
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Parallel computing in Julia

Case study from Dept. Automatic Control, Lund University
Bagge Carlson, Fredrik

2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Bagge Carlson, F. (2019). Parallel computing in Julia: Case study from Dept. Automatic Control, Lund
University. (Technical reports TFRT-7657). Department of Automatic Control, Faculty of Engineering LTH, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/873af4d5-6229-4ad2-b907-c0ae0f667822

Parallel computing in Julia:
Case study from Dept. Automatic Control, Lund University

Fredrik Bagge Carlson
fredrikb@control.lth.se

Department of Automatic Control

Technical Report TFRT-7657
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2018 by Fredrik Bagge Carlson
fredrikb@control.lth.se. All rights reserved.
Printed in Sweden.
Lund 2018

1. Introduction

Abstract

This document outlines how to setup and run computations in parallel using Julia on a collection
of remote computers, such as computers in a university lab. After the environment has been setup,
only minor modifications to serially executed code is necessary to enable parallel execution.

Written for Julia version 1.0

1. Introduction

Julia [Bezanson et al., 2017] is a modern programming language designed with high-performance
numerical computing in mind. As such, it has stellar support for distributed computing. This
document will focus on distributed computing using workers (multi-core), as opposed to shared-
memory parallelism using threads (multi-thread). A worker is a separate instance of Julia, running
either on the same machine or on a remote machine. This style of distributed computing has both
benefits and drawbacks compared to multi-threading. The benefits include automatic thread safety
and the obvious benefit of making use of the processing power of multiple different machines.
The drawbacks include communication and memory overhead, and a task where several light
computation loads are to be executed in parallel can oftentimes see the greatest speedup from
multi-threading.

To set the stage, we briefly describe how to think about a worker. Fist of all, Julia’s distributed
computing functionality lives in the standard library Distributed. To start a additional workers,
one can either start Julia with the command-line flag -p, or call the function addprocs at runtime.
Workers can be started either on the local machine, to make use of all available processor cores, or
on remote machines, such as lab computers or dedicated computing servers available via SSH.

The machine that starts additional workers is called the host. Computations can be assigned to
any available worker by the host, provided that all required code is loaded at the assigned worker.
A statement like using Package loads code on the host, but not on any workers. To run code on all
workers, the macro @everywhere using Package is provided. Usage of this is demonstrated further
in Sec. 3.1. Only workers started while @everywhere was called will load the code. Subsequently
loaded workers are oblivious to this code. The same goes for variables and functions defined on
the host, they must be defined @everywhere to be available on a worker. Common patterns for
performing distributed computations are provided in Sec. 3.2.

2. Setup

In order to perform distributed computing on remote machines, the environment has to be setup
on each machine. If you intend to run on your local machine only, you can skip this section. Below
is an example of this procedure.

1. Verify that all computers you are interested in running on have the same Julia version in-
stalled. Julia will be launched from the same path as on the host computer (can be overridden
with exename arg. to addprocs).

2. Ensure that you can perform password-less ssh to all computers (instructions).

3. In order to install all required packages on the remote machines, it is recommended to
create a Project.toml file. Julia’s package manager can create this file for you:

julia> cd("myproject") # Navigate Julia to the directory containing your code files. This

can be done either before starting Julia or inside julia like this,→
julia> using Pkg

julia> pkg"activate ." # Set the current directory as the active Julia environment

julia> pkg"add LinearAlgebra Statistics DSP" # Add required packages, these are just

examples,→
Resolving package versions...

Updating `/tmp/myproject/Project.toml`

[717857b8] + DSP v0.5.2

[37e2e46d] + LinearAlgebra

[10745b16] + Statistics

Updating `/tmp/myproject/Manifest.toml`

[621f4979] + AbstractFFTs v0.3.2

3

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/base/multi-threading/
https://docs.julialang.org/en/v1/stdlib/Distributed/
http://www.linuxproblem.org/art_9.html

3. Distributed computing

The commands above created the files Project.toml and Manifest.toml. They contain infor-
mation about the packages required to run your code. At any time, the package environment
you had when you created that file can be instantiated by the command Pkg.instantiate().
The difference between the manifest and project files are described in the documentation.

4. Initiate workers by running (the example starts 4 workers on each of the computers philon-
02 to philon-12)

julia> addprocs([(@sprintf("philon-%2.2d",i),4) for i in 2:12], topology=:master_worker)

master_worker topology is recommended unless the workers have to communicate with
each other.

