
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

What sets could not be

Angere, Staffan

Published in:
Preprint without journal information

2015

Link to publication

Citation for published version (APA):
Angere, S. (2015). What sets could not be. Unpublished.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e5c66635-66a0-4ce9-bc16-558dd2f4d6b0


Why sets are not collections
PREPRINT

Staffan Angere

May 24, 2014

Abstract

Sets are often taken to be collections, or at least akin to them. This
paper argues, against this, that although we cannot be sure what sets are
(and the question, perhaps, does not even make sense), what we can be
entirely sure of is that they are not collections of any kind. The central
argument will be that elementhood in a set and membership in a collection
satisfy quite different axioms, and a brief logical investigation into how
they are related is offered.

The latter part of the paper concerns attempts to modify the ‘sets are
collections’ credo by use of idealization and abstraction, as well as the
Fregean notion of sets as the extensions of concepts. These are all shown
to be either unmotivated or unable to provide the desired support. We
finish on a more positive note, with some ideas on what can be said of
sets. The main thesis is that (i) sets are points in a set structure, (ii) a
set structure is a model of a set theory, and (iii) set theory is a family of
formal and informal theories, loosely defined by their axioms.

1 Introduction

Nowadays there seems to be widespread agreement among philosophers of math-
ematics that sets, as Cantor said, are collections of objects. It was not always
like this: in the beginning of the 20th century there was a lively debate on what
they were, and in particular whether they were collections, as Cantor said, or
extensions of concepts, as Frege said. We find Carnap, in the Aufbau, arguing
against the Cantorian position as follows:

We say of a class and of a whole that they “correspond” to one
another when the parts of the whole are elements of the class. Since
a whole can be divided into parts in various ways, there are always
many classes which correspond to one whole. On the other hand,
to each class there corresponds at most one whole, for the elements
are uniquely determined through the class, and two objects which
consist of the same parts are identical. Now, if a class were to
consist of its elements (i.e., if it were identical with the whole that
corresponds to it), then all those many classes which correspond to
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the same whole would be identical with one another. But, as we
have seen, they are different from one another. Thus, classes cannot
consist of elements as a whole consists of its parts.[Carnap, 1967, p.
63, emphasis in original]

This might still not seem like a denial of Cantor’s view, since Cantor talks
about sets and Carnap, following Frege, about classes. But in the next para-
graph he makes sure that he intends his criticism to apply to the set concept as
well:

The same holds for the mathematical concept of a set, which corre-
sponds to the logical concept of a class. A set, too, does not consist
of its elements. This is important to notice, since the character of
a whole or a collection (or of an “aggregate”) has erroneously been
connected the concept of a set ever since its inception (i.e., ever since
Cantor’s definition).[Carnap, 1967, p. 63]

Gradually during the 20th century—perhaps infuenced by the inconsistency
of Frege’s own formalization of set theory—the support for the Cantorian posi-
tion increased. Halmos, in his classic Naive Set Theory [1960, p. 1] begins by
listing “a pack of wolves, a bunch of grapes, or a flock of pigeons” as typical
examples of sets. Back then, there were still contrary voices: Max Black [1971,
p. 615] retorts that, in that case, “It would then make sense, at least sometimes,
to speak of being pursued by a set, or eating a set, or putting a set to flight”.
But such objections were rare, and by now they have become almost extinct.
Even Hallett, in his Cantorian Set Theory and Limitation of Size [1984], which
is sharply critical of the standard ways that ZFC are motivated (i.e. the limi-
tation in size doctrine and the iterative conception), seems to take for granted
that set theory is at least intended to be about collections.

I will here defend the claim that, as Hallett [1984, pp. 299–305] also says,
it is not at all clear at all what sets are. But I will go further, and argue that
if there is one thing we can be rather certain about, it is that they are not
collections. I will also go into why they are probably not extensions of concepts
either, and instead try argue that, indeed, the whole question of what sets “are”
may be fundamentally misposed.

2 Sets are not collections in the “ordinary” sense

We focus on axiomatic versions of set theory, such as ZFC and set theories re-
sembling it. Some philosophers or mathematicians (such as Mayberry [2001])
would say that this, by itself, makes the investigation useless: ZFC is a certain
formalization of set theory, but set theory itself is impossible to capture com-
pletely formally. But we will, at least to start with, only need parts of ZFC
that are common among all set theories that have been put forward so far, from
finitary ZF to second-order Z to NFU, and even non-well-founded set theories.
ZFC and other axiomatizations, when we use them here, are employed because
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they are well known and rigorous, and not because any one of them is taken to
be the “true” theory of sets.

In arguing that sets are not collections, or at least not just collections we
also need to have some kind of grip on what collections are. Some paradigmatic
cases of these, which we must start with unless we want the statement ‘sets are
collections’ to be as tautologous as ‘sets are sets’, are collections of ordinary
physical objects. The relevant line for these in the OED reads “A number of
objects collected or gathered together, viewed as a whole; a group of things
collected and arranged.”

It is obvious that this notion of collection is dependent on the action of
collecting: a collection is what you get when you collect things. In the set-
theoretic case, this action is not supposed to involve anything above the action,
if any, of bringing the elements of the set in question into existence.

