
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Introduction to web server traffic modeling and control research

Andersson, Mikael

2005

Link to publication

Citation for published version (APA):
Andersson, M. (2005). Introduction to web server traffic modeling and control research. [Publisher information
missing].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9742fc3d-a6b2-418f-abe9-a2d0808af459

Introduction to Web Server Modeling
and Control Research

TECHNICAL REPORT

Mikael Andersson
Department of Communication Systems

Lund Institute of Technology
Email: mike@telecom.lth.se

Publication code:
CODEN: LUTEDX(TETS-7211)/1-27/(2005)&local 26

October 28, 2005

Abstract

A significant amount of papers has been published on web server server
modeling and control. This survey presents the current results in these
two fields. Background information is given that explains and exam-
plifies the problems found in respective fields. A list of references for
further reading is included.

2

Contents

1 Introduction 3

2 Background 5

3 Web Server Modeling 14

4 Overload Control 18

5 Open Problems 20

Acknowledgements 23

References 23

1 INTRODUCTION 3

1 Introduction

During the last years, the use of Internet has increased tremendously.
More and more users connect to the Internet. In Sweden, more than
70 percent of the population used the Internet last year (according to
Statistics Sweden, [1]). Not only the number of users has increased,
the number of services offered on the Internet has exploded the last
few years. Companies take their business onto the Internet to a greater
extent. 75 percent of the companies in Sweden use Internet to market
themselves. The companies are e-commerce ventures that sell records,
books, clothes and services, companies that want to present themselves
on the Internet, banks, gambling sites, web hotels and so on. The
growth in Internet popularity has lead to increasing demands in band-
width and performance over the Internet and both bandwidth and com-
puter speed have increased steadily. However, this is not always enough.
Many people still experience the WWW as the ”World Wide Wait”. In-
stead of being fast and useful, the Internet is at many occasions time-
consuming.

 0

 0.5

 1

 1.5

 2

 0 50 100

se
co

nd
s

requests/second

Figure 1: The response time goes to infinity when the server load in-
creases.

1 INTRODUCTION 4

The long response times do not necessarily have to depend on too
little bandwidth or too slow clients. Instead, the bottleneck is often the
server systems. Numerous examples can be found when web servers
have become too overloaded, leaving all visitors ignored. Situations
when this occur is for example when a news site reports events like
sport tournaments, crises or political elections. Web shops can be hit
with many visitors during sale events on the web, bank sites during
pay days, regular companies when they release new products etc.

When a web server gets overloaded, the response time for a web
page becomes long which affects the company, as shown in Figure 1.
If visitors experience long response times, they tend to choose other
alternatives on the web, they turn to another web shop or go to another
news site.

Web servers also plays a central role in the event of a crisis. During
a crisis, information has to be published by authorities, companies and
governments that are involved in the crisis. A crisis put hard require-
ments on a server due to increasing traffic. Several occasions have
shown that critical web sites were severely overloaded. The result is
that no information is available when it is most needed.

The rest of this survey is organized as follows: Section 2 gives a
background of the research fields, Section 3 covers the current results
in web server modeling. Section 4 covers research on overload con-
trol on a web server. Finally, a short description of suggested research
problems is given in Section 5.

2 BACKGROUND 5

2 Background

This section gives an overview of the areas of research covered in this
survey. Web servers play a central part, so an explanation of web
servers is given, together with a description of the architecture of Apache
[2], which is the server used in many papers. Performance modeling of
web servers is discussed and the general structure for an admission
control mechanism1 in a web server is given.

2.1 Web servers

The web server software offers access to documents stored on the server.
Clients can browse the documents in a web browser. The documents
can be for example static Hypertext Markup Language (HTML) files,
image files or various script files, such as Common Gateway Interface
(CGI), Javascript or Perl files. The communication between clients and
server is based on the Hypertext Transfer Protocol (HTTP) [3].

When a document on the web server is requested, an HTTP request
is constructed and sent to the server. The HTTP request is encapsu-
lated in a TCP segment. The TCP contains the port address (the desti-
nation application on the server, i.e. the web server software) and is in
its turn encapsulated into IP packets containing the IP address of the
server. On local area networks, the IP packets are put into Medium
Access Control (MAC) frames that addresses the next computer on the
route towards the server. Figure 2 shows the decomposition of an HTTP
request into TCP segments, IP packets and MAC frames.

