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Abstract— This paper addresses the problem of state reduc-  « Averaging several effects into one pseudo-effect.

tion of nonlinear continuous-time systems. A novel method All three approaches require great knowledge and intuition

that relates to balanced truncation is presented and applié .
to examples. The method is computationally efficient and is of the modeled object. However, attempts to perform these

applicable to relatively large systems. simplification steps in a systematic automatized manner has
been investigated, see for example [1]. The second memtione
|. INTRODUCTION method can be applied in a more formal manner, it is

Model reduction is an attractive tool in many contextscommonly called thesingular perturbation methodee [2].
For example, modeling is a mayor undertaking in a modeé Linear methods
based development process. Models for various purposes
yield different requirements on e.g. precision and siniotat ~ Here, a linearization, around an equilibrium or trajectory
speed. A systematic method to reduce model complexity made followed by the application of some linear model
would be a very useful tool to aid this process. Further, thigduction method. The obvious downside of this procedure
reduction method can also be applied to the controller ii$ that the end result will be a linear model that can only be
order to meet controller hardware constraints or to sigpliféxPected to perform well in a region close to the mentioned
closed-loop analysis. equilibrium or trajectory. Further, the size of this region

Model reduction of linear systems is a mature researc#ePends on how nonlinear the original system is.
topic and WeII-_k_nown methods featuring error bo_unds ane_ Balancing of nonlinear systems
preserved stability are available. However, in practise o
often confronted with nonlinear systems and model redoctio Balanced truncation is a popular method for model re-
for this model class is so far an open research problem. duction of linear systems introduced in [3]. Recent re-
In this paper, a new method for simplification of nonlineas€arch has extended this method to also cover the nonlinear
input-output models is outlined. The method relates to baf2Se: seée [4], its discrete-time counterpart in [5] and for

anced truncation and uses a state transformation followed gifferential—a_lgebraic systems in [§]. Here, a balancingm.
truncation of some states. It's applicability is shown tigh linear coordinate-change is applied followed by trunaatio
examples. of states. The method has strong mathematical support but

due to the required numerical effort only models with very
II. M ODEL REDUCTION METHODS FOR NONLINEAR moderate size have so far been considered.

SYSTEMS )
. . i D. Pseudo-linear methods
Model reduction of nonlinear systems is a research area

under heavy development. The currently available methodsTheS’e methods try fo extend |dea_s (.)f r_eductlon of linear
can be divided into the following categories. systems to the nonlinear case. In similarity to the method

mentioned in Section II-C they apply a coordinate-change
A. Heuristic methods followed by truncation, however here the coordinate change

Probably the most common way to simplify nonlinealjs linear. This restriction to linear subspaces makes agpli

models is through heuristic methods. For example, indire%t'}"“f’ tlcl) Ia_rge systr:an;s por?sml(;. The n:jgm d|ffehrence _b(?wed
model reduction is performed in all modeling-work wherin€ following methods is how the coor mate-.c angels foun
A very commonly used method for nonlinear model re-

complexity is chosen to match the intended model purposg. ion is th o h | "
There are three common ways to reduce complexity: uction is the so calledProper Orthogonal Decomposition

. s . method, introduced in [7], [8]. Here principal component
- 10 dls_card eﬁect; that by intuition or experience haV%nalysis is performed on state-space data and the subspace
a relat|v_ely wea_k impact on the dy”am'cs of |r_1terest. that captures the majority of the variance is chosen. A com-
* Separa_tlon 9f t|me_-scal_es and replacing relatively fasrﬁon application is discretized partial differential edoas,
dynamics with static gains. see [9]. The standard version of this method does not take
*0. Nilsson is financially supported by Toyota Motor Corpiima and ~ @ny output-signal into consideration and can therefore be
Sweden Japan Foundation disadvantageous for control purposes.



A recent contribution is found in [10], the so callechpiri- * A
cal gramiarapproach extends ideas frdmlanced truncation
of linear systems to the nonlinear case. Here state-space
data are collected while impulse input-signals in diffeéren
directions are applied. The data is then used to estimate a z(t) = xo
constant controllability gramian matrix. Similarly, a ctant “° T
observability gramian matrix is constructed from simuati
data generated by different initial values distributed ba t
unit sphere.

