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Abstract

A method for dispersion-flattening in double-clad single-mode optical fibers
is presented. The chromatic dispersion over the wavelength range [1.25 µm,
1.60 µm] is minimized for a w-fiber and also for a triangular-index fiber with
a depressed inner cladding. The constraint that the first higher order mode
should appear exactly at 1.25 µm is imposed. The full vector solution of
Maxwell’s equations is used. Applying an approximate refractive-index model,
it is found that the w-fiber is capable of yielding a rms-dispersion less than
1 ps/(km nm). A doping level of two per cent in the core is necessary to
achieve this. How to interpret this numerical result is not clear, since the
approximate refractive-index model used is, in this context, crude.

1 Introduction

In order to minimize pulse-broadening in an optical fiber, the chromatic dispersion
should be low over the wavelength range used. A fiber in which the chromatic
dispersion is low over a broad wavelength range is called a dispersion flattened
fiber [1]. This paper is a continuation of the paper [2] in which the rms-value of the
chromatic dispersion over the wavelength range [1.25 µm, 1.60 µm] is calculated and
minimized for fibers with step-index profiles, triangular-index profiles and α-power
profiles. Of these profiles, the step-index profile yields the lowest rms-dispersion,
4.8 ps/(km nm), and this minimum is obtained when the relative refractive-index
increase in the core is equal to a factor 1.01.

In this paper the analysis is extended to w-profiles and to triangular-index profiles
with a depressed inner cladding.

1.1 An approximate refractive-index model

The actual refractive-index profile n(r, λ0) of an optical fiber is a function of the
radial coordinate r and of the vacuum wavelength λ0. The actual refractive-index
profile n(r, λ0) can be written

n(r, λ0) = N(r, λ0)ns(λ0) (1.1)

where ns(λ0) is the refractive-index of pure silica and N(r, λ0) is “the normalized
refractive-index” or “the relative refractive-index increase”.

The following approximation will be made. The normalized refractive-index N
is assumed to be a function of the radial coordinate only, i.e.

n(r, λ0) = N(r)ns(λ0) (1.2)

A Sellmeier formula for the refractive-index of pure “quenched” silica glass given by
Fleming [3, 4] is used to model ns(λ0) where ns is the refractive-index of pure, i.e.
undoped, silica glass and λ0 is the vacuum wavelength.
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1.2 The rms-value f of the chromatic dispersion

The chromatic dispersion in a single-mode fiber is given by

C = −λ0

c

d2ne
dλ2

0

(1.3)

where c is the speed of light in a vacuum, ne is the effective refractive-index of the
fundamental mode, and λ0 is the vacuum wavelength.

The rms-value, or the function f , to be minimized is

f =

(
1

λ2 − λ1

λ2∫
λ1

C2(λ0) dλ0

)1/2

(1.4)

A computer program calculates the effective refractive-index for a number of
equidistant vacuum wavelengths. This is done by solving the characteristic equation
by a root-searching method. The effective refractive-index as a function of the
vacuum wavelength is represented by Lagrange interpolation polynomials [2, 5]. The
rms-value f is then calculated analytically using (1.3) and (1.4).

The computer program applies the power-series expansion method developed in
Ref. [6]. This method yields the full vector solution of Maxwell’s equations.

2 Minimization

2.1 w-profiles

A normalized w-profile is given by

N(r) =




N1 0 ≤ r < b

N2 b ≤ r < a

1 r ≥ a

(2.1)

where N1 > 1 and N2 ≤ 1. The constraint that the first higher order mode should
appear exactly at 1.25 µm is imposed. Thus, there are four variables, namely
(N1, N2, b, a), and one constraint.

Assume thatN1 andN2 are given some certain fixed values. The valuesN1 = 1.02
and N2 = 0.99 will prove to be interesting. If b = a then the w-profile has degen-
erated into a step-index profile. The core radius a of this step-index fiber is easily
calculated [2] using the exact cut-off condition V = j01 = 2.405 where V is the
normalized frequency. The value N1 = 1.02 yields b = a = 1.64 µm.

Direct numerical calculation yields that if the outer radius a is increased then
the inner radius b must also be increased in order to keep the cut-off wavelength
at 1.25 µm. Hence, the constraint λc = 1.25 µm corresponds to a curved line in
the a-b-plane. The rms-value f of the chromatic dispersion along this line is given
in Fig. ??. The point of minimum dispersion is easily located. This procedure is
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Figure 1: The rms-value f of the chromatic dispersion over the vacuum wavelength
range [1.25 µm, 1.60 µm] as a function of the outer radius a in a w-fiber. The cut-off
vacuum wavelength is 1.25 µm. The relative refractive-index increase in the core
and in the inner cladding is 1.02 and 0.99 respectively.

repeated for different combinations of N1 and N2 and the result is given in Table 1.
The first column of this table, i.e. N2 = 1 , corresponds to step-index profiles.

According to Table 1, the global minimum is 0.9 ps/(km nm) and the correspond-
ing “optimal” w-fiber is (N1, N2, b, a) = (1.02, 0.99, 1.91 µm, 2.85 µm) , see Fig. ??.
It should be observed that the global minimum is flat, i.e., there is a “valley” in
Table 1 giving roughly the same rms-dispersion. Another observation is that the
dependence of N2 in Table 1 is weak if N1 is less than 1.01. On the other hand, the
dependence of N2 is strong if N1 is greater than 1.01 and N2 is close to unity.