An HTTP transaction consists of three steps: TCP connection setup,
HTTP layer processing and network processing. The TCP connection
setup is performed as a so called three-way handshake, where the
client and the server exchange TCP SYN, TCP SYN/ACK and TCP ACK
messages. Once the connection has been established, a document re-
quest can be issued with an HTTP GET message to the server. The
server then replies with a HTTP GET REPLY message. Finally, the
TCP connection is closed by sending TCP FIN and TCP ACK messages
in both directions. Figure 3 illustrates the TCP communication.

There are many web servers on the market today. Four main types
can be identified; process-driven, threaded, event-driven and in-kernel
web servers. Threaded and process-driven web servers are the most

1An admission control mechanism is a mechanism used for preventing web servers
from overload.

2.1 Web servers 6

HTTP REQUEST

TCP SEGMENT

IP PACKETS

"Show me www.abc.com ..."

index.html

port=80

ip=130.235.18.172

MAC FRAMES mac=af:21:34:dd:32:11

Figure 2: The structure of an HTTP request.

common, with Apache being the most popular currently. Another pop-
ular process-driven web server is Microsoft’s IIS [4], covering about 21
percent of the market (Netcraft [5]). Examples of event-driven web
servers are Zeus [6] and Flash [7]. A description of event-driven web
servers and overload control strategies for such servers is found in [8].
In-kernel web servers are servers that are executed in the operating
system kernel, for example Tux [9] and khttpd [10].

2.1.1 Apache

Introduced in 1995 and based on the popular NCSA httpd 1.3, Apache
is now the most used web server in the world (Netcraft [5]). It is used in
more than 67 percent of all web server systems (more than 52 millions
in total, July 2004). One of the reasons to its popularity is that it is free
to use. Also, since the source code is free, it is possible to modify the web
server. Being threaded (threaded or process-driven depending on the
operating system, on Unix, Apache uses processes, while threads are
used in Win32 environments) means that Apache maintains a pool of
software threads ready to serve incoming requests. Should the number
of active threads run out, more can be created. When a request enters
the web server, it is assigned one of the free threads, that serves it
throughout the requests’ lifetime. Apache puts a limit on the number
of threads that are allowed to run simultaneously. If that number has
been reached, requests are rejected.

2.1 Web servers 7

TCP SYN

TCP ACK

http request data

TCP FIN

TCP ACK

TCP FIN

TCP ACK/SYN

TCP ACK

client server

Figure 3: The TCP session.

2.1.2 Modules in Apache

What makes Apache so attractive is also its architecture. The software
is arranged in a kernel part and additional packages called modules.
The kernel is responsible for opening up sockets for incoming TCP con-
nections, handling static files and sending back the result. Whenever
something else than a static file is to be handled, one of the designated
modules takes over. For example, if a page with a CGI script is re-
quested, the mod cgi module launches the CGI engine, executes the
script and then returns the finished page to the kernel.

Modules are convenient when new functionality should be added
to a web server, because nothing has to be changed in the kernel. A
new module can be programmed to respond to a certain type of re-
quest. Modules communicate with the kernel with hooks, that are well-
defined points in the execution of a request. In Apache, every request
goes through a life-cycle, that consists of a number of phases, as shown
in Figure 4.

The phases are for example Child Initialization, Post Read Re-
quest, Handlers, and Logger. When a module wishes to receive a
request it has to register a hook in the kernel, that is valid for one or

2.2 Performance modeling 8

Config phasesStartup phases Child Initialization Post Read Req.

Quick HandlerTranslate NameMap to StorageHeader Parser

Check Access Check User ID Check Auth Type Checker

Prerun FixupsHandlersLoggerChild Exit

Figure 4: The phases in the request life-cycle in Apache as of version
2.0. The shaded phases represent the phases that occur during the
startup of the web server. Child initialization and exit phases are only
called once in Win32 environments. In a process-driven environment
(Unix), they are called for all requests.

more of the phases. For example, mod cgi is registered to be notified in
the Handlers phase, which means that once the request has reached so
far in the kernel, it is delivered to the mod cgi module. mod cgi then
performs its duties and returns the request back to the kernel. The
kernel checks whether other modules want to get a hold of the request
in the Handlers phase before continuing to the next phase (Logger). A
more detailed description of the Apache architecture is found in [11]
and [12].