In [11] the so calledTrajectory Piecewise-Linear Approach
is presented. The method applies linear methods on lireariz0 ! —>»>
tions distributed over one or several trajectories. Hee th 0 t ty
main focus is not only on reducing the number of states but /.\/ N~
also improving simulation speed. w y

The method introduced in this paper also belongs to this
class of reduction methods where a linear coordinate change - _ _
is used. Further, as in [10] it applies the notion of gramianr%%i ot i\rfslftagf]?r'gc rogqtl:‘ifegnt‘f;%;;:cg??; J:ﬁr!eﬁé’fgﬁt’ﬁft tt?]‘;

and in similarity with [11], linearizations distributed @V injtial statex yields the mentioned output energy while the control signal
trajectories are used. is zero.

I1l. PRELIMINARIES . .
The energy functions can be determined trough the fol-

The method presented in this paper is based on thedgwing Lyapunov equations
concerning linear time-varying systems. Consider thealine . T T
continuous-time time-varying system P(t) = A(t)P(t) + P()A” (¢) + B(t)B" (t)
—QDA(t) — AT(H)Q(H) — CT(H)C(1)

t
&(t) = A(t)x(t) + B(t)u(t) te[0.t/] . @) N
y(t) = C()z(t) + D(t)ul?) 2 Ufls with ¢ € [0,¢f] and the b(_)undary condition®(0) = 0
and Q(ty) = 0. The matricesP and (¢ are commonly

where z is the state-vectory the input-signal andy the called the controllability gramian and observability giam
output-signal. Furtherd, B, C and D are time-varying respectively. Further, the solutions to (1) and (2) can be
matrices of appropriate dimensions. As in [4] the notion ofvritten as the quadratic forms
so called energy functions is used. Téwntrollability energy 1 1
functionis the amount of energy required in the input-signal Lc(zo,t) = 556513_1(75)560, Lo(wo,t) = 51{@(1?)%
to reach a specific state. In the linear-time varying case thi

can be stated as the optimal control problem The gramiang” and(), and their analogues for other system
classes, are central to many model reduction methods. They
) 1/t 9 show how strongly states are connected to the input and
Le(zo,t) = weLa(0,0) 5/0 [fu()l["dr. (1) output and thereby supplies essential information of which
;((8)_?(1 state-subspace is of most significance.

That is, L.(zo,t) is the minimal amount of energy in IV. METHOD DESCRIPTION

required to reach a certain statg at timet, starting from Let the system to be reduced have the form
the zero initial state. .

Further, theobservability energy functiodetermines the = flwu) (3)
energy induced in the output, given a certain initial staie a y=g(x,u)

a zero input-signal. In this case it can be stated as whereu € R!, 7 € R andy € R™. To find states that are

1 [t redundant or that have small importance for the input-dutpu
Lo(wo,t) = 5/ ly(r)[|?dr, a(t) =xz0, u=0 (2) relationship, linearizations of the system dynamics wil b
K used. Local importance of states would be revealed if one

That is, the amount of energy an initial statg at timet¢ linearizes the system around a stationary point. A combina-
induces in the output-signal over the time-interitat /]. The tion of several linearization points could then indicateiakh
concept of these energy function is illustrated in Fig. 1e Ththe important states are in the nonlinear system. However,
usefulness of these functions for model reduction is cléar. some states may only have an active role during transient
a large amount of energy is required to reach a certain stadtehaviour, which will later be commented in Example 3.
and if the same state yields a small output energy, this stdtestead, linearization around a trajectory will be used as a
is unimportant for the input-output behaviour of the systentool to find an approximate low-order model.



Recall the theory concerning linear time-varying systemmatrices defined by
presented in the prior section. The time-varying gramians of of
give information about state importance even in transientr  A(t) = —=(x(t),u(t))  B(t) = = (x(t), u(t))
gions of state-space. These gramians can be computed in the gx gu
neighborhood of simulated trajectories using linearaatf C(t) = _g(x(t),u(ﬁ)) D(t) = _g(x(t),u(ﬁ))
the system dynamics. When there exists a linear coordinate Oz Ou
transformation that disconnects some states from the inpuB. Compute the time-varying gramians

output relationship, this will be revealed in those locadiz In similarity with balanced truncation the method uses

gramians. the notion of gramians. As mentioned, for time-varying

The choice of training trajectory, around which I'near'za'systems the controllability gramian can be computed thoug

tion is made, is an important aspect of the reduction prag,1ation of the differential equation
cedure. The corresponding training input should be chosen

as a typical input-signal, which is rich enough to excite all P(t) = A(t)P(t) + p(t)AT(t) + B(t)BT(t) (4)
dynamics important to the intended model use.
One possible scenario is that a state is nearly constafth £(0) = 0. Similarly, the observability gramian is

but non-zero, it might then be replaced by a constant valfetermined by

without loosing much accuracy. However, the method yields .

