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SUPERMARTINGALE ANALYSIS
OF MINIMUM VARIANCE
ADAPTIVE CONTROL"

R. JoHANSSON!

Abstract. Recursive estimation in feedback operation as used in minimum vari-
ance adaptive control is considered. The purpose is to eliminate the necessity of
resorting to the stochastic stability assumption which has been an unsatisfactory
feature of previous work in this field, and to establish stability properties for mini-
mum variance adaptive control based on least-squares identification. To this end,
supermartingale analysis has been used, and adaptive control has been formulated
as a problem of information theory. Stability results demonstrating state-error con-
vergence are provided.

Key Words—Adaptive control, recursive estimation, self-tuning control; stability,
supermartingale.

1. Introduction

Recursive parameter estimation with some subsequent feedback action has
often been used in applications of signal processing, adaptive control, or arti-
ficial neural networks. The presence of feedback operation entails several theo-
retical problems of time series analysis concerning the interference between
estimation and control. One important area is adaptive control which often is
based on least-squares estimation of the adaptive control parameters. Such solu-
tions are systematically biased in the presence of colored noise, and convergence
towards correct values of the estimated control parameters is not self-evident. It
was, however, stated by Astrom and Wittenmark (1973) that their self-tuning
controller will converge to a minimum variance regulator (if it converges at all).
Ljung (1977) formulated positive real conditions for stationary parameter conver-
gence under the assumption that the trajectories are stable and finite.

However, quasistationary analysis is not entirely satisfactory for the analysis
of the time-varying adaptive phenomena. The nonstationary case was analyzed
by Solo (1979), who showed convergence of pseudolinear regression to have been
obtained with the “near supermartingale” approach of Neveu (1975), which pre-
supposes the fulfillment of the necessary condition that the regressors are
bounded. Landau and Silveira (1979) and Landau (1980; 1982) used the same out-
lines together with hyperstability analysis (Popov, 1973) to show parameter con-
vergence of least-squares based adaptive control in the presence of noise, though
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994 R. JOHANSSON

here, too, the stability condition is assumed in the proof. Becker et al. (1985) used

a geometric argument to demonstrate convergence points of parameters when

simple gradient methods are used.

In all these papers, stability is an assumption of the proofs in which conver-
gence is shown. Some problems of stability and convergence have been treated
by Goodwin and Sin (1984), although their approach lacks stringency in the lim-
its of error magnitude. A stochastic Lyapunov function or a supermartingale
study of the transient trajectories from an initial state value to an equilibrium
point has the advantage of taking into account both the convergence aspects and
the disturbance rejection aspects of stability (see Kushner, 1967).

The noise-free system and the noise-corrupted system may differ in conver-
gence points due to the colored noise and the parameter estimation during
closed-loop operation. The study of the noise-free system and the noise-cor-
rupted system motivates an investigation of the two different convergence points
and their associated control laws. Two different linear control laws are relevant
as possible convergence points (or fixed points): first, the deterministic control
law with pole-zero cancellation of zeros of the control object and pole assignment
of other poles to the origin; second, the minimum variance control law which
results in pole-zero cancellation of all zeros of the control object and its noise
model. These control laws can be expressed in terms of the adaptive control pa-
rameters involved and thus, there are two convergence points:

e The convergence point 8, for parameters associated with the purely determin-
istic noise-free problem corresponds to a pole assignment of the closed-loop
system with pole-zero cancellation of the system zeros and with all other
poles at the origin.

e The parameter convergence point 6,,, corresponds to minimum variance con-
trol as anticipated by Astrém and Wittenmark (1973).

The purpose of this paper is to eliminate the stochastic stability assumption
which has been a not entirely satisfactory feature of previous work in this field,
and to establish stability properties for minimum variance adaptive control
based on least-squares identification. To this end, supermartingale analysis is
used. Some results on stability properties of the two convergence points are pre-
sented, and adaptive control is formulated as a problem of information theory.