2.2 Performance modeling

To be able to design an efficient overload control it is important to have
a good and reasonable performance model of the web server. It also
has to be simple enough to be able to use in practise. Traditional mod-
eling of telecommunication systems means modeling the systems as
queuing systems from classical queuing theory. A performance model
is meant to answer questions like ”What is the average response time
at this request rate?”, ”What is the throughput?” and ”What is the rejec-
tion probability?”. The M/G/1/K processor sharing model by Cao et al.
in [13] (shown in Figure 5) works good for these questions.

Using the processor sharing queuing discipline models the concept
of using simultaneously executed threads or processes served in the
web server well. There are many other models that quite well captures

2.3 Overload control 9

Requests

Rejected

Admitted

Served

Processor sharing

Figure 5: The web server model.

the inner-most details in web servers, described in Section 3.
An issue in performance modeling when it comes to overload control

is that the model must capture the performance metrics well in the
overload region of the web server.

2.3 Overload control

An overload control mechanism is designed for a certain system that is
sensible to overload from being overloaded. The term overload is not
clearly defined in the literature. Sometimes it refers to when response
times from a system are too long or the system has crashed, but it can
also mean that the CPU usage is close to 100 per cent or another part
of the system is overloaded e. g. the hard disk or the Ethernet card.
However, a general definition could be

A load, placed on a device or facility, that is greater than
the device or facility is capable of handling, i.e., capable of
performing the functions for which it was designed. [14]

Four main types of overload control can be identifyed: Admission con-
trol (sometimes referred to as Access control), Content adaptation,
Load balancing and Scheduling. It is not necessary to use only one
of the four types in an overload control mechanism. Often two or more
are combined in a more robust solution. A brief introduction to the four
schemes follows below.

2.4 Admission control

Admission control mechanisms have since long been designed for telecom-
munication systems. The admission control mechanism is intended to

2.4 Admission control 10

Gate

Controller

System

Monitor

Reference value

Control signal Measurements

Requests

Rejected

Accepted Served

Figure 6: An admission control mechanism.

prevent the system from becoming overloaded by rejecting visitors. Fig-
ure 6 shows a general structure for admission control. The structure
contains three modules; the Gate, the Controller and the Monitor.
Since continuous control is not possible in computer systems, time is
divided into control intervals. In the beginning of each control inter-
val, the Controller calculates the desired admittance rate for the next
interval based on the measurements from the Monitor. The Gate then
either admits or rejects visitors depending on the control signal.

2.4.1 The Monitor

The Monitor monitors the system through measurements on specific
performance metrics. Measurements are taken each control interval.
The performance metrics that are monitored differ from system to sys-
tem:

CPU utilization
The Monitor measures the utilization in the server each control inter-
val. The goal is to keep the utilization to be lower than a threshold
value.

2.4 Admission control 11

Queue lengths
Queue lengths can be measured, for example TCP buffers, HTTP server
queues, network card buffers etc. Filled buffers indicate a high load on
the server.

Response times
The average response time is also an important metric in overload con-
trol. If the response time is too high, the server is considered over-
loaded.

Call count control
Here, the arrivals are counted. Only a certain amount of visitors are
allowed at one time. This is the case in the original Apache overload
control, where a maximum number of threads are set.

2.4.2 The Controller

The Controller’s task is to decide how many visitors can be admitted
into the system, by trying to keep a certain reference value for the de-
sired performance metrics. It compares the actual measurements to
the reference value and then reacts according to the deviation. The
Controller can be designed in a variety of ways, see Åström [15] for
more details:

Static controller
The most simple is when the Controller has a static value that never
changes, for example, ”Admit 25 visitors every second.”

Step controller
The step controller has a lower and an upper bound that it allows in the
measurements. Whenever the monitored data goes above or beneath
these bounds, the output signal to the Gate is increased or decreased
with a fixed value per control interval.

On-off controller
The on-off controller works in a similar way to the step controller, but
instead of increasing/decreasing the admission rate, it admits all or
none of the requests in a control interval.

PI controller
There are several controllers that can be picked from control theory. A

2.4 Admission control 12

classical example is the PI-controller that has two parts, one propor-
tional to the error and one that is the integral of the error.

2.4.3 The Gate

The Gate’s task is to admit or reject visitors based on the Controller
output. Many different gates can be found in the literature, where the
most common ones are:

Token bucket
The token bucket algorithm generates tokens (”admission tickets”) at
a rate set by the Controller. If there are available tokens upon the ar-
rival of a request, it is admitted. Each admitted request consumes one
token. Should there be no tokens, the incoming requests are buffered
in a queue.

