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A novel approach to balanced truncation of nonlinear systems

Oskar Nilsson*, Anders Rantzer
Department of Automatic Control

Lund University
Box 118, SE-221 00 Lund, Sweden
{oskar,rantzer}@control.lth.se

Abstract— This paper addresses the problem of state reduc-
tion of nonlinear continuous-time systems. A novel method
that relates to balanced truncation is presented and applied
to examples. The method is computationally efficient and is
applicable to relatively large systems.

I. I NTRODUCTION

Model reduction is an attractive tool in many contexts.
For example, modeling is a mayor undertaking in a model
based development process. Models for various purposes
yield different requirements on e.g. precision and simulation
speed. A systematic method to reduce model complexity
would be a very useful tool to aid this process. Further, the
reduction method can also be applied to the controller in
order to meet controller hardware constraints or to simplify
closed-loop analysis.

Model reduction of linear systems is a mature research
topic and well-known methods featuring error bounds and
preserved stability are available. However, in practise, one is
often confronted with nonlinear systems and model reduction
for this model class is so far an open research problem.

In this paper, a new method for simplification of nonlinear
input-output models is outlined. The method relates to bal-
anced truncation and uses a state transformation followed by
truncation of some states. It’s applicability is shown through
examples.

II. M ODEL REDUCTION METHODS FOR NONLINEAR

SYSTEMS

Model reduction of nonlinear systems is a research area
under heavy development. The currently available methods
can be divided into the following categories.

A. Heuristic methods

Probably the most common way to simplify nonlinear
models is through heuristic methods. For example, indirect
model reduction is performed in all modeling-work when
complexity is chosen to match the intended model purpose.
There are three common ways to reduce complexity:

• To discard effects that by intuition or experience have
a relatively weak impact on the dynamics of interest.

• Separation of time-scales and replacing relatively fast
dynamics with static gains.
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• Averaging several effects into one pseudo-effect.

All three approaches require great knowledge and intuition
of the modeled object. However, attempts to perform these
simplification steps in a systematic automatized manner has
been investigated, see for example [1]. The second mentioned
method can be applied in a more formal manner, it is
commonly called thesingular perturbation method, see [2].

B. Linear methods

Here, a linearization, around an equilibrium or trajectory,
is made followed by the application of some linear model
reduction method. The obvious downside of this procedure
is that the end result will be a linear model that can only be
expected to perform well in a region close to the mentioned
equilibrium or trajectory. Further, the size of this region
depends on how nonlinear the original system is.

C. Balancing of nonlinear systems

Balanced truncation is a popular method for model re-
duction of linear systems introduced in [3]. Recent re-
search has extended this method to also cover the nonlinear
case, see [4], its discrete-time counterpart in [5] and for
differential-algebraic systems in [6]. Here, a balancing non-
linear coordinate-change is applied followed by truncation
of states. The method has strong mathematical support but
due to the required numerical effort only models with very
moderate size have so far been considered.

D. Pseudo-linear methods

These methods try to extend ideas of reduction of linear
systems to the nonlinear case. In similarity to the method
mentioned in Section II-C they apply a coordinate-change
followed by truncation, however here the coordinate change
is linear. This restriction to linear subspaces makes applica-
bility to large systems possible. The main difference between
the following methods is how the coordinate-change is found.

A very commonly used method for nonlinear model re-
duction is the so calledProper Orthogonal Decomposition
method, introduced in [7], [8]. Here principal component
analysis is performed on state-space data and the subspace
that captures the majority of the variance is chosen. A com-
mon application is discretized partial differential equations,
see [9]. The standard version of this method does not take
any output-signal into consideration and can therefore be
disadvantageous for control purposes.



A recent contribution is found in [10], the so calledempiri-
cal gramianapproach extends ideas frombalanced truncation
of linear systems to the nonlinear case. Here state-space
data are collected while impulse input-signals in different
directions are applied. The data is then used to estimate a
constant controllability gramian matrix. Similarly, a constant
observability gramian matrix is constructed from simulation
data generated by different initial values distributed on the
unit sphere.

In [11] the so calledTrajectory Piecewise-Linear Approach
is presented. The method applies linear methods on lineariza-
tions distributed over one or several trajectories. Here the
main focus is not only on reducing the number of states but
also improving simulation speed.

The method introduced in this paper also belongs to this
class of reduction methods where a linear coordinate change
is used. Further, as in [10] it applies the notion of gramians
and in similarity with [11], linearizations distributed over
trajectories are used.