A set cannot be this kind of collection. Consider the pairing axiom:

∀a∀b∃c∀x(x ∈ c↔ x = a ∨ x = b)

Informally, this says that given two objects a, b, we can form a set which
contains those objects and nothing else. But take four physical objects, which
we will call cube, cone, sphere and torus, collect them into pairs in two different
ways, and then collect the collections:

What you get is not a collection with two things in it, as the pairing axiom
says, but a collection with four things. If you are just considering the sets
as collections, there is no difference between {{a, b}, {c, d}} and {a, b, c, d}. In
mathematical terms, collecting is an associative operation. It does not matter
if you go by the upper-right or the lower-left path in the above figure; the result
is the same anyway. So if collecting things was the same thing as putting them
in a set, we would have had

{{cube, cone}, {torus, sphere}} = {{cone, sphere}, {cube, torus}}

which we do not.
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But, the set theorist may protest, we have to take seriously the fact that
collections are themselves objects, and that, by just collapsing everything to a
single level, we make an ontological error. I will not dwell on whether this is the
case, since the question is, indeed, ontological. In one sense, collections exist,
since we can quantify over them, and they are not identical to the plurality of
their members, since they have different properties (the collection is one while
the plurality is many, as Russell would have said). In another sense, it seems
at least sensible to hold that when I buy a six-pack of beer, I do not thereby
buy an inaccessible cardinal number of objects (i.e. the whole set-theoretical
hierarchy generated from them). But the concept of object is itself notoriously
vague, so any interpretation may be as defensible as another.

What we can show, however, is that taking collections to be objects in their
own right still does not make them sets. Suppose that we, again, collect the
collections {cube, cone} and {torus, sphere}, as through the right-hand arrow
of the figure. What objects will be in this total collection C? We will have
that {cube, cone} ∈ C and {torus, sphere} ∈ C, of course. But we also still
have cube ∈ C, cone ∈ C, torus ∈ C, and sphere ∈ C; you cannot have
a collection of collections without also having the objects in said collections.
Indeed, if we take collections to be objects, we will, in collecting {cube, cone}
and {torus, sphere}, end up with a collection containing all subcollections of
{cube, cone, torus, sphere}. So taking collections to be objects does not help.
In fact, in one sense it makes the difference between sets and collections even
greater, since the cardinalities of a set of sets and of the corresponding collection
of collections will differ even more.

This argument can be made equally well using singletons, and in one sense
it then pinpoints the unreasonableness of holding sets to be collections even
better then. Suppose we have a thing x, which may also itself be a set. Why, in
collecting it, would we end up with something different from what we collected?1

Now, it is not clear that the above argument would be applicable to Cantor’s
own understanding of sets. In fact, Cantor does not form sets of sets at all:
he always associates sets with other objects, such as cardinals, functions or
relations, which are different kinds of concepts for him, and then forms sets
of these concepts (see, for example, [1962, pp. 279–280, 287–290]). He is not
very careful to distinguish between set membership and subsethood, and often
uses ‘enhalten’ vaguely (as in [1962, p. 309]), relying on context to sort things
out. Not even when introducing the finite cardinals does he avail himself of sets
containing sets, as is usually done now. In this he is joined by another early
set theorist, Dedekind, who (in)famously made an argument in terms of the
possibility of forming certain thoughts in his attempt to prove the existence of
simply infinite systems [1963, §66].

Sets of sets started to become more universally employed with the axioma-
tizations of set theory. The creators of these, like Zermelo, did not presuppose

1Note that this has nothing to do with whether a single thing can really be called a
“collection”. I find no objection to letting the technical notion of ‘set’ admit these, as well as
an empty set. The problem is not with existence, but with existence over and above what is
in the set.
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that sets “are” anything, however. It may therefore very well be that the cur-
rent confusion regarding sets may stem from an inadmissible combination of
the earlier Cantorian interpreted concept with the deductive power given by the
later axiomatic version.

3 What is a pure collection, anyway?

We have so far given an informal argument that sets are not collections in the
ordinary sense. To attain more clarity, and also to be able to better compare
sets with collections, it is useful to formalize.

As a framework for building a theory of collections we will, following Boolos
[1984], start with monadic second-order logic, with the second-order variables
interpreted as ranging over pluralities. In particular, let L1 be a first-order
language with or without identity. Extend L1 to a language L by adding the
following:

1. Monadic second-order variables X,Y, Z,W, . . . and second-order quanti-
fiers ∀2 and ∃2. We will generally suppress the exponents in these, and
rely on the variables to separate first- from second-order quantification.

2. A lambda operator λx for making predicates from formulae, governed by
the axiom schema ` (λxϕ(x))(y)↔ ϕ(y), where ϕ(x) is any formula with
x free.

For convenience, we introduce the following defined terms, where s, t are
taken to be first-order terms, and S, T second-order.