a linear coorginate change ():mt an affine one), wh)i/ch is Q1) = —QWA() — AT(H)Q() - CT(MCW) ()
follow_ed by truncation of sta_tes. Therefore, a precondit_ig with the boundary conditio®(¢;) = 0. The controllability
coordinate changg _that shlfts the_ states so that their Megfhmian P(t) reveals how large deviation in input-signal
value over th.e training traljectory is zero should_ be gpplle needed to perturbi(¢). If a certain state component is
to (3). Also, if the model is equipped with multiple iNpUt-parq to perturb for all times, one can suspect that this
and output-signals they should be scaled so that they poS$§se is in general hard to affect in the nonlinear system.
the same arr_lplltude._ This scaling also_leaves room for tr§mi|ar|y’Q(t) shows how much the output-signal is affected
user to specify how important he/she finds the accuracy ¢f ;) is perturbed. If the output-signal is weakly influenced

the different _input- a_nd output-_signals. _ _ _by a certain state-perturbation, independently of when the
The following sections explain the main steps involved itherturbation is made, it can be suspected that this stafesou
the method. connection is weak also for the nonlinear system.

C. Determine the average gramians

A. Linearization along trajector
9t y As mentioned, the gramianB(¢) and Q(¢) contain local

The first step is to choose a so called training inputinformation along the trajectory of how strongly states are
signal. This is an important step of the method of which theonnected to the input and output. In order to remove the
performance is highly dependent. As a general rule the inptitne dependency and isolate the overall important statés wi
should be chosen to obey physical restrictions on the sign@lconstant state-transformation, one could useatieeage
and to excite all relevant dynamics. To find such a signdlramians
might be a challenging task. However, one could also see 1t L [t
this as an advantage of the method. If the reduced model is P = —/ P(r)dr Q= —/ Q(r)dr  (6)
only going to be used for some restricted purposes, the model ty Jo tr Jo
could probably be reduced to a greater extent. Through theThege time-invariant matrices contain information of how
choice of training input the user can show which behaviougyongly the states are connected to the input and output on
is relevant for the reduced system to reproduce. Hence, théerage over the training trajectory. For example, if aaiert
signal should be chosen corresponding to realistic usage Bfear state combination is unobservable from the output in

the modgl. _ . all points of the trajectory, it will be revealed @. Further, a
The first step of the procedure is to simulate the sysank deficiency of the matri®Q indicates that some states
tem over the time-intervat = [0,¢¢] with the training are obsolete and can be truncated from the model without

input-signal. The system is then linearized along the statghanging the input-output relationship.
trajectory the training input gave rise to. The result iseeti

varying linear system D. Find balancing coordinate-change
This step is performed to extract the relevant state sub-
Ai(t) = A(t)Az(t) + B(t)Au(t) tel0,t] space using the information gathered in the average grami-
Ay(t) = C(t)Axz(t) + D(t)Au(t) ans. The chosen approach treBtand@ as if they belonged

to a linear time-invariant system. By following the staralar
where Au, Ax and Ay denote deviations from the nomi- balanced truncation procedure for linear systems, a coordi
nal trajectories. Furthetd, B, C and D are time-varying nate change = Tz can be found, see [12], such that the



average gramians become equal and diagonal with decreasihig a challenge for any model reduction procedure to detect
diagonal elements. that a reduction like this is possible. A general methodplog
for such problems has been presented, but first a simple proof
of the equivalence in this particular case is given.