2. System Description and Notations

We start with a standard system description of a control object as a discrete-
time ARMAX model formulated in the backward shift operator,

A*(g " y(t) =bog 'B* (g " u(t)+ C*(g Hw(t), (1)

from the input # and the noise w to the output y with the following coprime
polynomials in the backward shift operator q_l:
A (g Y =1+a;g  ++a,q™"
B¥(q ) =1+big " +-tbag M, (2)
C*(gY)=1+cigt++c,qg "
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where “*” is standard notation to denote polynomials in the backward shift op-
erator. The B*-polynomial is assumed to have no non-minimum phase zeros,
and the parameter b, is a gain factor. Assume that the input # and the output
are available to measurement, and let ¢ contain the # and y as well as some
reference values #«,.

o(k)
=[u(k—1) - u(k—n+1) y(k) - y(k—n+1) u(k)-- u(k—n)]". (3)

The purpose of the direct adaptive control algorithm is to make simultaneous
feedback control and the estimation of suitable regulator parameters from input-
output data when the process model is unknown. The adaptive control problem
is thus partitioned into a parameter estimation problem and a control problem.
Let 6 denote the adequate feedback parameters corresponding to ¢. The direct
minimum variance adaptive control algorithm then comprises the following
steps:

6(k)=6(k—1)+P(k)p(k—1)e(k), Parameter updating

P(k—1)p(k—1)p"(k—1)P(k—1)

1+ (k—1)P(k—1)o(k—1)
P(0)=Py=P5 >0 (4)

e(k)= y(k)— Pu(k—1)—6"(k—1)¢(k—1),  Prediction error

u(k)=—%(éT(k)¢(k)), Control law
where the vector of estimated parameters 6 has replaced the parameters 6 of the
correct desired control law, whereas B, is a fixed a priori estimate of the gain

factor by.

P(k)=P(k—-1)—

6=|:7"1"'7/n—1 So S1 0 Sp-1 tO"'tn]T- (5)

The vectors 8 and ¢ contain the coefficients and input-output data to express the
appropriate control law as the inner product,

u<k>=—%<e%<k>>, (6)

derived from the polynomial formulation,
R*(g Hu(t)=—S"(g ") y(t)+ T* (g u(1), (7)
where R*, S*, T™ are polynomials in the backward shift operator (see Fig. 1).

3. State Space Model

The assumed coprimeness of A*, B* and C* of Eq. (1) ensures that the
input-output model of Eq. (1) also corresponds to a state-space realization of or-
der # and also the fractional form,
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Fig. 1. Block diagram of the self-tuning regulator with a noise model according to
(3)—(5) with the variable d =1 denoting time delay. Notice that a correctly
tuned minimum variance regulator totally decouples the partial state &
from interference of noise w.

A*(g7E (k) = ulk) + v(k), (8)
y(k)=bog 'B*(q )&(k) +e(k), (9)
with the partial-state variable £(%) and the noise components

ko —1
v(k) - G iq _)1 w
boB™(q ") (10)

e(k) = F*(g " w(k)
for polynomials F* and G* satisfying the polynomial Diophantine equation,
A*F* + ¢7'G* = C*. (11)
The appropriate minimum variance regulator is given by

R* = by B*F*, “Minimum variance”
T* = C*

in the case of known parameters, whereas in the noise-free system it is given by
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R* = byB*F}, Pole assignment to the origin,
0=0, =S =G, (13)
T =1,

where the characteristic polynomials of the closed-loop systems are
R*A* + S*(byq ' B¥)
3 by B*(A*F* + ¢"'G*) = by B*C*,  “Minimum variance,” (14)
boB* (A*F* + ¢ 'G¥) = by BY, Pole assignment to the origin.
The following expansion based on the polynomial equation above (argument gt
omitted) gives:

- L

= o (R*A" + 5" (bog " B*)E(R)

v(k)=B*(g ")&(k)

= ”bl;‘(R*(%(kH 2(B))+ S*(y(k) —e(k)))

= L (gutty+ L61p(k)) + (£, -G, Fyw(k), (15)
B bo bo
whereas the same expansion with respect to 6,,, gives
(k) = B )E0) = sy (Buh) - el o). (16)
BC*(q ") bo

The signal v may be interpreted as the error input to the compensated closed
loop system or as a signal representing the error of feedback control. State vec-
tors for the parameter estimation error can be introduced as

Oy (B) = 0(k) — b£ 6yv,  “Minimum variance”,
i (17)
éo(k)Zé(k)—bﬁeo, Poles at the origin.
0
Application of the adaptive control law « = — 8" ¢/B described in (4) gives
v(k) = B*(g "&(k)
%(— 0Tp(k))+ bL(Fl G — G F)w, Poleassignment to the origin,
-1 ’ (18)
_ﬂC* (= O o(k)), “Minimum variance.”