III. PRELIMINARIES

The method presented in this paper is based on theory
concerning linear time-varying systems. Consider the linear
continuous-time time-varying system

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
t ∈ [0, tf ],

where x is the state-vector,u the input-signal andy the
output-signal. Further,A, B, C and D are time-varying
matrices of appropriate dimensions. As in [4] the notion of
so called energy functions is used. Thecontrollability energy
function is the amount of energy required in the input-signal
to reach a specific state. In the linear-time varying case this
can be stated as the optimal control problem

Lc(x0, t) = min
u∈L2(0,t)

x(0)=0
x(t)=x0

1

2

∫ t

0

||u(τ)||2dτ. (1)

That is, Lc(x0, t) is the minimal amount of energy inu
required to reach a certain statex0 at time t, starting from
the zero initial state.

Further, theobservability energy functiondetermines the
energy induced in the output, given a certain initial state and
a zero input-signal. In this case it can be stated as

Lo(x0, t) =
1

2

∫ tf

t

||y(τ)||2dτ, x(t) = x0, u ≡ 0 (2)

That is, the amount of energy an initial statex0 at time t

induces in the output-signal over the time-interval[t, tf ]. The
concept of these energy function is illustrated in Fig. 1. The
usefulness of these functions for model reduction is clear.If
a large amount of energy is required to reach a certain state
and if the same state yields a small output energy, this state
is unimportant for the input-output behaviour of the system.

x

x0

t tf

u y

x(t) = x0

0
0

Fig. 1. Visualization of the energy functions. The left partillustrates the
minimal input energy required to reachx0 at time t. In the right part the
initial statex0 yields the mentioned output energy while the control signal
is zero.

The energy functions can be determined trough the fol-
lowing Lyapunov equations

Ṗ (t) = A(t)P (t) + P (t)AT (t) + B(t)BT (t)

Q̇(t) = −Q(t)A(t) − AT (t)Q(t) − CT (t)C(t)

with t ∈ [0, tf ] and the boundary conditionsP (0) = 0
and Q(tf) = 0. The matricesP and Q are commonly
called the controllability gramian and observability gramian,
respectively. Further, the solutions to (1) and (2) can be
written as the quadratic forms

Lc(x0, t) =
1

2
xT

0 P−1(t)x0, Lo(x0, t) =
1

2
xT

0 Q(t)x0

The gramiansP andQ, and their analogues for other system
classes, are central to many model reduction methods. They
show how strongly states are connected to the input and
output and thereby supplies essential information of which
state-subspace is of most significance.

IV. M ETHOD DESCRIPTION

Let the system to be reduced have the form

ẋ = f(x, u)

y = g(x, u)
(3)

whereu ∈ R
l, x ∈ R

n andy ∈ R
m. To find states that are

redundant or that have small importance for the input-output
relationship, linearizations of the system dynamics will be
used. Local importance of states would be revealed if one
linearizes the system around a stationary point. A combina-
tion of several linearization points could then indicate which
the important states are in the nonlinear system. However,
some states may only have an active role during transient
behaviour, which will later be commented in Example 3.
Instead, linearization around a trajectory will be used as a
tool to find an approximate low-order model.



Recall the theory concerning linear time-varying systems
presented in the prior section. The time-varying gramians
give information about state importance even in transient re-
gions of state-space. These gramians can be computed in the
neighborhood of simulated trajectories using linearization of
the system dynamics. When there exists a linear coordinate
transformation that disconnects some states from the input-
output relationship, this will be revealed in those localized
gramians.

The choice of training trajectory, around which lineariza-
tion is made, is an important aspect of the reduction pro-
cedure. The corresponding training input should be chosen
as a typical input-signal, which is rich enough to excite all
dynamics important to the intended model use.

One possible scenario is that a state is nearly constant
but non-zero, it might then be replaced by a constant value
without loosing much accuracy. However, the method yields
a linear coordinate change (not an affine one), which is
followed by truncation of states. Therefore, a preconditioning
coordinate change that shifts the states so that their mean
value over the training trajectory is zero should be applied
to (3). Also, if the model is equipped with multiple input-
and output-signals they should be scaled so that they posses
the same amplitude. This scaling also leaves room for the
user to specify how important he/she finds the accuracy of
the different input- and output-signals.

The following sections explain the main steps involved in
the method.