N2

N1

1.000 0.995 0.990 0.985 0.980
1.002 12. 12. 12. 12. 12.
1.005 8.6 8.6 8.5 8.5 8.5
1.010 4.8 4.3 4.2 4.1 4.1
1.015 7.9 2.3 1.8 1.6 1.5
1.020 14. 1.3 0.9 1.0 1.2
1.025 21. 1.1 1.7 2.4 2.9
1.030 27. 4.0 2.4 3.7 4.5

Table 1: The minimum root-mean-square chromatic dispersion in a w-fiber for
different doping levels in the core and in the inner cladding. The unit is ps/(km
nm).
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Figure 2: The chromatic dispersion for the “optimal” w-fiber (N1, N2, b, a) =
(1.02, 0.99, 1.91 µm, 2.85 µm). The rms-value of the chromatic dispersion over the
vacuum wavelength range [1.25 µm, 1.60 µm] is equal to 0.9 ps/(km nm).
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2.2 Triangular-index profiles with a depressed inner cladding

The described method of investigation can be applied to similar refractive-index
profiles. A normalized triangular-index profile with a depressed inner cladding is
given by

N(r) =




N1 + (1−N1)
r
b

0 ≤ r < b

N2 b ≤ r < a

1 r ≥ a

(2.2)

If b = a a triangular-index profile without a depressed inner cladding is obtained.
The radius a yielding λc = 1.25 µm is calculated. The cut-off condition valid for a
step-index fiber can, of course, not be used. The radius a is then increased in steps
and the corresponding inner radii b, yielding λc = 1.25 µm, are calculated. This
generates a curve in the a-b-plane. Minimum rms-dispersions along such curves are
given in Table 2. According to this table, if the doping level in the core center is
less than or equal to three per cent and the doping level in the inner cladding is
less than or equal to two per cent then the minimum rms-dispersion is equal to
5.4 ps/(km nm).

N2

N1

1.000 0.995 0.990 0.985 0.980
1.002 13. 13. 13. 13. 13.
1.005 9.7 9.7 9.7 9.7 9.7
1.010 6.8 6.8 6.8 6.8 6.8
1.015 8.2 6.0 5.9 5.9 5.9
1.020 13. 6.2 5.8 5.6 5.5
1.025 18. 7.2 6.0 5.6 5.4
1.030 24. 9.6 6.8 6.0 5.6

Table 2: The minimum root-mean-square chromatic dispersion in a triangular-
index fiber with a depressed inner cladding for different doping levels in the core
center and in the inner cladding. The unit is ps/(km nm).

2.3 Error induced by approximate refractive-index model

In order to investigate the magnitude of the error induced by the approximation (1.2)
the exact chromatic dispersion of the following w-profile is calculated. The core is
assumed to be 13.5 mole-percent Ge-doped silica. The inner cladding is assumed to
be 1.0 mole-percent F-doped silica. The cladding is assumed to be pure “quenched”
silica. The Sellmeier formulas given by Fleming [3, 4] are used. The inner radius b
and the outer radius a are chosen as 2.14 µm and 3.46 µm respectively. These radii
minimize the rms-dispersion for these particular doping levels. The rms-value of
the exact chromatic dispersion is calculated to 6.4 ps/(km nm). The approximate
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refractive-index model (1.2) with N1 = 1.0144 and N2 = 0.9965 yields the rms-
dispersion 2.7 ps/(km nm). Thus the error in the rms-value due to the approximate
refractive-index model is as much as 3.7 ps/(km nm). Consequently and unfor-
tunately, using the approximate refractive-index model (1.2) seems to be a crude
approximation when trying to design dispersion-shifted fibers, compare Safaai-Jazi
and Lu [7, 8].

The full vector solution of Maxwell’s equations and the approximate refractive-
index model yields, as already stated, that the rms-dispersion of the “optimal”
w-fiber (N1, N2, b, a) = (1.02, 0.99, 1.91 µm, 2.85 µm) is equal to 0.9 ps/(km nm). If
scalar analysis is employed, instead of full vector analysis, the rms-dispersion for the
same fiber is calculated to 1.2 ps/(km nm). Thus the error introduced by the scalar
approximation is, for this particular fiber, 0.3 ps/(km nm).

3 Conclusion

A method for calculating the minimum root-mean-square chromatic dispersion in
w-fibers has been presented. The procedure is to generate all w-fibers with a certain
cut-off vacuum wavelength and then find the minimum rms-dispersion by direct
inspection. The method works for similar double-clad fibers such as a triangular-
index fiber with a depressed inner cladding.

Since exact refractive-index data are not available it is necessary to resort to
an approximate refractive-index model. Using such an approximate refractive-index
model and the full vector solution of Maxwell’s equations, it is found that there are
w-profiles yielding a rms-dispersion less than 1 ps/(km nm). A doping level of two
per cent in the core is necessary to achieve this. An error analysis yields that the
approximate refractive-index model is, in this context, a crude approximation. This
makes the interpretation of the numerical result difficult.

The method presented can, with other choices of cut-off vacuum wavelength and
vacuum wavelength interval, be used for dispersion shifting as well as for dispersion
flattening.
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