The control object was described by the fraction form of Egs. (3)—(5), and the
states of the regulator may be represented in a similar way. However, the regula-
tor makes use of old input-output data, and it is feasible to express the control
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object states as well as the regulator states of ¢ in terms of . Introduce, there-
fore, the state vector,

x(k)=[Ek—1) Ek-2)--Ek-2n+1)] € R, (19)

A state equation of Egs. (18), (19) or Egs. (8), (9) subject to control by Eq. (7)
with the dynamics of x on controllable canonical form is given by

¥(k+1)=dx(k)+Tv(k) (20)

with a @-matrix and a I'-vector given by

—b —
! b, 0 0 5 0 .
1 0 - 0 0 0 0
o=0 1 " L=l L = (21
. . . (2n—2)X(2n—2) :
0 0 1 0

The components of the vector b are the coefficients & of the polynomial B* of
Eq. (2). A state space representation of the matrix P(k) of Eq. (4) is needed
which motivates the introduction of the vector IT defined from the components
pl.]. of the matrix P (k).

H(k) = [pll(k) pl(zn_l)(k) pZI(k) p(Zn-—l)(Zn—l)(k)]T € %2n2—4n+1 . (22)

Notice that the matrix @ represents all poles of the closed-loop system—also
those poles which cancel the zeros of the B*-polynomial.

The full error dynamics state vector X comprising the states of the control
object, controller, and the parameter estimation is now

Xy (B)=[57(k) 6y (k) T"(R), Xy € R, (23)
X, (k)=[x"(k) 65k) MR,  X,€eR™ . (24)

The difference between the state vectors X, and X, is thus constant
| Xaw (k) = X, (k)] =£)—l|9w —=0,ll, k. (25)

Introduce the following assumptions.
Assumption 1.  The polynomials A*, B* and C* are mutually prime.
Assumption 2.  The polynomial B* has a stable inverse.

Assumption 3. The accuracy of the estimate f, of the gain b, is such that
0<by/By <2.

Assumption 4.  The parameter vector 6(%) has a correct number of param-
eters.

For simplicity, the analysis is restricted to the following case.



Supermartingale analysis of minimum variance adaptive control 999

Assumption 5.
O=1[r - 7n

Example 1.

Reference value #, =0 and

S1 sn—l]T-

Consider the control object,

Y, =07y, | +upy twy t 0.3wp_1

with ARMAX polynomials A* =1-07¢"', B*=¢"' and C*=1 +03q° L.
The feedback control law u, = — 0.7y, (e, 6, = 0.7) provides pole assignment
to the origin, whereas the control law u, = — y, (i.e.,, 6y = 1.0) provides mini-
mum variance control. The adaptive control algorithm of Egs. (3)-(5) with
x(0)=1, 6(0)=0 and P(0) =1-10° was simulated (see Fig. 2). Notice that the

Output y

0 500 1000
Time ¢ (samples)
State x
0.2
0.1t
0
-0.1
-0.2F
0 5(I)0 1000

Time ¢ (samples)

Parameter estimate

0.8 r

0.6

0.4 r

0.2

0 1
0 500 1000

Time ¢ (samples)

State error magnitude || x[|"2

10—7 |
0 500 1000

Time ¢ (samples)

Fig. 2. Simulation of a transient of output y (upper left) and state x (lower left)
vs. time in an adaptive control system with A* =1-07¢"1, B* =471
and C* =1+ 03¢ 1. Notice that the state error magnitude ||x|| gradu-
ally decreases (lower right) and appears to be asymptotically decoupled
from the noise and that the parameter estimate 6 first converges to-
wards 6, =0.7 and then proceeds towards 6y, = 1.0 (upper right). All

graphs vs. time.
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state error magnitude || x|| of Fig. 2 gradually decreases and appears to pe as-
ymptotically decoupled from the noise, whereas the parameter estimate 8 first
converges towards 6, = 0.7 and then proceeds towards 6,, = 1.0.

4. Stochastic Stability Analysis

Feedback control systems may exhibit unstable behavior which results in un-
bounded signals under certain circumstances. A prerequisite of convergence
analysis is to show that all signals remain bounded, and that motivates an inves-
tigation of the growth rate of the state vector X,. Lyapunov analysis is suitable
in this context, and a Lyapunov function candidate is introduced to represent all
components of Egs. (33), (34). A technical requirement is that Lyapunov function
candidates should be continuous at the origin and grow with the magnitude of
all state vector components (radial unboundedness); see LaSalle (1976) or Khalil
(1992). The following result is applicable to the stability of transients in the
noise-free system and ensures that the global stability properties are present.