A. Linearization along trajectory

The first step is to choose a so called training input-
signal. This is an important step of the method of which the
performance is highly dependent. As a general rule the input
should be chosen to obey physical restrictions on the signal
and to excite all relevant dynamics. To find such a signal
might be a challenging task. However, one could also see
this as an advantage of the method. If the reduced model is
only going to be used for some restricted purposes, the model
could probably be reduced to a greater extent. Through the
choice of training input the user can show which behaviour
is relevant for the reduced system to reproduce. Hence, the
signal should be chosen corresponding to realistic usage of
the model.

The first step of the procedure is to simulate the sys-
tem over the time-intervalt = [0, tf ] with the training
input-signal. The system is then linearized along the state-
trajectory the training input gave rise to. The result is a time-
varying linear system

∆ẋ(t) = A(t)∆x(t) + B(t)∆u(t)

∆y(t) = C(t)∆x(t) + D(t)∆u(t)
t ∈ [0, tf ]

where∆u, ∆x and ∆y denote deviations from the nomi-
nal trajectories. Further,A, B, C and D are time-varying

matrices defined by

A(t) =
∂f

∂x
(x(t), u(t)) B(t) =

∂f

∂u
(x(t), u(t))

C(t) =
∂g

∂x
(x(t), u(t)) D(t) =

∂g

∂u
(x(t), u(t))

B. Compute the time-varying gramians

In similarity with balanced truncation the method uses
the notion of gramians. As mentioned, for time-varying
systems the controllability gramian can be computed through
simulation of the differential equation

Ṗ (t) = A(t)P (t) + P (t)AT (t) + B(t)BT (t) (4)

with P (0) = 0. Similarly, the observability gramian is
determined by

Q̇(t) = −Q(t)A(t) − AT (t)Q(t) − CT (t)C(t) (5)

with the boundary conditionQ(tf ) = 0. The controllability
gramian P (t) reveals how large deviation in input-signal
is needed to perturbx(t). If a certain state component is
hard to perturb for all times, one can suspect that this
state is in general hard to affect in the nonlinear system.
Similarly,Q(t) shows how much the output-signal is affected
if x(t) is perturbed. If the output-signal is weakly influenced
by a certain state-perturbation, independently of when the
perturbation is made, it can be suspected that this state-output
connection is weak also for the nonlinear system.

C. Determine the average gramians

As mentioned, the gramiansP (t) andQ(t) contain local
information along the trajectory of how strongly states are
connected to the input and output. In order to remove the
time dependency and isolate the overall important states with
a constant state-transformation, one could use theaverage
gramians

P̄ =
1

tf

∫ tf

0

P (τ)dτ Q̄ =
1

tf

∫ tf

0

Q(τ)dτ (6)

These time-invariant matrices contain information of how
strongly the states are connected to the input and output on
average over the training trajectory. For example, if a certain
linear state combination is unobservable from the output in
all points of the trajectory, it will be revealed in̄Q. Further, a
rank deficiency of the matrix̄PQ̄ indicates that some states
are obsolete and can be truncated from the model without
changing the input-output relationship.

D. Find balancing coordinate-change

This step is performed to extract the relevant state sub-
space using the information gathered in the average grami-
ans. The chosen approach treatsP̄ andQ̄ as if they belonged
to a linear time-invariant system. By following the standard
balanced truncation procedure for linear systems, a coordi-
nate changez = Tx can be found, see [12], such that the



average gramians become equal and diagonal with decreasing
diagonal elements.

T P̄T T = T−T Q̄T−1 = Σ̄ =







σ1

. . .
σn







The diagonal elementsσ1 ≥ σ2 ≥ ... ≥ σn corresponds
to the Hankel singular values in balanced truncation of
linear systems, where they show how important states are
for the input-output relationship. Although no error-bound
is available, in contrast to the linear case, these values will
be used to determine which model order to choose for the
reduced system.

E. Truncate states

Truncating states corresponding to relatively small singu-
lar values and keepinĝn states is equivalent to removing
rows and columns inT andT−1, respectively.