5. The required packages are installed on remote machines by instantiating the project:

julia> using Distributed

julia> addprocs(["heron-01"]) # Start one worker on the remote machine heron-01

1-element Array{Int64,1}:

2

julia> @everywhere using Pkg

julia> @everywhere pkg"activate ." # Activate the current directory (myproject)

julia> @everywhere pkg"instantiate" # This installs all required packages

Updating registry at `~/.julia/registries/General`

Updating git-repo `git://github.com/JuliaRegistries/General.git`

Fetching: From worker 2: Updating registry at `~/.julia/registries/General`

From worker 2: Updating git-repo `https://github.com/JuliaRegistries/General.git`

julia> @everywhere pkg"precompile"

Precompiling project...

From worker 2: Precompiling project...

This only works if every worker can find myproject, i.e., the path exists and is accessible on
every machine. The default path of the workers can be specified with the dir arg. to addprocs,
the default is the current path of the host.

3. Distributed computing

3.1 Loading code on remote machines
Julia is now ready to run your computations in parallel. Only code loaded on a worker can be run
by that worker. Code is loaded on a worker by the macro @everywhere, e.g.:

@everywhere a = 2 # a is now = 2 on all loaded workers

@everywhere include("setup_computations.jl") # The files is included on all workers, note that

the file must be available on every computer,→

@everywhere function myfun(a)

a + 1

end # The function myfun is defined on all workers

@everywhere begin

some_function_call()

some_variable = something

end # All code in the block is run on all workers

If you start new workers after having run something @everywhere, you need to rerun that code on
the new workers. Note: Before you run a using statement on remote workers, you have to run it on
the host once for precompilation to take place, otherwise you will get an error (WARNING: can only

precompile from node 1), hence the call to precompile in the example above.
If you need to include a file that is not available at the remote machine, such as a file located

in your home directory not being available from the cloud computers, use the following include
function

4

https://docs.julialang.org/en/v1/stdlib/Pkg/

3.2 Performing calculations on remote machines

function include_remote(path, workers=workers(); mod=Main)

open(path) do f

text, s = read(f, String), 1

while s <= length(text)

ex, s = Meta.parse(text, s) # Parse text starting at pos s, return new s

for w in workers

@spawnat w Core.eval(mod, ex) # Evaluate the expression on workers

end

end

end

end

This function reads the code into the variable text and performs an eval on the remote workers.
An optional module can be specified, with Main as default.

3.2 Performing calculations on remote machines
One particular pattern that is suitable for parallel processing is Monte-Carlo simulations and
calculations. To launch, e.g., many Monte-Carlo computations in parallel, a pattern like this is
useful:

@everywhere include("setup_computations.jl")

all_results = pmap(1:number_of_montecarlo_runs) do index

result = perform_computation(index)

end

pmap is a parallel map operation that automatically selects workers to perform the computations
on. The index variable will take the numbers 1:number_of_montecarlo_runs and can be used to, e.g.,
set the random seed or something similar. The function perform_computation(index) was defined
in the script setup_computations.jl that was loaded in the beginning. The variable all_results

will be a vector of length number_of_montecarlo_runs containing the results of the individual runs
of the map body.

If the computations are not suitable to launch from a loop, one can launch computations on a
remote worker with

f1 = @spawn run_some_computation() # Run computation on automatically chosen worker

f2 = @spawnat 3 run_some_other_computation() # Run computation on worker 3

f1 and f2 are of type Future, and the results must be fetched before used

result1 = fetch(f1) # This call blocks until computation of f1 is done

result2 = fetch(f2)

Another useful pattern for launching computations, if one is not comfortable with the map
operation, is the following:

futures = Vector{Future}(num_iterations) # Create vector to hold all Futures

for iteration = 1:num_iterations

f = @spawn perform_computation(iteration)

futures[iteration] = f

end

results = fetch.(futures) # The dot . broadcasts the function call over the vector

For-loops can also be distributed with the macro @distributed, that accepts an optional reduc-
tion function, e.g.:

julia> @distributed vcat for i = 1:5

myid() # Returns the id of the worker

end

5-element Array{Int64,1}:

2

2

3

4

5

5

https://docs.julialang.org/en/v1/manual/parallel-computing/index.html#Multi-Core-or-Distributed-Processing-1