Theorem 1. (Johansson, 1989)  Suppose that B = b,, and let the positive defi-
nite matrix A, satisfy the Lyapunov equation under Assumptions 1-5

DTAD—A,=—Q—1, A, Q€ R 1 (26)
There are constants ¢ >0, K > 0 such that the function,

Vo(X,(k)) = —=6" (k)P (k)6 (k) +log(1+ px" (k) A, x (k)

L
K
+1tr(PT(k)P(k)), (27)

decreases in each recursion at least as

' (k)Qux (k)
14+ ux"(k)A,x (k)

Vo(Xo(k+1)) =V (Xo(k)) =~ u

Vo(X,(0)) =TVj. (28)

The function V, is a Lyapunov function for the adaptive system (1)—(21), and the
system is globally stable in the sense of Lyapunov with all signals remaining
bounded. The state vector converges so that ||x(2)|| = 0 as k increases.

Proof (See Johansson, 1989, app. 3) The generalization to f# b, is also
shown to be stable although it exhibits only a local (but large) stability region.

The property of Eq. (28) assures global convergence of the state vector so
that [|x(%)]| = O as % increases and suffices to explain the behavior of the noise-
free system as well as the behavior of an adaptive system corrupted by oc-
casional disturbances and modeled as transients from an initial state. Non-zero
disturbances result in the modification,

x"(k)Qux (k)

Vo(Xo(k+1)) =V, (X, (k) = - 1+ uxT(k) A,z (k)

+O(IW R,  (29)
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where
W(k)=[o(k) - olk—n)]" (30)

is a vector of noise components affecting the state vector X,(%). The maximum
possible magnitude of the disturbances || W (%)|| for the system to remain stable
is obviously limited by the matrix norms of @ and A,. The result of Egs. (28),
(29) is sufficient to assure the boundedness of all variables involved during dis-
turbances of a certain maximum amplitude. During persistent disturbances,
however, obviously no convergence of || X, || is to be expected. By adopting the
notation of Markov processes (Doob, 1953), we investigate the adaptive control
behavior when there are stochastic disturbances acting on inputs and outputs.

Assumption 6. Let (2, #, 2?) be a probability space that describes the
noise process {w(k)},—o with the properties

E{w(k+1)|Z%} =0
E{w(k+1)| 7} = o° as. , (31)
Ew(i)w(j)|F) =65, as, i,j>k

where %, is the c-algebra of measurements up to time .
Assumption 7. The C*-polynomial has a stable inverse.

The behavior is changed by the fact that the noise results in a systematic
bias of the least-squares estimated parameters 6 with respect to the convergence
point 8,. The Lyapunov functions may be replaced by stochastic Lyapunov
functions or by some other supermartingale analysis. Introduce the following
function:

1

—log L(6, IT(k)) = gé,@V(k)P'l(k)éMV(k)

+%log(2n)%det(62P(k)), (32)

which would be the log-likelihood function of normally distributed variables 6
or @ attaining the Cramér-Rao lower bound of the covariance function. The
mathematical expectation &{—log L|%,} may be interpreted as the amount of
information carried by 6(%) to be “transmitted” at the input of the control sys-
tem. Similarly, the information received at the output of the control system may
be quantified as the following information rate (Shannon, 1948; Gallager, 1968)
about the state x contained in the noisy output signal y:

C(x(k))=b%log<1+%)=b(z)log(1+—12—xT(k)Ax(k)>
o
b(% T T
= LT (k) Ax(k), A= AT >0, (33)

0.2

where S/N is the suitable signal-to-noise ratio, and b, is the gain factor of Eq.
(9). The following entropy measure 57 is the aggregate of information rates at
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the input and the output of the adaptive system,
Xy (B)) = —log L(8(k), IT(k)) + C(x(k)). (34)

This function is not quite suitable as a Lyapunov function candidate because it
is not positive definite with respect to ||[II(k)||# 0 (.e., for P(k)# 0). (The
boundedness of P(k) is always guaranteed, however, because IT'(k)II(k)
=tr(PT(k)P(k)) can be shown to be positive and to decrease as % increases.)
Introduce the following function intended for supermartingale analysis of con-

vergence:
2

Vi (X (R)) = exp(— log L(6, IT(k))+ %xﬂk)Ax(k)) -1 (35)
with initial value,
Viy (X ) = Vi (0) =0,
so that
H( Xy ) = log(1+ Vi (Xagv)), (36)

and state the following theorem.