T ∈ R
nxn ⇒ Tl ∈ R

n̂xn

T−1 ∈ R
nxn ⇒ Tr ∈ R

nxn̂
(7)

Applying the truncated coordinate change to the original
system formulation in (3) gives rise to the reduced order
system

˙̂z = Tlf(Trẑ, u)

ŷ = g(Trẑ, u)
(8)

where ẑ ∈ R
n̂. Deriving the reduced system through sym-

bolical substitution in (8) is generally not an attractive option.
Commonly, the original set of equations is sparse, i.e. all state
equations do not involve all states. The sparsity is lost with a
dense coordinate change and truncation of states. Therefore,
the total computation time is not necessarily reduced for the
right-hand-side functions, which can e.g. be seen in [13].
One possibility to redeem this is to extend the presented
method with a piece-wise approximation off and g, as
mentioned in [11]. Additionally, for continuous-time systems
not only evaluation time of the right-hand-side functions are
of importance. Integration time does also depend on the
choice of solver, numerical stiffness etc. These properties
have not been considered in this work.

For further illustration, the method is demonstrated in the
following examples.

V. EXAMPLES

Example 1 (Exact reduction): Just as a demonstration, the
method will here be applied to the following toy example.
The nonlinear system

ẋ1 = −3x3
1 + x2

1x2 + 2x1x
2
2 − x3

2

ẋ2 = 2x3
1 − 10x2

1x2 + 10x1x
2
2 − 3x3

2 − u

y = 2x1 − x2

has exactly the same input-output relationship as the system

ẏ = −y3 + u. (9)

It is a challenge for any model reduction procedure to detect
that a reduction like this is possible. A general methodology
for such problems has been presented, but first a simple proof
of the equivalence in this particular case is given.

Note that the system can be rewritten as

ẋ1 = −(2x1 − x2)
2x1 + (x1 − x2)

3

ẋ2 = −(2x1 − x2)
2x2 + 2(x1 − x2)

3 − u

y = 2x1 − x2

With the new variablesz1 = 2x1 − x2, z2 = x2 − x1, this
means that

ż1 = −z3
1 + u

ż2 = −z2
1z2 − z3

2 − u

y = z1

In particular, the statez2 does not appear in the output and
does not affectz1. Hence, it can be truncated and (9) holds.

In the example, a linear coordinate transformation fol-
lowed by state truncation gave a simplified model without
approximation error. The goal of the described method is to
provide a systematic way to find such transformations when-
ever they exist and otherwise to find good approximations.

Now the method will be applied to the original system
description. Simulating the system along various trajectories
and computing the observability gramian according to the
differential equation

Q̇(t) = −Q(t)A(t) − AT (t)Q(t) − CT (t)C(t)

with Q(tf ) = 0 one observes that the rank ofQ(t) never
exceeds one for any trajectory. In particular,Q̄ and P̄ Q̄ are
singular and one state can be truncated without affecting the
input-output relationship. For demonstration, the nonlinear
system was simulated with a certain input-signal. Following
the method the average gramians where determined to

P̄ =

[

0.0018 −0.0145
−0.0145 0.2936

]

Q̄ =

[

1.3058 −0.6529
−0.6529 0.3264

]

and the matrixQ̄ is, as expected, singular1. The correspond-
ing coordinate changez = Tx is then determined according
to the standard balanced truncation method. Further, the
Hankel singular values become in this caseσ1 = 0.3422
and σ2 is very close to zero (not exactly due to numerical
reasons). In accordance with the size ofσ2, z2 is truncated
and substitution according to (8) yields the nonlinear system

ż1 = −1.23z3
1 − 0.901u

y = −1.11z1

which is equivalent toẏ = −y3 + u.

1using a larger numerical precision of̄P and Q̄ than printed here



Example 2 (A seven-state system): The procedure can be
applied to larger examples and also when loss-less truncation
is not possible. Consider the seven-state system

ẋ1 = −x3
1 + u

ẋ2 = −x3
2 − x2

1x2 + 3x1x
2
2 − u

ẋ3 = −x3
3 + x5 + u

ẋ4 = −x3
4 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x3
5 + u

ẋ6 = x5 − x3
6 − x3

5 + 2u

ẋ7 = −2x3
6 + 2x5 − x7 − x3

5 + 4u

y = x1 − x2
2 + x3 + x4x3 + x5 − 2x6 + 2x7

Following the described procedure, the system is linearized
along a simulated training trajectory. As mentioned, the
training input-signal should be chosen to reflect intended
model use. However, this system lacks physical interpretation
and just as an example the input-signal was chosen as a 10Hz
square-wave signal with amplitude one. Again, following
the procedure, the gramians are calculated according to (4)
and (5). Further, the balancing coordinate changeT is
computed and the Hankel singular values are shown in Fig. 2.
The relative size of these values indicate the importance of
the new states for the input-output relationship.