1. s = t ≡df. ∀X (X(s)→ X(t))

2. S 6 T ≡df. ∀x (S(x)→ T (x)).

3. S = T ≡df. (S 6 T ∧ T 6 S).

4. S ∨ T =df. λx (S(x) ∨ T (x)).

5. S ∧ T =df. λx (S(x) ∧ T (x)).

Since our purpose is to use this logic to frame theories, we have not explic-
itly attempted to minimize the number of primitives, but instead focused on
including what we need in as natural a form as possible. Our theory of collec-
tions will follow the interpretation of collections as abstracted from the act of
collecting. We therefore expand L to a language Lc by adding an operator c,
taking pluralities to objects, with the intended interpretation c = cX iff c is
the result of collecting the X’s. For simplicity, we will assume c to be defined
for all pluralities, including the empty one, for which we call its value 0. It
would be a fairly easy task to exclude the empty collection if we wanted to.
For now, we assume it as an ideal element, much as zero is usually assumed as
a natural number. We call 0 the empty collection, and any non-empty object
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that contains nothing but itself and 0 a trivial collection, or a thing. We use
the word object for anything in our domain, although, as it will turn out, this
will also coincide with collection.2

Where t1, . . . , tn are first-order terms, write [t1, . . . , tn] for the plurality
λx (x = t1 ∨ . . . ∨ x = tn). Write x ε y iff c[x, y] = y, and x �ε y other-
wise. When x ε y, we say that x is in y, or that y contains x. We write ↓b for
the plurality of objects that are in b, i.e ↓b =df. λx x ε b. If x ε z, and for every
y such that x ε y and y ε z we have either that y = x or that y = z, we say that
z is a minimal proper container of y, and write this x ≺ z

As we highlighted in the previous section, what is characteristic for collec-
tions is that (i) collecting something with some of the objects in it makes no
difference, and that (ii) the order one collects objects in makes no difference.
Furthermore collections, like Cantor’s sets, are collections of well-individuated
objects rather than a chunks of stuff, which means that if a is in b, then we must
be able to obtain b by adding (potentially infinitely many) individual objects,
i.e. enclosing a in a sufficient number of minimal proper containers. Our three
axioms for the theory of collections can therefore be taken to be

Axiom 1. ∀X∀x (X 6 ↓x→ c(X ∨ [x]) = x).

Axiom 2. ∀X∀Y ∀Z∀W c[c(X ∨ Y ), c(Z ∨W )] = c[c(X ∨W ), c(Z ∨ Y )].

Axiom 3. ∀x∀z ((x ε z ∧ x 6= z)→ ∃y (x ≺ y ∧ y ε z)).

From the first two a number of useful properties follow:

Lemma 1. c and ε satisfy the following:

1. c[x] = x.

2. If X 6 Y then c(X) ε c(Y )

3. If x ε y and y ε x then x = y

4. If x ε y and y ε z then x ε z.

5. c(X ∨ Y ) = c[c(X), c(Y )].

6. If X(x), then x ε c(X).

7. If each x such that X(x) is in y, then c(X) ε y.

Proof. Let Λ = λx x 6= x.
1. By taking X = Λ and applying axiom 1.
2. What we wish to show is that c[c(Y )] = c[c(X), c(Y )]. So:

c[c(Y )] = c[c(Y ), c(Y )] = c[c(X ∨ Y ), c(Y ∨ Λ)]

= c[c(X ∨ Λ), c(Y ∨X)] = c[c(X), c(X ∨ Y )]

2Anyone balking at the notion of a one-object or no-object collection is welcome to interpret
our use of the word collection as short for collection or thing.
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3. Assume that c[a] = c[a, b] and c[b] = c[b, a]. Then a = c[a] = c[a, b] =
c[b, a] = c[b] = b.

4. By 1., it is sufficient to show that c(X) ε c(Y )∧c(Y ) ε c(Z)→ c(X) ε c(Z)
for all pluralities X,Y, Z. Written out, the therefore we need to show that
c(Z) = c(X ∨ Z) from c(Y ) = c(X ∨ Y ) and c(Z) = c(Y ∨ Z). The proof
proceeds as follows.

c[c(Z)] = c[c(Z), c(Z)] = c[c(Z ∨ Y ), c(Z ∨ Y )]

= c[c(Z ∨ Z), c(Y ∨ Y )] = c[c(Z ∨ Z), c(Y ∨ Y )] = c[c(Z ∨ Z), c(Y )]

= c[c(Z ∨ Z), c(Y ∨X)] = c[c(X ∨ Z), c(Y ∨ Z)] = c[c(X ∨ Z), c(Z)]

This is, by definition, equivalent to c(X ∨ Z) ε c(X). From 2. we have that
c(X) ε (X ∨ Z), and c(X) = c(X ∨ Z) follows by 3.

5. c(X ∨Y ) = c[c(X ∨Y )] = c[c(X ∨Y ), c(X ∨Y )] = c[c(X ∨X), c(Y ∨Y )] =
c[c(X), c(Y )].

6. We need to show that c[c(X)] = c[c(X), x]. But X = X ∨ [x], so c[c(X)] =
c(X) = c(X ∨ [x]) = c(c(X), c[x]), by axiom 2.

7. Written out, this says that X 6 ↓y → c(X) ε y. But this follows directly
from axiom 1 together with y ε y.

These together entail that ε is a partial order on the domain D and that
c(X) is the supremum of the objects in the plurality X. Furthermore, adding
axiom 3 entails that D, ε is fully characterized. Since the proof is fairly lengthy,
we have moved it to an appendix.