Theorem 2. Suppose that an adaptive control system is defined by Egs.
(1)-(4) with measurements and feedback at times k; # € N under Assumptions
1-7. There exists a matrix A = A" >0 so that the %,-measurable function
Vi (Xuy (k)) satisfies the conditions,

(@ P, C Ppi1, k€ N
(i) EUVay (Xpy (R))]} < o0 ) (37)
(iii) Vi (Xuw (k) = Vi (Xpyy (R + 1)) F},  YREN

and {Vyy ( Xy (R)), Z}, {0 ( Xy (R)), %} of Eqgs. (34), (35) are supermartin-
gales so that the adaptive system is stable for a 8 restricted as

1-J1-T7AT S?ﬁ—lem/l—FTAF. (38)
0

Proof  See Appendix.
5. No Stable Inverse of C*

Consider now the case when Assumption 7 is not valid. The optimal solu-
tions found by the adaptive control algorithm are modified in the case where C*
has no stable inverse. The minimum variance solution is given by reformulation
of the noise process and spectral decomposition with reflections of zeros in the
unit circle. Find a decomposition of C* into

C*(g™H=C"(¢HC* (¢ (39)
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so that C*~ contains nothing but the non-invertible zeros. The minimum vari-
ance adaptive control parameters converge towards the regulator,

- bOB* mod
5* = G (40)
sk — C—c+*
with F¥ .4 and Ghoq as solutions from
AN G ) Fhoalg )+ q “Choalg ) =C(¢)HC™(@™). (41)

The stable closed loop pole polynomial will be
B*C*'C. (42)
Example 2. (Non-minimum phase system) Consider the control object,
Y, =07y, | +upy +wy + 3.333w,—1

with ARMAX polynomials A* =1 -07¢7Y, B¥* = =¢land C* =1+ 3.333¢7 .
The feedback control law u, = — 07y, (ie, 6, = = (.7) provides pole 3581gnment
to the origin, whereas the control law u, = — v, (i.e., )y = 1.0) provides mini-
mum variance control (Fig. 3). The adaptive control algorithm of Egs. (3)-(5)
with x(0)=1, (0) =0 and P(0)=1 10° was simulated (see Fig. 4). Note that
the state error magnitude ||x|[> of Fig. 4 does not decrease over time and that
the parameter estimate 6 first converges towards 6, = 0.7 and then proceeds
towards 6, =10. In contrast to Example 1, there is not provided any
asymptotical decoupling of x from the noise.

Minimum variance control of the output in this case is not, of course, a well-
posed optimal control problem because the solution gives minimal variance of

; | !

4.033 1.0
A o

-1

U q X Yy
& 1-0.7¢71
A
~ 6
Adaptation

Fig. 3. An adaptive control system with A* =1-07¢71,
B*=g¢1 C*=1+333%3¢!, F*=1 and
G* = 4.0333.
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Output y Parameter estimate
1
1 L
0.8 |
0.6
04 r
021
_1 L 0 L —
0 500 1000 0 500 1000
Time ¢ (samples) Time ¢ (samples)
State x Magnitude | x[|"2
10°
i fi
10! ‘ I |
| |
N M
B ‘ ! ‘ ' ) i |
1078 F HiNis 1
1074 !
0 500 1000 0 500 1000
Time #(samples) Time ¢ (samples)

Fig. 4. A transient of output y (upper) and state x (lower) vs. time in the adaptive
control system with A* =1-07¢7!, B¥* =47 ! and C* =1+333; ', Pa-
rameter convergence of 6 vs. time with 8, = 0.7 and 6, = 1.0. Notice that
6 first converges towards 6, and then proceeds towards 6,,, . Notice that x
remains noisy and the magnitude ||x ||2 does not decrease over time.

the output at the expense of variation of the state x. The stability will guarantee
that ||x|| does not grow beyond a certain limit according to Theorem 1, but x is
excited by noise also for well-tuned minimum variance control. Example 2 dem-
onstrates that it is not expected that ||x|] — 0. Hence, the result of state-error
convergence of Theorem 2 is not achieved for non-minimum phase systems.