Note that the system can be rewritten as

01
TPTT =77 TQr'=% =

On
Lo URY L \3
The diagonal elements; > o, > ... > o, corresponds o = — (21 $2)2$1+($1 z2) ,
to the Hankel singular values in balanced truncation of Ty = — (221 — 22) w2 + 2(x1 — 22)° —u
linear systems, where they show how important states are y=2x1 — X

for the input-output relationship. Although no error-bdun
is available, in contrast to the linear case, these valués wiVith the new variables; = 2z; — xa2, 22 = ©2 — x1, this
be used to determine which model order to choose for thaeans that

reduced system. = —B 4w
E. Truncate states Gy =—2320— 25 —u
Truncating states corresponding to relatively small singu y=z
lar values and keeping states is equivalent to removing _ _
rows and columns i and 7!, respectively. In particular, the state, does not appear in the output and
X does not affect;. Hence, it can be truncated and (9) holds.
nrn nrn
TeR = TieR ) 7 In the example, a linear coordinate transformation fol-
T-'eR™ = T,ecR"™" lowed by state truncation gave a simplified model without

aqpproximation error. The goal of the described method is to
&rovide a systematic way to find such transformations when-
ever they exist and otherwise to find good approximations.

Applying the truncated coordinate change to the origin
system formulation in (3) gives rise to the reduced ord

system

y s . Now the method will be applied to the original system
E=Tf(T.2,u) o ; . . >
A A (8) description. Simulating the system along various trajéeso
§=9(Tr2u) and computing the observability gramian according to the

where s € R™. Deriving the reduced system through sym-differential equation

bolical substitution in (8) is generally not an attractiysion. )
Commonly, the original set of equations is sparse, i.etales Q) = —Q1)A(t) — AT(1)Q(t) — CT()C(1)
equations do not involve all states. The sparsity is losh wit
dense coordinate change and truncation of states. Therefawith Q(¢;) = 0 one observes that the rank of(t) never
the total computation time is not necessarily reduced fer thexceeds one for any trajectory. In particul@r,and P() are
right-hand-side functions, which can e.g. be seen in [13%ingular and one state can be truncated without affectiag th
One possibility to redeem this is to extend the presentadput-output relationship. For demonstration, the nogdin
method with a piece-wise approximation ¢f and g, as System was simulated with a certain input-signal. Foll@vin
mentioned in [11]. Additionally, for continuous-time sgets the method the average gramians where determined to
not only evaluation time of the right-hand-side functions a
of importance. Integration time does also depend on the; | 0.0018 —0.0145
choice of solver, numerical stiffness etc. These propertie” | —0.0145  0.2936
have not been considered in this work.
For further illustration, the method is demonstrated in thand the matrix) is, as expected, singufarThe correspond-
following examples. ing coordinate change = T’z is then determined according
to the standard balanced truncation method. Further, the
Hankel singular values become in this case = 0.3422
Example 1 (Exact reduction): Just as a demonstration, theand o, is very close to zero (not exactly due to numerical
method will here be applied to the following toy examplereasons). In accordance with the sizeogf 2, is truncated
The nonlinear system and substitution according to (8) yields the nonlineareyst

0= 1.3058 —0.6529
~|—0.6529  0.3264

V. EXAMPLES

&1 = =3} + wiws + 2myw; — 3 4 = —1.2323 — 0.901u
By = 225 — 102229 + 102123 — 325 —u y=—1.11z
Yy =2x1 — X2

L . . _ .3
has exactly the same input-output relationship as the rsystéNh'Ch is equivalent tj = —y° + u.

— 3 _ _
y=-y +tu ©) lusing a larger numerical precision &f and @ than printed here



Example 2 (A seven-state system): The procedure can be
applied to larger examples and also when loss-less trumcati % r
is not possible. Consider the seven-state system w o
: 3 s
Ty =-—ritu = 10
To = —acg — x%xg + 31:11:% —u i i i i i
. 3 0 05 1 15 2 25 3
T3 = —x3+T5+u
s 3 15 —
Ty =—x;+T1 — T2+ 23+ 2u — Original
(%) _ \ A
&5 = T Toxs — To + U E Reduced \ \ A
5 12223 5 510l \ \ \
i6:x5fngxg+2u ; \
Py = —9 3 _ _ .3 g st B
T7 = —2xg + 2x5 — 7 — x5 +4u ] \
\/
Yy = @1 — T + T3 + 2aws + 5 — 206 + 227 o ‘ ‘ ‘ ‘ ‘
0 05 1 15 2 25 3
Following the described procedure, the system is linedrize Time

along a simulated training trajectory. As mentioned, the
training input-signal should be chosen to reflect intended
model use. However, this system lacks physical intergogtat
and just as an example the input-signal was chosen as a 10Hz
square-wave signal with amplitude one. Again, following
the procedure, the gramians are calculated according to (4)
and (5). Further, the balancing coordinate charigeis
computed and the Hankel singular values are shown in Fig. 2.
The relative size of these values indicate the importance of
the new states for the input-output relationship.

