CPUs would not affect
the performance of the GPU rendering time if run in parallel with
the previous frame rendering on the GPU. The outer feedback loop
corrected time improves upon the original GPU model estimate by
removing unmodelled behaviour in the GPU.

6. CONCLUSION
We have used an analytical GPU model to tune a complex appli-

cation, ray tracing, on a variety of GPU hardware. The model was
originally designed only to target NVIDIA GPUs but with its gen-
eral construct we have managed to estimate performance on AMD
GPUs as well.

Using the model and a feed forward controller we have shown
that it is possible to estimate GPU workload and to tune a complex
application using the workload information. We also introduced
a slow outer feedback loop that can be used to improve the GPU
models errors by compensating for unmodelled behaviours. Using
this approach it is possible to estimate and auto-tune applications
with different levels of complexity, given a model of the applica-
tion’s run time.

We believe that our approach should be applicable to other com-
plex compute applications as well. Performance tuning is possible
as long as the number of instructions executed can be estimated
for the application. Even if the problem space is large with many
tuning parameters, the cost of executing the model is low and can
easily be executed hundreds or more times per iteration.

Several areas for future work arise from our initial work. More



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  10  20  30  40  50  60  70  80  90  100

N
um

be
r o

f A
O

 R
ay

s

Frame Number

Number of AO Rays Parameter Auto-tuned for Fairy scene

Geforce 580 Fairy
Radeon 5870 Fairy
Geforce 8800 Fairy

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90  100

Pe
rc

en
ta

ge
 E

rro
r

Frame Number

Model to Execution Time Error for Fairy scene

Geforce 580
Radeon 5870
Geforce 8800

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100

Pe
rc

en
ta

ge
 E

rro
r

Frame Number

Feedback Model to Execution Time Error for Fairy scene

Geforce 580
Radeon 5870
Geforce 8800

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90  100

N
um

be
r o

f A
O

 R
ay

s

Frame Number

Number of AO Rays Parameter Auto-tuned for Cabin scene

Geforce 580 Cabin
Radeon 5870 Cabin
Geforce 8800 Cabin

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100

Pe
rc

en
ta

ge
 E

rro
r

Frame Number

Model to Execution Time Error for Cabin scene

Geforce 580
Radeon 5870
Geforce 8800

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100

Pe
rc

en
ta

ge
 E

rro
r

Frame Number

Feedback Model to Execution Time Error for Cabin scene

Geforce 580
Radeon 5870
Geforce 8800

Figure 8: Auto-tuned number of AO rays, and error for different GPUs and scenes over a 100 frame animation. The top row is
for the fairy scene and the bottom row for the cabin scene. The two left graphs show the number of AO rays auto-tuned over the
animation, the middle two graphs show the percentage error between the GPU model and actual execution time and the right two
graphs show the percentage error between the GPU model and the outer loop feedback corrected model time.

ray tracing features such as reflection and refraction can be added
to the ray tracer and their parameters auto-tuned. We modelled the
Fermi shader cache architecture inside our workload estimates. A
more general model of the cache architecture in the GPU model
would make it useful for other applications. The GPU model could
also be generalised to work with multi-core CPUs and Intel CPU
SIMD extensions such as AVX.

Acknowledgements
We acknowledge support from the Intel Visual Computing Insti-
tiute, Saarbrücken, Germany and the ELLIIT Excellence Center at
Linköping-Lund in Information Technology. We thank NVIDIA
and AMD for the generous donation of GPUs. Thanks to An-
drew Kin Fun Chan and Dan Konieczka for allowing us to use ’The
Cabin’ model.

7. REFERENCES
[1] T. Aila and S. Laine. Understanding the Efficiency of Ray

Traversal on GPUs. In Proc. High-Performance Graphics
2009, pages 145–149, 2009.

[2] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and
W.-m. W. Hwu. An adaptive performance modeling tool for
gpu architectures. SIGPLAN Not., 45:105–114, January
2010.

[3] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt. Analyzing cuda workloads using a detailed gpu
simulator. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2009.

[4] W. Dally. Power Efficient Supercomputing.
Accelerator-based Computing and Manycore Workshop
(presentation), 2009.

[5] A. Davidson, Y. Zhang, and J. D. Owens. An auto-tuned
method for solving large tridiagonal systems on the GPU. In
Proceedings of the 25th IEEE International Parallel and
Distributed Processing Symposium, May 2011.

[6] T. A. Funkhouser and C. H. Séquin. Adaptive display
algorithm for interactive frame rates during visualization of
complex virtual environments. In Proceedings ACM
SIGGRAPH, pages 247–254, 1993.

[7] S. Hong and H. Kim. An analytical model for a gpu
architecture with memory-level and thread-level parallelism
awareness. SIGARCH Comput. Archit. News, 37(3):152–163,
2009.

[8] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips. GPU computing. Proceedings of the IEEE,
96(5):879–899, May 2008.

[9] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W. mei W. Hwu. Optimization Principles and
Application Performance Evaluation of a Multithreaded
GPU Using CUDA. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 73–82, 2008.

[10] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying gpu microarchitecture through
microbenchmarking. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
2010.