6. Discussion and Conclusions

The deterministic aspects of stability and the convergence towards 6, as pre-
sented in Theorem 1 may be compared to earlier results on adaptive control
presented by Johansson (1986; 1989). The results are based on the same assump-
tions as in Goodwin and Sin (1984, Ch. 11.3) or Egardt (1979). This work con-
firms earlier results of Ljung (1977) and Landau (1980; 1982) on convergence of
minimum variance control. It contributes new results by eliminating the stability
assumption which has been an unsatisfactory feature of previous work, and also
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quantifies the information properties with supermartingale analysis. The slow
final convergence to the minimum variance solution is explained with an infor-
mation theory argument. The originally formulated problem of least-squares es-
timation subject to closed-loop operation and with impact of colored noise thus
results in convergence to a maximum-likelihood estimator, thus confirming the
conjecture of Astrom and Wittenmark (1973).

The time-variant, nonstationary behavior of adaptive control has motivated
the use of stochastic Lyapunov functions or supermartingale methods. It was
shown that there are two convergence points 6, and 6,;,, both with cancellation
of the control system zeros. A large set around 6, is attractive for large tran-
sient trajectories, whereas 6,,, is locally attractive. Recovery from a large dis-
turbance starts with initial convergence towards the deterministic solution point.
It is shown in this paper that a set around 6, is globally attractive, whereas the
point 8, is only locally attractive. Stable solutions of large initial magnitudes
thus start their trajectories by attraction from 6,. Eventually, these trajectories
enter the domain of attraction of 6,, and converge to the minimum variance
regulator. The final convergence is towards 6,y and thus minimum variance
control when the trajectory has reached the minimum variance solution domain
of attraction. In Fig. 5 are shown phase plane trajectories and parameter tran-
sients as averaged for each point in time from fifty simulations of the adaptive
control transients of Examples 1 and 2. These simulations illustrate the conclu-
sions made about properties of the two convergence points of the adaptive con-
trol laws.

A common idealization in the literature is to consider the case of “persistent
excitation” (see Anderson, 1982).

0< @kl = PHR) = PRV S =D, k=1, (43)
This permits an immediate verification of consistency of the parameter estima-
tion, although the presence of such a condition is difficult to verify a priori. An
assumption of persistent excitation is therefore virtually an assumption on the
consistency of parameter estimation. The present analysis avoids this difficulty
and shows the control error to converge even when it is not possible to show
consistency.

There are properties of the supermartingales used with obvious links to fea-
tures of information theory. Obviously, the stability of the adaptive system is:
closely related to its ability to extract adequate information from input-output
data. An adaptive system may generate appropriate input-output data of this
kind during the transient of an initial state. However, a system controlled by a
minimum variance regulator exhibits an output that contains only a noise se-
quence without any information about the input-output properties between # and
y. The signal-to-noise ratio thus decreases significantly and identifiability is
gradually impaired as the adaptive system converges towards minimum variance
control, a property that is reflected in the behavior of the entropy function 77

Unfortunately, the use of the term “information” is somewhat ambiguous in
the context of adaptive control. For example, the first term of 77’ of Eq. (32) is a
least-squares based criterion with a matrix P~'(%) that grows with time. It is
quite standard to argue that P! contains the accumulated (Fisher-) “informa-
tion” collected since initial time %2 =0 (see Goodwin and Payne, 1977), so that
the covariance of (%) may be estimated via the Cramér-Rao lower bound,
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Fig. 5. Averaged control parameter transients (6 vs. time) and phase plane
trajectories (state x vs. control parameter 6) for 50 realizations of
the system of Example 1 (left) and that of Example 2 (7ight) without
stable inverse of the polynomial C*.

ELO(R)OT (k) = 6P (k). (44)

The uncertainty or entropy (see Shannon (1948) or Gallager (1968)) represented
by 5 may be increased by noise and decreased by a non-zero || x]||. The stability
may be interpreted as follows. Any information in the output signal y about the
state error x results in a decrease in the parameter uncertainty so that the en-
tropy of the adaptive system represented by 7 decreases at the recursion of
each measurement; cf. Eq. (32). Furthermore, the control input error v depends
on 6 and results in a new state error x, which information is transmitted to the
system output. The information content in the input and output gradually de-
crease as the magnitudes of state errors x and parameter errors decrease. Be-
cause the signal-to-noise ratio decreases as the parameter error 6,, approaches
zero, no information is obtained at the solution point. This information theory
interpretation of the supermartingales also explains the slow final convergence
towards the minimum variance solution 6, .
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Appendix

The proof consists of three steps, each corresponding to a proposition of the
theorem. The first step follows from the definition of the o-algebra of measure-
ments at times k=1, 2, 3, ---. The state vectors X,(%k) and X, (k) are mea-
surable with respect to %,.