Leaky bucket
The leaky bucket is similar to the token bucket. Both are designed to
smoothen out bursty arrival traffic. Arriving requests enter a queue,
that has a limited size. If the buffer is full, the requests are rejected.
Admitted requests are allowed to leave the queue at a rate set by the
Controller.

Dynamic window
The dynamic window version works like in TCP, where only a fixed
amount of unacknowledged TCP are allowed to be sent. To be able to
send more TCP segments, the user has to wait for the previously sent
segment to be acknowledged. The basic admission control offered in
an unmodified Apache works like this, a fixed number of threads or
requests is set as an upper bound. In the Apache case, the Controller
part can be seen as an on-off controller that reports to the Gate when-
ever the bound has been reached.

Call gapping
A call gapping gate admits a number of requests in the beginning of
each control interval. Additional requests are rejected.

Percent blocking
When percent blocking is used, a percentage of the requests are admit-
ted each control interval.

2.5 Content adaptation 13

2.5 Content adaptation

Admission control is one way of preventing a web server from being
overloaded. Another technique is content adaption. Content adaption
means that content-heavy pages are reduced during heavy load. For
example, CGI scripts are very time-consuming for a processor, but nev-
ertheless, modern web sites are often written entirely in some script
language. During overload, scripted pages can be dynamically changed
to static versions instead. This lowers the load on the server at the cost
of lower functionality. Content adaption is not covered in this survey.
More can be read about it in the works of Abdelzaher et al. [16], Mohan
et al. [17] and Lee et al [46].

2.6 Load balancing

Load balancing is closely related to overload control. It is used in server
clusters where more than one server is used. A load balancer’s task is
to distribute incoming requests among the clustered servers so that the
performance is optimized. The difference between load balancing and
admission control is that admission control is used for only one server
or a system seen as a unit compared to the load balancer that operates
on several servers and also the fact that a load balancer does not reject
any customers.

2.7 Scheduling

Another concept used in overload control is scheduling. The definition
according to [18] is

Scheduling (e.g., jobs). A schedule for a sequence of jobs,
say j1,..., jn, is a specification of start times, say t1,...,tn, such
that certain constraints are met. A schedule is sought that
minimizes cost and/or some measure of time, like the overall
project completion time (when the last job is finished) or the
tardy time (amount by which the completion time exceeds a
given deadline).

Scheduling is not surveyed in this work.

3 WEB SERVER MODELING 14

3 Web Server Modeling

The survey of web server modeling research is divided into Traffic
models, Queueing models and Other approaches.

3.1 Traffic models

First some definitions that are used in this section. A file request
in this context is an HTTP request for a single file on the web server.
Normally, a request to an HTML file generates subsequent requests be-
cause a normal web page contains images or style sheet files that have
to be requested as separate files. The way that subsequent requests
are retreived from the server depends on web server settings (whether
persistent connections are allowed or not). Requests to HTML files are
called page requests.

A session can be defined as

The sequence of file requests from a certain user from his
first request until the last request before leaving the site.

Therefore, a session is made up of several file requests and also sev-
eral page requests and the arrival of a session is at the same time the
arrival of a file request and a page request. Figure 7 illustrates the
session concept.

3.1.1 Arrivals of requests and sessions

File request arrivals
One of the standard methods to model file request arrivals is the Pois-
son model, because of its simplicity. In telecom networks, the Poisson
process has since long been used for telephone call arrivals, because
calls are generated independently from each other. However, web traf-
fic does not fit into this description. To be able to model the burstiness
and self-similarity 2 of file request arrivals a number of self-similar pro-
cesses have been proposed. (An extensive bibliographical overview of
self-similarity is given in [19] by Willinger et al.) In [20], Crovella and
Bestavros show that file request arrivals are strongly self-similar due
to document size distributions, caching and user preferences and that

2Self-similarity means that the traffic model exhibits fractal properties, that is,
the process looks the same at different time scales.

3.1 Traffic models 15

Session arrival interval

Page request arrival interval

File request arrival interval

Session arrival

Page request arrival

File request arrival

t

Figure 7: Arrivals of sessions, page requests and file requests.

the process can be modeled by an aggregate of multiple heavy-tailed
ON/OFF sources.