1 2 3 4 5 6 7
10

−15

10
−10

10
−5

10
0

Diagonal elements

Fig. 2. Hankel singular values for the system in Example 2

If, for example, the nonlinear system is truncated to one
state the reduced system becomes

ż1 = −0.492z1 − 0.0879z3
1 + 5.08u

ỹ = 1.34z1 + 0.0792z2
1

A comparison achieved by simulating the original and re-
duced system with the same input signalu(t) can be seen
in Fig. 3. The input-signal is different from the one used for
model reduction and has been chosen to be the sum of a
sinusoidal and a square-wave signal.

Example 3 (A mass-spring-damper system): In this ex-
ample, the method is applied to a two-dimensional multiple-
input multiple-output mass-spring-damper system. Fig. 4
shows six masses connected with springs and dampers. The
input-signal is an external force, in horizontal and vertical
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Fig. 3. Validation results for the system in Example 2
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Fig. 4. Mass-spring-damper system in Example 3. Forces on the left mass
as input-signals and position of the marked mass as output.

direction, on the leftmost mass. The output-signal is the
position coordinates of the top middle mass.

A thin line in the figure represents a linear spring-damper
with an unforced lengthl0 according to the figure. The
masses, except the two rightmost ones, are also connected
to the ground with linear spring-dampers.

The motion equations for each mass consist of four
differential equations

ṗx = vx ṗy = vy

v̇x =
1

M

∑

i

Fx,i v̇y =
1

M

∑

i

Fy,i

where px and py are the position coordinates with the
corresponding velocitiesvx andvy. The mass is denotedM
and the forcesFx,i andFy,i are the forces in horizontal and
vertical direction inflicted by spring-damperi

Fx,i =

(

K(li − l0i) + D
d

dt
(li)

)

cos θi

Fy,i =

(

K(li − l0i) + D
d

dt
(li)

)

sin θi

Here li is the length of spring-damperi, D the damping
coefficient andK the spring coefficient. In this example all
coefficients have been set to one,M = K = D = 1. Further,
the angleθi is the angle of the spring-damper. Here, only



small angle perturbations are considered andθi is therefore
assumed to be constant.

The thick line is a nonlinear damper that gives a force
proportional to the deformation rate to the power of three,

Fx,i = D

(

d

dt
(li)

)3

cos θi Fy,i = D

(

d

dt
(li)

)3

sin θi

Linearization of the model around any stationary point would
neglect this nonlinear damper, it only affects the linearization
during transient behaviour. In the case of the leftmost mass,
the external forces also contribute to the equations.

The model has four states per mass, yielding a total of 24
states, and can be written on the form

ẋ = f(x, u)

y = h(x, u)

In this example the described method is compared to the
Proper Orthogonal Decomposition method mentioned in Sec-
tion II-D. The method can briefly be described in these three
steps.

1) Simulate the nonlinear system

ẋ = f(x, u)

and collect snapshots of the state vector in a matrix

X =
[

x(t0) x(t1) . . . x(tN )
]

∈ R
nxN

2) FactorizeX with the singular value decomposition

UΣV T = X

3) Choose truncation level after size of singular values in
Σ. TruncateU ∈ R

nxn to Û ∈ R
nxn̂ so thatx ≈ Û x̂

wherex̂ ∈ R
n̂. Then the reduced model becomes

˙̂x = ÛT f(Û x̂, u)

ŷ = g(Û x̂, u)

Reduction to 8 states is performed with both methods
using the same training trajectory. A simulation result can
be seen in Fig. 5. The input is different from the reduction
training input. A better result is obtained with the described
method, which partly is due to the fact that the Proper
Orthogonal Decomposition method does not take the output
function g(x, u) into consideration.

VI. SUMMARY

A method for simplification of nonlinear input-output
models has been outlined. The given procedure is focused
on reducing the number of states using information obtained
by linearization around trajectories.

The number of states is one factor contributing to simu-
lation time and even though it does not necessarily diminish
in the general case simulation time has been reduced in the
presented examples.

No proofs concerning preserved stability or error bounds
are presented. However, the methodology is closely tied to
existing theory on error bounds and promising results are
shown in form of examples and simulation data.
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Fig. 5. Simulation results for example 3. Method comparisonfor model
reduction from 24 to 8 states.
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