The second step is to show the boundedness of all variables involved and
which follow from the properties of the Lyapunov function. In particular, both
X, and X, and thus V,; remain bounded. The third step is to ascertain that
the mathematical expectation of Vj (X, (£)) decreases in each step.

Consider the adaptive control algorithm

é(k+1)=é(k)+P(k+1)(p(k)£(k+1), (41)
o T
e(k+1)=y(k+1)—ﬂu(k)—éT(k)(p(k), (4ii1)
u(k) = —%é(kyp(k), (4iv)
for which the prediction error one step ahead is determined by
e(k+1)

y(k+1) = Bu(k)— 6" (k)o(k)
y(k+1)=byB* (g7 &(k) + w(k+1)
b
BC*(q)
The first equality of Eq. (A.1) is determined by means of Eq. (4iii) and the sec-

ond equality according to Eq. (4iv).
Now consider the following positive, radially growing function:

I

(— 6L, (k)p(k))+w(k+1)=byv(k)+w(k+1). (A1)

vp(0(k)) = %éT(k)P"l(k)é(k). (A.2)
The development of v, one step ahead is determined as
Avg = vg(0(k+1)) — v5(6(k))
= é—éT(k +1) PN (R)6(k+1) - %éT(k)P‘l(k)é(k)

= L@ (k)@ (k) + 67 (k) p(k)e(k)+

2 2 1+ ()P (k)p(k)
_ 1 2 1 1 2
=5 (0 (R)p(k)+e(k+ 1)) -5 T o (WP (B)p (k) e(k+1). (A.3)
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Let Ag and A, designate

A9 =5 (& () (k) + ek + )Y,
_1 1 2
AT Tr g PR & T

The positive term of Eq. (A.3) for 8 = 6, (i.e., Ag) may be developed by means
of Eq. (18),

Ag == (Oiy(R)p (k) + e(k + 1))

Al b } V() 2
( ﬁl:(l ﬁ) C1 Cy L(k._n)+w(k+1)

. v(k) 2
=57 : +w(k+1)], (A.4)
v(k—n)

where the ¢;:s are the coefficients of the C*-polynomial of Eq. (2) and with y
and v denoting

Y= [(1—b—0) C1 - C :ITE %”‘H
,B 1 n
Vi [wk)}
V= : =l
v(k—n) % (k)
- (A.5)
1 0 0 0 0
1 bl . bn—~1 0 0
U=|0 1 b - b4 - 0 |cgrtxm
0 - 0 1 by - by

The mathematical expectation with respect to %, of expressions of Egs. (A.2)-
(A4)is
L (k+ 1)} = E{(bv (k) + w(k+1)P| )

= bV (k)+0®  as.

and

¢{Ag} = f{%(%(k)cp(k) +e(k+ 1>>2|%}

= %(yTv)2 +0°  as

Summarizing, one finds that
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E{Avg(6(k +1))| 7}
- @@{%(%v(k)(o(k)w(%1))2|%}

)1 ' (k+1) f}
5{2 T+ o (h)P(R)g(k) | "
bivi(k)+ o

1+ 9" (k)P (k)g(k)

_1 2 2y_ 1
—2((7Tv(k)) +07) =3

The mathematical expectation of the second term of Eq. (32) is
E{Avp (R +1)| 7}

—@”’{—log(Zﬂ) det( 2P(k+1))——;—log(Zn)ﬂ;_ldet(GzP(k))l%}
3 "

= ¢ logdet P(k+1)P (k)l%}

= 5 1= log(1+ 9" (B)P(R)g (k)| 7}

_ _%bga + T (k)P (k)p(k))

1 o 1

2 BT o (k)P (k)g(k)
1 o"()P(k)g(k)
_Zk’g(l T+ o' (k)P <k><o<k>)

o BPIet)
T EIP(R)p() (a7

I\

_1
21

where the inequality is motivated by a standard inequality stating that the con-
vex function log, (I+x)<xforall x>—-1.