5. Miscellaneous

julia> @distributed hcat for i = 1:5

myid()

end

1×5 Array{Int64,2}:

2 2 3 4 5

julia> @distributed (+) for i = 1:5

myid()

end

16

Distributed for-loops are to be preferred when the calculation involves reduction of many small
results (like summing up numbers), whereas parallel maps are to be preferred when a vector of
large results is desired:

julia> @time a = @sync @distributed vcat for i = 1:10 # Creating a result vector

zeros(1000,1000)

end;

2.350288 seconds (198.40 k allocations: 161.418 MiB, 5.28% gc time)

julia> @time b = pmap(1:10) do i # Creating a result vector (the preferred way)

zeros(1000,1000)

end;

0.882909 seconds (220.28 k allocations: 86.244 MiB, 9.48% gc time)

###

julia> @time sum(pmap(1:10000) do i # Reducing with +

myid()

end)

0.543199 seconds (856.46 k allocations: 34.684 MiB, 2.39% gc time)

julia> @time a = @sync @distributed (+) for i = 1:10000 # Reducing with + (the preferred way)

myid()

end;

0.054469 seconds (52.08 k allocations: 2.533 MiB)

4. Getting results back

If you launch Julia from a remote computer, but want to analyze the results of the parallel compu-
tations on, e.g., your office computer, then

1. Place your script file in a mounted location, e.g., /work/$USER (preferable since the file saved
below might become large) or /home/$USER. For simplicity, navigate to this folder on both
local and remote machine before starting Julia.

2. Run open(file->serialize(file, results), "res.bin","w") to save the results to a binary
file called res.bin.

3. On your office computer, run results = open(deserialize, "res.bin") to load the results.
If the office computer and the remote computers are running different Julia versions, loading
of the file might not work, in that case, use a package like JLD.jl or BSON.jl (recommended)
to save and load the results instead.

5. Miscellaneous

How to figure out which packages to install on remote computers All the packages that you are
calling using PackageName on.

How many workers to launch The optimal is typically to utilize all physical cores on each ma-
chine. Some operations, like matrix operations etc., automatically run in parallel, in which
case you will see limited speedup from launching more than a single worker per machine. If
you are running in a lab full of students, it may be good to limit the number of workers to 1
or 2 per machine to not slow it down too much.

6

https://github.com/JuliaIO/JLD.jl
https://github.com/MikeInnes/BSON.jl

6. Troubleshooting

Order of computations If the computations you run have vastly different runtimes, try to launch
the longest running computations first, e.g.:

pmap(10:-1:1) do i

sleep(i)

end

will finish faster than

pmap(1:10) do i

sleep(i)

end

Host machine workers You can launch workers on the host machine as well with the command
addprocs(4). This is useful if 1) You have no remote machines. 2) You want MORE POWER.
Be sure to do this after adding the remote workers if you want to use both.

Startup script Note that workers do not run a startup.jl script, nor do they synchronize their
global state (such as global variables, new method definitions, and loaded modules) with
any of the other running processes.

Non-Julia dependencies These can be a bit tricky to handle. All dependencies have to be con-
figured at every remote machine. If your computations are native Julia only, or installed
automatically as part of Pkg.add(), you’re safe. If not, I would ask the system administrator
to help out.

Sending data between workers You may find the package ParallelDataTransfer.jl useful. It allows
you to send variables between workers, in particular, from the host to the remote machines.

The result of a parallel computation Keep in mind that the result of, e.g., a pmap statement is
automatically sent from the worker to the host. If this result is large, this communication
can become a bottleneck, e.g.:

julia> sizeof(zeros(10_000,1_000)) ÷ 1e6

80.0 # Mb

6. Troubleshooting

WARNING: Node state is inconsistent: node failed to load cache from /var/tmp/user-
name/lib/*.ji. If you get this message, it might be due to the host computer and the
remote computer running different versions of LLVM.

WARNING: can only precompile from node 1 First time you call using Package must be on the
host only, i.e., not inside an @everywhere statement.

7. Documentation

• Julia manual

• Julia parallel computing manual

• Standard Library (Distributed)

References

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: a fresh approach to numerical
computing”. SIAM Review 59:1, pp. 65–98.

7

https://github.com/ChrisRackauckas/ParallelDataTransfer.jl
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/stdlib/Distributed/

	Introduction
	Setup
	Distributed computing
	Getting results back
	Miscellaneous
	Troubleshooting
	Documentation
	References