Fig. 3. Validation results for the system in Example 2

10

Fig. 4. Mass-spring-damper system in Example 3. Forces etefhmass
T as input-signals and position of the marked mass as output.

10°

direction, on the leftmost mass. The output-signal is the

-] | position coordinates of the top middle mass.
i A thin line in the figure represents a linear spring-damper
with an unforced length, according to the figure. The
10750 ‘ ‘ ‘ ‘ ‘ . masses, except the two rightmost ones, are also connected
. 2 3Diagona‘,‘ clements 6 7 to the ground with linear spring-dampers.
The motion equations for each mass consist of four
Fig. 2. Hankel singular values for the system in Example 2 differential equations

. . )y =V Dy = U
If, for example, the nonlinear system is truncated to one Po = Uz Py =Yy

. 1 . 1
state the reduced system becomes b= ZF“ Oy = 7- ZFW

—0.4922; — 0.087923 + 5.08u
7 = 1342 +0.079222

Z1 = . ) )
where p, and p, are the position coordinates with the
corresponding velocities, andv,. The mass is denotetl

A comparison achieved by simulating the original and re&nd the forces’, ; and £, ; are the forces in horizontal and
duced system with the same input signdt) can be seen Vertical direction inflicted by spring-damper

in Fig. 3. The input-signal is different from the one used for d

model reduction and has been chosen to be the sum of a Foi = <K(li —loi) + Dﬁ(li)) cos b;

sinusoidal and a square-wave signal.

Example 3 (A mass-spring-damper system): In this ex- dt
ample, the method is applied to a two-dimensional multiple-lere [; is the length of spring-damper D the damping
input multiple-output mass-spring-damper system. Fig. doefficient andK the spring coefficient. In this example all
shows six masses connected with springs and dampers. Tduefficients have been set to odd,= K = D = 1. Further,
input-signal is an external force, in horizontal and veitic the angled; is the angle of the spring-damper. Here, only



small angle perturbations are considered and therefore
assumed to be constant.

The thick line is a nonlinear damper that gives a forct
proportional to the deformation rate to the power of three,

1

0

Force X

d .\’ d .\’

Linearization of the model around any stationary point woul
neglect this nonlinear damper, it only affects the linestian
during transient behaviour. In the case of the leftmost mas.
the external forces also contribute to the equations.
The model has four states per mass, yielding a total of -
states, and can be written on the form

&= f(z,u)
Yy = h(z,u)

In this example the described method is compared to ttg
Proper Orthogonal Decomposition method mentioned in Se 3

orce Y
o

L
-1

nate X coordinate

tion II-D. The method can briefly be described in these thre>- o

steps.
1) Simulate the nonlinear system Fig.
redu

&= f(z,u)
and collect snapshots of the state vector in a matrix
X = [x(to) x(t1) z(ty)] € R™N
2) FactorizeX with the singular value decomposition

uxvT =X

(1]

[2]
3) Choose truncation level after size of singular values in
Y. TruncatelU € R™" to U € R"™" so thatz ~ U# S
where# € R™. Then the reduced model becomes
t=UTf(Ui,u)

(4]

Reduction to 8 states is performed with both methodd®
using the same training trajectory. A simulation result can
be seen in Fig. 5. The input is different from the reduction
training input. A better result is obtained with the desedb
method, which partly is due to the fact that the Proper
Orthogonal Decomposition method does not take the outpuf]
function g(z, v) into consideration. i8]

V1. SUMMARY [9]
A method for simplification of nonlinear input-output
models has been outlined. The given procedure is focusa@]
on reducing the number of states using information obtained

by linearization around trajectories.

The number of states is one factor contributing to sim
lation time and even though it does not necessarily diminis
in the general case simulation time has been reduced in the
presented examples.

No proofs concerning preserved stability or error boundg?]
are presented. However, the methodology is closely tied to
existing theory on error bounds and promising results al%?’]
shown in form of examples and simulation data.
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