The growth of the function I of Eq. (32) one step ahead is therefore deter-
mined from Egs. (A.6), (A.7)

Ay = E{— LO(k+1), H(k+1)| %} — (— L(G(k), [T1(k)))

L 6 Avp(k+1)| F} + E{ Avp (R +1)| %)

(o)

1 b5 V2 (k)

26% 1+ (k)P (k) (k)
v(k)]_ by V2 (k)

x(k)] 1+ (k)P (k)p(k)

s—?ly—z—(yTv(k))2 - as.

=%([v<k> xT(anTwTU[

20

). (A.8)

Consider now the state equation (20). The growth of x is determined by
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A, = E{xT(k+ 1) Ax (kR +1)|F — x7 (k) Ax (k)

I'Ar T''A® }{v(k)}

=[v(k) xT(k)]L‘DTAF OTAD — A | x (k)

We summarize the mathematical expectation, cf. Eq. (35),

Ay = E{1og (1+ Vi (X (B + D)) Fy —log (1 + Vi (Xpy (R)))
2

= é’{—ﬁ(é(k +1), I1(k)) +%xT(k +1)Ax(k+ l)IOJk}

2

- (— L(6(k+1), II(k)) +%x7(k)Ax(k)>

_1 o[ AT I''A® v(k)
= 5o ([V(k) xT(k)](UTWTUJFbO[quAF cDTAcD—AD[x(k)}

~ bEVE(R) )
1+ (k)P (k)o(k)

(A.10)

According to the Kalman-Szegs-Popov lemma (see Hitz and Anderson (1969), or
Popov (1973)), there are matrices K, L, ¢ and & such that

T T T
bg[FAF Ao }:_[K 26 c] (A11)

T
O'AT O"AD — A L }[K L HLT 0
if and only if the transfer function Eq. (A.12) is strictly positive real (SPR).
Gz)=cT(z2I —®)'I'+8§>0, z€{z€¢:|z|=1}. (A.12)
Introduce a decomposition (cf. Eq. (A.5))
. _|K
U }/—LJ. (A.13)

The following choice of the matrices:

T _ T —_ T
LLK;fTﬁf for @ =0Q >o} (ALd)
corresponds to the solution
c=0,
O<5=—;—(KTK+I“TAF), (A.15)
CDTACD—A=—;1%—(Q+}«T1),

so that



1012 R. JOHANSSON

|:K'T}[K AT]M%{FTAF FTAQ)}

A OTAT O"AD — A
_ o o], [«®+virtar o]
= [0 Q}{ 0 0 (A.16)

with a positive definite solution A. The solution presented also satisfies the
strictly positive real condition Eq. (A.12) because H(z)= 6 > 0. From Egs.
(A.10) and (A.16), it now follows that

A, < ?(— T (k)Qx (k)

bt
L+¢" (k)P (k)p(k)

+(;<2+b3rTAr— )vz(k)). (A.17)

According to Egs. (A.5) and (A.13), it follows that K% = ( B- bO)Z, and we deter-

mine the values for which A, < 0. This condition is satisfied if

b6

1+ " (k)P (k)p(k)

(B—bo)* + b3 A — <0=4,<0. (A.18)

A necessary condition of Eq. (A.18) is obviously that 8 of Eq. (4) is restricted so
that

1-+1-TTAT <£<1+«/1—FTAF. (A.19)

bo
The Jensen inequality (see Chung, 1974) states that for any convex function
f(x), it holds that f(E(x)) = E(f(x)). Applying the Jensen inequality for the
convex function f(x)=1log(1+x), x =0 gives
log(1+ E{Vyy (Xpw (k + 1)) F}) = Elog (1 + Vi (Xpy (B + 1)) F} . (A.20)
Finally, let Ay denote E{Vyy (X (B + 1) Z} — Vi (X (k) so that

Ay = EWViy (Xpw (B + )T} = Vigy ( Xy (R))
= exp(&ilog(1+ Vyy (B + 1)) 7)) — (14 Vi (Xyy (k)
= — (1+ Vyy (Xpw (B))(1 —exp(4;))) <0, [lx(R)|I#0  (A.21)

as A, <0, cf. Eq. (A.18) and
EWViy (Xppy (R+ 1A} = Vi (Xy (R)) <0, |[x(R)| # 0, (A.22)
which establishes the supermartingale property of {V,, (X, (%)), %} and

{H( Xy (R)), 7} as stated in Theorem and Eq. (37).
This finishes the proof.
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