Sessions
Since the reasons to why file request arrivals cannot be modelled as
Poissonian processes do not apply to session arrivals it is not sure that
sessions are self-similar. In the work of Yeung and Szeto [21], web
server logs are analyzed. The interarrival time of sessions are inves-
tigated and the conclusion is that they can be modelled as beeing ex-
ponentially distributed (i. e. the arrivals follow a Poissonian process).
This has also been confirmed by experiments in our research group.

Site-dependent sessions
Commercial web sites, e. g. web-shops, often define their own abstract
sessions. A user who visits a web-shop has to log in, browse, pay and
log out from the site. Session data is often stored as cookies, small text
files that are stored in the customer’s computer. These types of sessions
are dependent of the specific site architecture and often use cookies to
store session-dependent data, which can make it difficult to generalize
them, Menasce et al gave a suggestion in [22].

3.2 Queuing models 16

3.1.2 Document distributions

Not only inter-arrival times can be studied in web server traffic. File
popularity and file sizes are two other examples that can be seen in the
literature.

File popularity

The popularity of a file (seen as the number of requests for the file
compared to requests to other files at the same site) is often said to fol-
low Zipf distributions [20,23]. However, this is debated in [24] where a
power law distribution is claimed to be the better choice.

File sizes
[23] uses a log-normal body for file size distribution that includes a
Pareto heavy tail. Crovella and Bestavros also used Pareto modeling
in [20]. In [25], Wells et al used a Weibull distributon after having
compared a web server log to theoretical distributions.

3.2 Queuing models

Several attempts have been made to create performance models for web
servers. Van der Mei et al. [26] modeled the web server as a tandem
queuing network. The model was used to predict web server perfor-
mance metrics.

Dilley et al. [27] use layered queuing models in their performance
studies.

Kant and Sundaram give a very detailed model of a web server and
its low-level components such as CPUs, caches and buses in [28] where
queues or delays are used. Only static workloads are considered.

Cherkasova and Phaal [29] use a single server queueing model with
deterministic service times. In their work they use a session-based
workload with different classes of work.

Beckers et al. [30] proposed a generalized processor sharing perfor-
mance model for Internet access lines. They established simple rela-
tions between access line capacity and the utilization of the access line
and download times of Internet objects. Andersson et al also demon-
strated a processor sharing queueing model in [13, 31, 32] as did Fu-
jita et al in [33]. The processor sharing models were all based on re-
quests, not sessions and had maximum number of requests allowed in
the server at the same time.

3.3 Other approaches 17

Zhu and Lü showed a performance model of a database-backed web
site in [34] where they stress the importance of including databases
into performance models . The model was an open multiple-class queue-
ing network with separate queues for web server, database, disk and
network.

3.3 Other approaches

Wells et al. have made a performance analysis of web servers using
colored Petri nets [25]. Their model is divided into three layers, where
each layer models a certain aspect of the system.

4 OVERLOAD CONTROL 18

4 Overload control

The survey of web server overload control research is divided into Control-
theoretic approaches, Optimization approaches and Other ap-
proaches.

4.1 Control-theoretic approaches

Some papers have investigated admission control mechanisms for server
systems with control theoretic models. Abdelzaher [35,36] modeled the
web server as a static gain to find optimal controller parameters for
a PI-controller. A scheduling algorithm for an Apache web server was
designed using system identification methods and linear control the-
ory by Lu et al. [37]. Bhatti [38] developed a queue length control
with priorities. By optimizing a reward function, a static control was
found by Carlström [39]. An on-off load control mechanism regulat-
ing the admittance of client sessions was developed by Cherkasova and
Phaal [29]. Voigt [40] proposed a control mechanism that combines
load control for the CPU with a queue length control for the network
interface. Bhoj [41] used a PI-controller in an admission control mech-
anism for a web server. However, no analysis is presented on how to
design the controller parameters. Gandhi et al. use MIMO control the-
ory in [42]. Huang and Cheng also use control theory in [43] where they
approach the problem by using fuzzy control to predict the self-similar
traffic arrival processes to the web server. Papers analyzing queueing
systems with control theoretic methods usually describe the system
with linear deterministic models. Stidham Jr [44] argues that deter-
ministic models cannot be used when analyzing queueing systems.