Theorem 1. D, ε is a complete atomic Boolean algebra.

This theorem completely describes what the theory of collections is: it is the
theory of complete atomic Boolean algebras. One example of such an algebra
is classical mereology, at least if we add a zero object. Thus collections are
intimately related to the kind of wholes studied in this theory. Theorem 1 gives
an axiomatic, structural view of what a theory of collections is, rather than a
substantial one, which holds such theories to be individuated by what they are
“about” rather than their axioms. It is useful to draw a parallel to Hilbert’s
characterization of geometry as consisting of the study of axiomatic systems sim-
ilar to the Euclidean one, rather than intrinsically being about spatial intuition
or physical space.

The structure of collections implies at once that being in a collection is not
like being an element of a set. The first is transitive, while the second is not. A
collection of one object is equal to its content, while a singleton set is distinct
from its element. And collections form a Boolean algebra, while sets do not, at
least in ZFC.
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4 Abstracts, ideals and concepts

We have investigated the relation between set theory and collection theory.
Collection theory is interpreted as akin to mereology, and it is well known that
mereology is not set theory—if anything, it was this realization in Peano and
others, against the algebraic tradition, that made most of our current applica-
tions of set theory possible (cf. Grattan-Guinness [2000, chs. 3 & 5]). Thus I do
not, in any way, mean to suggest that the theory of collections would be a better
foundation for mathematics than set theory, or even a possible one. My point is
just that as long as we want set theory to be powerful enough to base substantial
portions of mathematics on, we cannot take it to be about collections.

There are several possible rejoinders to this argument. One could claim, for
instance, that what holds of collections of concrete, physical objects does not
hold for collections of abstract objects, and that, since set theory is supposed
to be about all collections, we can rely only on properties that hold for both
abstract and concrete collections. But this cuts two ways: it is not clear, for
instance, that there is an infinite collection of physical objects, so perhaps we
should not have the axiom of infinity? One could, of course, take the position
that set theory is about collections of abstract objects only, but that would
mean that we make set theory inapplicable to concrete collections. It would
also mean that the word ‘collection’, as used in “sets are collections of objects”,
would be separated from any part of its usual meaning.

A slightly different approach is to apply ‘abstract’ to the word ‘collection’,
rather than the word ‘object’. This may be motivated by the fact that, in
order to form a set, we do not need to actually collect anything in the physical
sense. But why would abstracting away the actual, physical act of collecting give
rise to something that has stronger identity conditions than what we started
with? Indeed, how could it? Having a domain of entities and abstracting away
some of their qualities makes more entities count as identical rather than less.
But the reason why a set is not a collection is exactly that sets have stronger
identity conditions than collections: a collection is determined just by what
urelemente are in it, while the determination of a set also requires us to know
how these urelemente have been collected. As Goodman [1958] would have put
it, collections are hyperextensional, while sets are merely extensional.

Similar objections can be raised against the claim that a set is an idealization
of a collection. The universe of sets has much more structure than the universe
of collections, which is really just a complete atomic Boolean algebra. But we
idealize to disregard complications, and not to introduce them. Holding sets to
be idealized collections would be a bit like holding quantum mechanics to be
an idealization of Newtonian mechanics. Even if we just hold some sets to be
idealizations, and the rest to be collections, the idealizations will outnumber the
basis of collections that we are supposed to have idealized from momentously.

Against this, one could perhaps claim that while set theory is not an ideal-
ization in the sense that empirical theories are, the sets themselves may be taken
to be ideal elements. This is consistent with there being many more of them
than the objects we idealized from; the same holds for Dedekind’s introduction
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of real numbers, for instance. Indeed, in modern terminology, his procedure just
consists in going from an ordered set to the ordered set of ideals of that set. But
given that we take the rational (or, equivalently, natural) numbers to be urele-
mente, as Dedekind certainly did, the resulting reals are still hyperextensional,
unlike sets: every real number is uniquely determined by which rationals are
elements of them. Real numbers can thus be viewed as collections of rational
numbers, which means that this kind of introduction of ideal objects does not
support the introduction of a full set-theoretic hierarchy.

Summing up, this all points to the the lesson that, strictly speaking, a set
cannot be just a collection, but has to be more like a collection with a certain
structure to it. As Boolos [1971] mentions, Kripke used the picture of throwing
a lasso around a collection of objects to make a set out of them. A picture I
have sometimes found helpful is to say that making a set out of X’s is like a
throwing them in a bag.3 In the same vein, Lawvere and Rosebrugh [2003, p.
1] write “It has been said that a set is like a mental ‘bag of dots’, except of
course that the bag has no shape [. . . ]”. Enderton [1977, p. 3] writes “The
fact that {∅} 6= ∅ is reflected in the fact that a man with an empty container
is better off than a man with nothing—at least he has the container”, thereby
implicitly adding the container to his description, two pages earlier, of a set as
“a collection of things (called its members or elements), the collection being
regarded as a single object”. He also provides no explanation of how someone
might be in possession of nothing at all, without also having the container which
necessarily contains this nothing.

These images are, however, just that—images. No mathematician believes
that all things actually have lassos around them, or are inside an infinity of
bags. Likewise, the “mental” part of it, as found in Lawvere, should probably
not be taken literally either. Sets are very unlikely to be mental objects: ZFC
simply postulates too many of them for that to be plausible. So, no matter if
these pictures help or not, they are not accurate. Perhaps they can be taken to
give intuitive support to our belief that ZFC is consistent, but they give us no
reason at all to believe it to be true.4

Similar objections pertain to the so-called iterative conception of sets [Boo-
los, 1971, Schoenfield, 1977], which is sometimes seen as providing a rationale
for the axioms of ZFC. The fundamental problem is that the iterative conception
does treat sets as collections, which, as we have seen, they are not. Perhaps we
could hold that the iterative process itself makes sets more than collection (e.g.
by individuating them by how they are made, and not just by what is in them),
but this means that sets are not, after all, just collections, but collections with
a genealogy. In that sense, they would be more like species in the evolutionary
sense, but I know of no philosopher of mathematics who has advocated such a
view.

This still does not even touch on the iterative conception’s main problem:

3Emmy Noether described Dedekind as also seeing a set as a “bag full of objects” [Hallett,
1984, p. 158]. The picture seems hard to avoid.

4Of course, intuition does not have a good track record when it comes to judging the
consistency of set theories either, so the value of any intuitive support may be questionable.
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its lack of any independent reason for us to believe in it. Again, we are dealing
with images that are designed to make it intelligible what sets are, at the cost
of making belief in them almost impossible. If sets truly were bags, we could of
perhaps picture what it means for every collection of objects to be put in a bag
of its own (at least if bags were allowed to intersect). But we can see that not
everything is in a bag of its own, so why believe that everything is in a set of
its own, which is, after all, a kind of abstract bag? Likewise, we can convince
ourselves that we understand what it means to carry out the operations that
are used to create the iterative hierarchy (hint: it will take a lot of abstract bags
and a lot of time). But we have no evidence that anyone has actually done this,
so there is no reason to think that the iterative hierarchy describes anything
existing.

The iterative hierarchy and the Cantorian interpretation of set are inter-
twined. Thinking of sets as abstract bags makes them a bit more intelligible,
and the iterative hierarchy then seems like it would help provide a picture of
the bag universe. Conversely, understanding the iterative conception helps one
understand what a set is: it is one of the abstract bags into which we put objects
while carrying out the transfinite induction of that conception. But our gain in
understanding is offset by the increase in implausibility of the view: why believe
in all those bags? Or is set theory purely a game of make-believe, as Field [1980]
held mathematics as a whole to be?5

Given the problems with interpreting sets as collections, or as something
like collections (such as abstract bags), the Fregean interpretation may actually
seem more attractive. In contrast to actual collections, it introduces a hierarchy
of concepts. It does, of course, depend on a Platonist ontology in order to avoid
psychologism, but since the objects in question are logically determined rather
than given through an iterative process, their existence comes with a kind of
built-in motivation. As Frege saw it when writing the Grundgesetze, the theory
of sets is part of logic, and to deny it is to contradict yourself.

The problem, of course, is that at least for the Grundgesetze version, affirm-
ing the theory of sets also means contradicting yourself. Indeed, one of the more
common reasons given for why the Fregean interpretation is wrong is Russell’s
paradox, but that paradox does not by itself exclude the possibility that sets are
the extensions of concepts. It is perfectly possible to hold that the predicates
x /∈ x or x = x do not express concepts, just as it is possible to hold that they do
not determine sets. We may specifically want to do so, at least in the first case,
if we wish to avoid the version of Russell’s paradox engendered by the concept
of non-self-instantiation.

5One could make the classical comparison with theology here. Consider a theory that
assumes that every existing object, including not-too-large collections, is overseen by an indi-
vidual guardian angel. But the angels themselves, of course, have to be overseen as well, as
do the collections of them. We therefore gets a hierarchy mirroring the set-theoretical one,
with ‘angel b oversees a’ corresponding exactly to ‘b is the singleton set of a’. This theory may
or may not be intelligible, and since it mirrors set theory, it can be used as a foundation of
mathematics. The problem is that we have no reason to take it to be true. It may be appro-
priate to quote one of David Lewis’s exclamations here: “Must set theory rest on theology?
— Cantor thought so!” Lewis [1993]
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More serious for our purposes is the fact that the Fregean interpretation has
trouble motivating the powerset axiom: why would every subset of a set have a
concept it is the extension of? All explanations of why this would hold seem to
be based on the combinatorics of collections, rather than on what concepts we
can construct or define. Perhaps it can be worked around using some kind of
haeccitistic concepts (e.g. a specific concept tied to every object), but it is hard
to see how it could ever be made natural.6.

The Fregean conception, when we try to work it out, also tends to make
extensionality a bit more complicated than we want. Extensions arise as ab-
stractions from concepts for which, being unsaturated, questions of identity do
not arise at all. For the logic of the concepts themselves, which on the Fregean
view are more primitive, classical set theory may very well not be the most
fitting formalization. Instead, we will probably be better off looking at some
version of intensional type theory.