4.2 Optimization approaches

Andersson shows in [31] how optimization can be used for achieving
optimal profit during overload by categorizing requests into different
classes. Each class has different properties such as guaranteed through-
put, revenue and maximum response time. Bose and Altinkemer show
in [45] a similar approach by providing an optimization-based formu-
lation of the design of minimizing the cost of web site design. Lee et al.
demonstrate in [46] how two different goals can be achieved; maximum
admission and maximum profit, by using optimization. [47,48] also use
optimization approaches to handle web server overload.

4.3 Other approaches 19

4.3 Other approaches

More on different types of overload control strategies for distributed
communication networks can be found in the survey of Kihl, [49]. Chen
et al. have investigated an admission control system in [50] where they
have double internal queues in the web server where one of the queues
stores requests that cannot be served immediately. If by any chance
there are spare capacity, requests from this queue are served, which
results in a smoother performance.

5 OPEN PROBLEMS 20

5 Open problems

5.1 Distributed systems

Not many papers deal with the notion of a distributed web site. Modern
web sites often consist of more than one server, they have a gateway
(firewall), a authentication server, a database server and sometimes
multiple copies of the static files’ server (Figure 8 shows a typical web
site architecture). More research is needed on how to model distributed
web sites and especially how overload can be handled in these cases.

DMZ DE-MILITARIZED ZONE
ISP INTERNET SERVICE PROVIDER
C FIREWALL
D FIREWALL
CS ROUTER
WWW WEBSERVER
DB DATABASE SERVER

C1 C2

D1 D2

CS CS

INTRANET

INTERNET

DMZ

DMZ DMZ

DMZ

WWW

 DB

ISP1 ISP2

Figure 8: A typical web site architecture.

5.2 Crisis-related issues 21

5.2 Crisis-related issues

So far I have found no papers that look at modeling and overload con-
trol from a crisis point of view. Modeling and control papers usually
deal with normal or moderately overloaded traffic. When a crisis oc-
cur, my belief is that traffic patterns do not necessarily have to look
the same and that the agreed upon distributions no longer have to be
valid. Research needs to be done so that the nature of crisis-related web
server traffic can be determined. Also, overload control has to be used
when operating in times of crisis. During a crisis, normal assumptions
of overload control goals might not valid. Web sites that normally try to
optimize for profit during overload should instead return as much in-
formation as possible to as many visitors as possible. Content adaption
is well suited for this goal.

The Swedish National Board of Psychological Defence (SPF) has de-
scribed how cities and citizens can use Internet in a crisis situation [51]
and recommend cities to have a prepared crisis page on their web sites.

In a publication ([52]) by the Swedish Emergency Management
Agency (SEMA) the murder of Anna Lindh, swedish foreign minister,
in September 2003 is investigated from a crisis information point of
view. One of the results from the study regards the role of the new
communication technology;

But despite the fact that the technological capacity to receive
many visitors on the Net has increased over recent years,
the loading is so heavy on the central authorities and na-
tional media that problems arise. Information Rosenbad’s
web site went down for a while due to the number of visits,
e.g. when the web was used for press releases in other lan-
guages. The number of visitors to media websites increased
just as strongly. At national level the newspapers’ and TV
companies’ pages were overloaded, and the number of visi-
tors to local papers’ websites increased also at local level.

The Committee on the Internet Under Crisis Conditions: Learning
from September 11 reports similar overload conditions from web sites
during the reporting of the September 11 attack in New York [53].
In a report of a working session of the End-to-End Research Group in
2005 by Clark et al, [54], a set of research objective is presented that
aims at making the future Internet better in some senses. One of the
discussed research areas is the Operation in times of crisis. The
authors describe a need for mechanisms for securing the Internet in

5.2 Crisis-related issues 22

crisis situations with the following objective:

”In 10 years, the network itself, and critical applications that
run on it, should address the special needs that arise in times
of crisis.”

REFERENCES 23

Acknowledgements

This report builds on results from our research group, PANDA (Perfor-
mance Analysis of Distributed Applications). The author would like to
thank Dr. Martin Höst and Dr. Christian Nyberg for valuable com-
ments to the manuscript.

References

[1] “Statistics sweden,” http://www.scb.se.

[2] “Apache web server,” http://www.apache.org.

[3] W. Stallings, Data & Computer Communications. Prentice Hall,
2000, sixth Edition.

[4] “Microsoft internet information services,” http://www.microsoft.
com/WindowsServer2003/iis/default.mspx.

[5] “Netcraft,” http://www.netcraft.com.