These problems for the Fregean interpretation all arise in plain Zermelo
set theory. When we go to ZFC they only get worse. Neither the axiom of
foundation, nor that of separation, nor even choice, seem possible to motivate
if we take sets to be extensions of concepts. It is also the case that even if
these issues could be met, we would not really have gained much in the way of
insight into what sets are. Although Frege, infamously, did write “I assume that
it is known what the extension of a concept is” [1953, §68], it turned out that
the notion was far more prone to contradictions than he had assumed at that
time. And even if we are only asking for some kind of intuitive understanding,
answering what an extension is without taking recourse to the notion of set (as
in ‘the extension of ϕ is the set of objects x such that ϕ(x)’) seems more or less
impossible.7

So while the Fregean interpretation is perhaps not as definitely wrong as the
Cantorian one, it has severe problems, and thus we have no plausible interpre-
tation of what the word ‘set’, as it is used in mathematics, actually refers to.
But how could mathematics work at all if we do not have that? It may seem
almost paradoxical that mathematics could work so well, and mathematicians
understand at least parts of it so well, without knowing anything about what
the word ‘set’ refers to.

5 Sets as points in a set structure

The proper interpretation of this situation, I believe, is to accept that the whole
project of trying to explain what sets are without presupposing a specific ax-
iomatization is fundamentally misplaced. Set theory has evolved gradually, and
only received its current form in the mid 20th century. It is sometimes treated as

6Parsons gives a similar argument in [1974]
7The suggestion that we, perhaps, could identify the extension of ϕ with the collection of

things x such that ϕ(x) fails for the same reason as the one that we can identify sets with
such collections: we can have that such collections have the same constituents, even though
the concepts we have defined them through have different extensions.
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having sprung fully-armed from Cantor’s mind, but of course that is not what
happened. Cantor drew on earlier mathematics, and indeed much of what we
nowadays call set theory does not come from Cantor at all but from Peano,
Frege, Russell, Zermelo, Skolem, von Neumann, and even to some part from
algebraists like Leibniz, Boole and Schröder. Especially in the 30’s and 40’s, the
two main traditions—the Cantorian and the Fregean—began converging, with
logicians like Gödel and von Neumann applying formal logic to set theory, and
set theory to formal logic [Ferreirós, 2007, esp. ch. 11].

We have no reason to believe that these founders of ZFC in all cases relied
on the same philosophical motivations, and in some cases a philosophical mo-
tivation was most likely lacking altogether. One of the main reasons for many
mathematicians’ acceptance of the axiom of choice was arguably its usefulness,
quite separate from its truth or falsity. Given all this, we should not be sur-
prised that set theory more resembles the body of laws of a country, arrived at
through debate and compromises, than an instrument engineered with a single
purpose in mind.

Since set theory has developed independently of a specific conception of set,
we should not expect any specific conception to be able to answer the question
of what a set is. Instead of starting with the question “what is a set?”, we
should start with “what is set theory?”. This question can, at least partially, be
answered by pointing to actual texts of set theory: works of Cantor, Zermelo and
Fraenkel, or some standard textbook such as Kunen [1980] or Jech [2006]. While
this may not gain us insight into what the essence of set theory is, it is not clear
what such insight would be. As we already mentioned, set theory has grown
to its current form organically rather than guided by a single philosophical
vision. Until the middle of the 20th century the subject was sometimes not
even separated from topology, as witnessed in Hausdorff’s classic Grundzüge
[1914]. Contemporary set theory has inseverable ties to category theory, logic,
combinatorics, measure theory and model theory, and all of these influence what
it is. The multitude of theories that can rightly be called set theories make up a
Wittgensteinan family rather than a clear-cut logical class definable by sufficient
and necessary conditions. This means that the most perspicuous way to specify
what set theory is will be to give examples of set theories: ZFC, NBG, NF, ZFA,
etc. A set theory is any theory that is similar enough to any of these. Just as
we held about the theory of collections, this puts set theory in the same boat as
Hilbertian geometry: a subject defined by a certain collection of axioms, rather
than some kind of pre-theoretical notion of what it is about. This also ties in
with one reason why set theory is not collection theory: the axioms for Boolean
algebras, which define collections, differ radically from the kind of axioms that
define a set theory.

Assuming some kind of loose grasp on what a set theory is, a set can be said
to be whatever is taken as a value by the first-order variables in such a theory. In
structuralist words, it is a point in a set-structure, and a set-structure is a kind
of binary relation. It is therefore, as for example Voevodsky [2006] has recently
noted, somewhat misleading to say that ZF is about a sort of things called sets.
Although the statement may be interpreted in a way that makes it true, it gets
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the logical order backwards since it is the sets that get the explanation of what
they are from the axioms of the set theory, rather than the axioms of the set
theory which get their explanation from intuitions about sets. Less misleading
would be to say that set theory is about membership structures, or perhaps,
as Voevodsky does, that it is about a kind of trees without symmetries. A
particularly tautologous (but also particularly truthful) way to say this is that
set theory is about models of set theory.

Such models come in many shapes and sizes. Some of them are elements in
other models of set theory, although none of them are are elements in themselves.
But there are also models that are not sets at all, such as ones in toposes or
proper classes. For first-order set theory, there are models which are also models
of PA, and models which are relation algebras, such as [Tarski and Givant,
1987]. For higher-order set theory we presumably want only models in which ∈
is interpreted as membership, but what can that mean if we, as I have argued
here, simply do not (and perhaps cannot) know what kind of relation the word
‘membership’ refers to, independently of the axioms we have taken to govern it?

Skolem spoke of the relativity of set-theoretic notions: that axiomatic set
theory can never fully specify the references of its terms [1922, p. 296]. But
axiomatic set theory, as Skolem correctly noted, is the only coherent set theory
there is. For Skolem, the reason for this was the antinomies. I have indicated
in this paper why, even without these, the informal notion is unworkable: there
simply is no informal notion of set that describes anything close enough to the
axiomatic version, which means that axiomatic set theory, with its inherent
relativity, is all we have.

In the current literature it is often assumed that the sole reason for believing
in Skolem-style relativity is the Löwenheim-Skolem theorem, and that for logics
where this theorem does not go through this relativity does not arise. But there
remains a form of relativity even in higher-order formalizations of set theory.
Assume second-order ZF, with the standard semantics so that the second-order
variables range over all subsets of the domain. Which these are will, however,
depend on what kind of set theory we have in our metalanguage. Does the
metalanguage’s ω include any Cohen reals as subsets, for instance? Many set
theorists likely do not use a metalanguage in which it does, but most probably
do not even consider the question, or explicitly treat an answer as an extra
assumption, as is shown in the habit of explicitly calling attention to uses of the
continuum hypothesis in a proof.

Furthermore, even if we can give explicit characterizations about our use of
mathematical language, as we do when we say ‘assume the continuum hypoth-
esis’, an infinite amount of underdetermination will always remain. The verbal
(or written) behavior of mathematicians is just not sufficient for us to be able to
say which specific language they use, so we just have to accept that no matter
what logic we use, there will always be relativity.

Axiomatization provides ways for us to somewhat lessen this relativity. To
be sure, it is always done against a background: a logical calculus used in
derivations, or, in our case, a metalanguage used for semantics. But, at least as
long as we cannot unequivocally point to sets and non-sets, or otherwise non-
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linguistically indicate them, axiomatization remains our best way to become
clearer about what we refer to.

Similar views were held by several of the early 20th century axiomatists. For
instance, we find von Neumann [1925] accepting classical logic as a background,
but arguing for axiomatization as follows:

The methods of logic are not criticized to any extent, but are re-
tained; only the (no doubt useless) naive notion of set is prohibited.
To replace this notion the axiomatic method is employed; that is,
one formulates a number of postulates in which, to be sure, the word
“set” occurs but without any meaning. Here (in the spirit of the ax-
iomatic method) one understands by “set” nothing but an object of
which one knows no more and wants to know no more than what
follows about it from the postulates.

It is easy to dismiss the views of von Neumann, and of Hilbert, for whom
he worked as an assistant, as expressions of naive formalism. But, as has been
pointed out several times in later years, it is equally reasonable to see them as
advocating a form of structuralism; Hilbert, after all, replied to Frege’s insistence
on proving existence theorems before making definitions that “if the arbitrarily
posited axioms together with all their consequences do not contradict one an-
other, then they are true and the things defined by the axioms exist” [Frege,
1971, p. 12]. Rather than being meaningless, or denotationless, as the strict
formalist would have it, the terms in an axiomatic theory get their denotation
and meaning from the axioms.

The difference may, perhaps, be one of perspective. Bourbaki, focusing some-
what more on the texts of mathematics, are closer to the formalist interpretation
than Hilbert or von Neumann, although even they call their method structural-
ist rather than formalist. In the end, however, the approaches are interrelated:
from consistent axioms we can define a non-empty class of structures satisfying
those axioms. Conversely, any structure can be described, at least partially, by
giving the axioms that hold in it. One could therefore say that formalism is the
axiomatic method as seen through the lens of syntax, and structuralism the ax-
iomatic method as seen through the lens of semantics. They are fundamentally
equivalent.

Since our question (to what does the term ‘set’ refer?) is semantic, inter-
preting set theory in structuralist terms allows us to give the most appropriate
answer, namely that a set is a point in a membership structure. Set theory is
the theory of membership structures, and it is this theory that determines what
sets are. But, as Skolem noted, it can never do this completely; there will always
remain some relativity of the terms to the structure itself, rather than to the
theory.

Characterizing set theory as being primarily about membership structures
and only secondarily about sets also brings it more in line with the rest of
mathematics. Group theory is about groups, and only secondarily about the
elements of those groups. Or, if it is thought that the comparison with group
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theory is inadmissible because this theory is not categorical, consider the theory
of vector spaces. All vector spaces with the same dimension are isomorphic, so
the theory is categorical up to a cardinal number parameter. This is exactly the
same situation as in second-order ZFC, since in that theory all models having
the same cardinality are isomorphic as well. For a vector space, the parameter
is the dimension, while for ZFC2 it is the cardinality itself, but the amount of
determination or underdetermination is the same. Just as the points in a vector
space are parasitic on the space itself—they get their identities only from the
relations they stand in to other points—we should recognize that the sets in a
set theory are secondary to the set-theoretic structure itself.