[6] “Zeus web server,” http://www.zeus.com.

[7] “Flash web server,” http://www.cs.princeton.edu/∼vivek/flash/.

[8] T. Voigt, “Overload behaviour and protection of event-driven web
servers,” in In proceedings of the International Workshop on Web
Engineering, May 2002, pisa, Italy.

[9] “Tux reference manual,” http://www.redhat.com/docs/manuals/
tux/TUX-2.1-Manual/.

[10] “khttpd web server,” http://www.fenrus.demon.nl/.

[11] “Apache developer documentation,” http://httpd.apache.org/
docs-2.0/developer/.

[12] B. Laurie and P. Laurie, Apache, The Definitive Guide. O’Reilly,
2003.

[13] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server perfor-
mance modeling using an m/g/1/k*ps queue,” in In Proceedings of
International Conference on Telecommunication (ICT), 2003.

REFERENCES 24

[14] “Atis home page,” http://www.atis.org/tg2k/\ overload.html.

[15] K. Åström and B. Wittenmark, Computer-controlled systems, the-
ory and design. Prentice Hall Internation Editions, 1997, third
Edition.

[16] T. Abdelzaher and N. Bhatti, “Web content adaptation to improve
server overload behavior,” Computer Networks, vol. 31, no. 11-16,
pp. 1563–1577, 1999.

[17] R. Mohan, J. Smith, and L. Chung-Sheng, “Adapting multimedia
internet content for universal access,” IEEE Transactions on Mul-
timedia, vol. 1, no. 1, pp. 104–114, 1999.

[18] “Mathematical programming glossary,” http://carbon.cudenver.
edu/∼hgreenbe/glossary/index.php.

[19] W. Willinger, M. Taqqu, and A. Erramilli, “A bibliographical
guide to self-similar traffic and performance modeling for modern
high-speed networks,” 1996. [Online]. Available: citeseer.ist.psu.
edu/willinger96bibliographical.html

[20] M. Crovella and A. Bestavros, “Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes,” in Proceedings of SIG-
METRICS’96: The ACM International Conference on Measure-
ment and Modeling of Computer Systems., May 1996.

[21] K. H. Yeung and C. W. Szeto, “On the modeling of www request
arrivals,” in Proceedings of 1999 International Workshops on Par-
allel Processing, 1999, pp. 248–253.

[22] D. Menasce, V. Almeida, R. Fonseca, and M. Mendes, “Business-
oriented resource management policies for e-commerce servers,”
Performance Evaluation, vol. 42, pp. 223–239, 2000.

[23] C. Williamson, R. Simmonds, and M. Arlitt, “A case study of web
server benchmarking using parallel wan emulation,” Performance
Evaluation, vol. 111-127, no. 49, 2002.

[24] “File popularity characterisation,” http://www.ee.ucl.ac.uk/
∼imarshal/sigreview.pdf.

REFERENCES 25

[25] L. Wells, S. Christensen, L. M. Kristensen, and K. H. Mortensen,
“Simulation based performance analysis of web servers,” in Pro-
ceedings of the 9th International Workshop on Petri Nets and Per-
formance Models (PNPM 2001). IEEE Computer Society, 2001,
pp. 59–68.

[26] R. D. V. D. Mei, R. Hariharan, and P. K. Reeser, “Web server per-
formance modeling,” Telecommunication Systems, vol. 16, no. 3,4,
pp. 361–378, 2001.

[27] J. Dilley, R. Friedrich, T. Jin, and J. Rolia, “Web server per-
formance measurement and modeling techniques,” Performance
Evaluation, vol. 33, pp. 5–26, 1998.

[28] K. Kant and C. R. M. Sundaram, “A server performance model for
static web workloads,” in 2000 IEEE International Symposium on
Performance Analysis of Systems and Software, 2000, pp. 201–206.

[29] L. Cherkasova and P. Phaal, “Session-based admission control: A
mechanism for peak load management of commercial web sites,”
IEEE Transactions on computers, vol. 51, no. 6, pp. 669–685, June
2002.

[30] J. Beckers, I.Hendrawan, R.E.Kooij, and R. van der Mei, “Gen-
eralized processor sharing performance model for internet access
lines,” in 9th IFIP Conference on Performance Modelling and Eval-
uation of ATM and IP Networks, 2001, budapest.