I actually believe this comes rather close to how at least some set theorists
seem to think about and work with their subject, although not always how they
talk about it. Jech [2006, p. 3] starts out by noting that, “[i]ntuitively, a set is
a collection of all elements that satisfy a certain given property”, thus paying
his respects to both Frege and Cantor. But, because of Russell’s paradox, he
continues, this naive interpretation cannot be taken to be literally true. The
way out is to go axiomatic: “[t]he axioms of ZFC are generally accepted as a
correct formalization of those principles that mathematicians apply when deal-
ing with sets.” [2006, p. 4]. Nowhere is anything said about whether the axioms
in question are correct for dealing with sets themselves. Instead, as an axiomatic
theory, it gives a rigorous version of an informal mathematical practice. Like-
wise, while the authors of the popular logic textbook Language Proof and Logic
give the usual naive conception of set as “a collection of things, like a set of
chairs, a set of dominoes, or a set of numbers”, they also say that “[p]ersonally,
we think of sets as being a lot like Tinkertoys or Lego blocks: basic kits out
of which we an construct models of practically everything” [Barker-Plummer
et al., 2012, p. 413–414]. The second of these is obviously a characterization of
sets through the roles they play in mathematical or logical practice, rather than
through some kind of metaphysical pseudodefinition like the one Cantor gave.

Practices are neither true nor false. While a formalization may capture a
practice better or worse, the vagueness of the practice itself usually means that,
in many cases, there is simply no fact of the matter as to whether it is correct
or not. Perhaps we should rather see ZFC as a kind of explication of set theory,
or of the concepts of set and membership as they are used by mathematicians.
Such explications are, as Carnap [1950] famously held, not only to be judged
according to their faithfulness to intuition, but also according to criteria like
exactness and usefulness. It is undeniable that ZFC fulfills these admirably,
and I believe that is all we should ask of it.

6 Appendix: derivation of theorem 1

Let the infimum of a plurality X be the object

inf X =df. c(λy∀x (X(x)→ x ε y)).

We will need the following lemma:
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Lemma 2. D, ε is lower continuous, i.e. for every chain C ⊆ D and every
element a, a+ inf C = inf λx (x = a ∨ C(x)).

Proof.

a+ inf C = c([a] ∨ λy∀x (C(x)→ x ε y))

= c(λy (y = a ∨ ∀x (C(x)→ x ε y)))

= c(λy (∀x ((x = a ∨ C(x))→ x ε y)))

= inf λx (x = a ∨ C(x))

Let the pseudocomplement of an object x be defined as

x′ =df. c(λx∀y∀z ((z ε x ∧ z ε y)→ z = 0))

It is easily shown that the only object both in a and its pseudocomplement
is the empty collection 0.

Lemma 3. The pseudocomplement a′ of a trivial collection a is a complement,
i.e. a+ a′ = 1.

Proof. Let a be a trivial collection. Since the only objects in a trivial collection
are that collection itself and the empty collection, the definition of pseudocom-
plement reduces to

a′ =df. = c(λx (x 6= a ∧ x 6= 0))

= c(λx x 6= a)

From this it follows that a+ a′ = c(λx x = a ∨ x 6= a) = 1.

An object a is join-irreducible iff ∀x∀y (a = x+ y → (a = x ∨ a = y)).

Lemma 4. An element a is join-irreducible iff it is a trivial collection or the
empty collection.

We have omitted the proof since it is fairly trivial. Let T be the plurality of
trivial collections in D, and let Tx =df. λy (y ε x∧T (y)) . Together, the lemmas
give us:

Lemma 5. D, ε is atomistic, i.e. x = c(Tx) for all x.

Proof. A lattice is strong iff for each nonzero join-irreducible element b and
each pair of elements a, c, a < b ε a + c → b ε c. This is trivially satisfied
in our case since there are no non-zero objects in any trivial collection b that
are not themselves not b. By axiom 3, D, ε is strongly atomic. Together with
the existence of complements of trivial collections, a theorem of Walendziak
Walendziak [1994] then entails that D, ε is atomistic.
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In an atomistic lattice, the pseudocomplement a′ can be characterized in a
much simpler way as

x′ = cλy(T (y) ∧ y �ε x)

Lemma 6. Every object has a unique complement, which coincides with its
pseudocomplement.

Proof. We first show that x+ x′ = 1:

x+ x′ = c(λy (y = x ∨ (T (y) ∧ y �ε x)))

= c(λy (y = c(Tx)) ∨ (T (y) ∧ ¬Tx(y)))

= c(λy (y = c(Tx)) ∨ y = c(T ∧ ¬Tx))

= c(λy (y = c(T )))

= 1

This complement is unique since it is the supremum of objects y that only
have 0 in common with x, and suprema are unique.

From lemmas 5 and 6 we can finally derive our theorem:

Theorem 1. D, ε is a complete atomic Boolean algebra.

Proof. From an application of the Birkhoff-Ward theorem Birkhoff and Ward
[1939], which says that any complete atomistic lattice with unique complements
is a complete Boolean algebra.
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