[31] M. Andersson, “Performance modeling and control of web servers,”
Department of Communication Systems, Lund Institute of Tech-
nology, Tech. Rep. 160, 2004, lic. Thesis.

[32] M. Andersson, J. Cao, M. Kihl, and C. Nyberg, “Performance mod-
eling of an apache web server with bursty arrival traffic,” in In
Proceedings of International Conference on Internet Computing
(IC), 2003.

[33] Y. Fujita, M. Murata, and H. Miyahara, “Performance modeling
and evaluation of web systems with proxy caching,” Electronics
and Communications in Japan, vol. 86, no. 4, 2003.

[34] Y. Zhu and K. J. Lü, “Performance modelling and metrics of
database-backed web sites,” in In Proceedings of 11th Interna-
tional Workshop on Database and Expert Systems Applications,
2000, pp. 494–498.

REFERENCES 26

[35] T. Abdelzaher and C. Lu, “Modeling and performance control of
internet servers,” in Proceedings of the 39th IEEE Conference on
Decision and Control, 2000, pp. 2234–2239.

[36] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance guarantees
for web server end-systems: a control theoretic approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 1,
pp. 80–96, January 2002.

[37] C. Lu, T. Abdelzaher, J. Stankovic, and S. So, “A feedback control
approach for guaranteeing relative delays in web servers,” in Pro-
ceedings of the 7th IEEE Real-Time Technology and Applications
Symposium, 2001, pp. 51–62.

[38] N. Bhatti and R. Friedrich, “Web server support for tiered ser-
vices,” IEEE Network, pp. 64–71, Sept/Oct 1999.

[39] J. Carlström and R. Rom, “Application-aware admission control
and scheduling in web servers,” in Proc. Infocom, 2002.

[40] T. Voigt and P. Gunningberg, “Adaptive resource-based web server
admission control,” in Proc. 7th International Symposium on Com-
puters and Communications, 2002.

[41] P. Bhoj, S. Ramanathan, and S. Singhal, “Web2k: Bringing qos to
web servers,” HP Labs Technical report, HPL-2000-61, 2000.

[42] N. Gandhi, D. M. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh,
“Mimo control of an apache web server: Modeling and controller
design,” in Proceedings of the American Control Conference, 2002.

[43] C.-J. Huang and C.-L. Cheng, “Application of support vector ma-
chines to admission control for proportional differentiated services
enabled internet servers,” in Proceedings of the Fourth Interna-
tional Conference on Hybrid Intelligent Systems (HIS04), 2004.

[44] S. S. Jr, “Optimal control of admission to a queueing system,”
IEEE Transactions on Automatic Control, vol. 30, no. 8, pp. 705–
713, August 1985.

[45] I. Bose and K. Altinkemer, “Design of a web site for guaranteed
delay and blocking probability bounds,” Decision Support Systems,
pp. 131–140, 2004.

REFERENCES 27

[46] S. C. Lee, J. C. Lui, and D. K. Yau, “A proportional-delay diffserv-
enabled web server: Admission control and dynamic adaptation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 15,
no. 5, 2004.

[47] L. Liu and Y. Lu, “Dynamic traffic controls for web-server net-
works,” Computer Networks, no. 45, pp. 523–536, 2004.

[48] S. Mahabhashyam and N. Gautam, “Dynamic resource allocation
of shared data centers supporting multiclass requests.”

[49] M. Kihl, “Overload control strategies for distributed communica-
tion networks,” Department of Communication Systems, Lund In-
stitute of Technology, Tech. Rep. 131, 2002, ph.D. Thesis.

[50] X. Chen, H. Chen, and P. Mohapatra, “Aces: An efficient admission
control scheme for qos-aware web servers,” Computer Communi-
cations, no. 26, pp. 1581–1593, 2003.

[51] S. Heine and M. Liljeström, “Kommunens hemsida vid en kris.”

[52] L. Larsson, “Ministermordet,” kBM:s temaserie 2004:4, Swedish
Emergency Management Agency.

[53] N. R. Council, “Internet under crisis conditions: Learning from
september 11,” 2003.

[54] D. D. Clark, C. Partridge, R. T. Braden, B. Davie, S. Floyd, V. Ja-
cobson, D. Katabi, G. Minshall, K. K. Ramakrishnan, T. Roscoe,
I. Stoica, J. Wroclawski, and L. Zhang, “Making the world (of
communications) a different place,” End-to-End Research Group,
Tech. Rep., 2005.

