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Abstract

We describe how to utilize the possibility of differentiating through arbitrary Julia code
to perform tasks such as controller optimization. The user specifies a cost function, for
example, the integrated squared error between output and reference, and constraints, such
as a maximum acceptable value of the sensitivity function. Julia performs the integration
and calculates the sensitivities of the cost and constraint functions with respect to controller
parameters automatically, using automatic differentiation. We conclude with a full example
including gradient-based optimization of the cost function. All code required is open-source
under permissive licenses.
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1. Introduction

1. Introduction

Julia [Bezanson et al., 2017] is a modern programming language designed with high-
performance numerical computing in mind. As such, it has stellar support for automatic
differentiation (AD) [Revels et al., 2016; Innes et al., 2018; Revels et al., 2018]. AD in
Julia allows the programmer to write an arbitrary Julia program and have the gradient,
Jacobians, Hessian etc. of the output with respect to the input automatically calculated.
AD is the main technique for calculating the gradient of the loss function with respect to
the parameters in deep learning. However, many deep-learning frameworks require you to
manually construct a computation graph using a domain specific language, making the usage
of their AD extremely limited. A major benefit of AD compared to finite-difference (FD)
approximation is in numerical accuracy. While FD have to make a trade-off between the error
arising from too large 𝜖 in (𝑓(𝑥 + 𝜖) − 𝑓(𝑥))/𝜖 and numerical errors arising from too small 𝜖,
AD calculates derivatives to machine precision. Reverse-mode AD further enjoys a theoretical
efficiency advantage compared to both forward-mode AD and FD when the differentiate
function have high input arity and low output arity, such as a scalar cost function of many
parameters.

Julia also offers a vast library of high-performance tools for solving differential equations,
written in Julia [Rackauckas and Nie, 2017]. AD is therefore available for differentiation
through the integrators [Rackauckas et al., 2018]. In this document, we will outline how
the AD functionality available in Julia, together with the ControlSystems.jl [Bagge Carlson
and Fält, 2016] and DifferentialEquations.jl [Rackauckas and Nie, 2017] packages, allow for
convenient optimization of continuous-time PID controllers, with robustness constraints.

2. ControlSystems.jl

ControlSystems.jl is a Julia toolbox with functionality and syntax similar to the corresponding
toolbox in Matlab. Of key difference is the ability of the Julia ControlSystems types, such as
StateSpace and TransferFunction, to hold arrays and numbers of arbitrary types. To illustrate
this, consider first the following transfer-function definition

julia> using ControlSystems

julia> tf(1, [1., 1., 1.])

TransferFunction{ControlSystems.SisoRational{Float64}}

1.0

---------------------

1.0*s^2 + 1.0*s + 1.0

Continuous-time transfer function model

Julia indicates that the resulting object is a TransferFunction with coefficients of type Float64.
Should we desire, we may instead create a transfer function with uncertain coefficients, and
have all calculations done using these coefficients report uncertainties using linear uncertainty
propagation (note the uncertainty in the pole locations)

julia> using Measurements, GenericLinearAlgebra

julia> ζ = 0.7 ± 0.2 # An uncertain value

julia> G = tf(1, [1., 2ζ, 1])

TransferFunction{ControlSystems.SisoRational{Measurement{Float64}}}

1.0 ± 0.0

---------------------------------------

1.0 ± 0.0*s^2 + 1.4 ± 0.4*s + 1.0 ± 0.0

julia> pole(G)

2-element Array{Complex{Measurement{Float64}},1}:

(-0.7 ± 0.2) + (0.71414 ± 0.19604)im

(-0.7 ± 0.2) - (0.71414 ± 0.19604)im
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3. Differentiating through the integrator

It is now indicated that the type of the coefficients is Measurement{Float64}. This type
is provided by the package Measurements.jl [Giordano, 2016] and is created using the
± operator (\pm <TAB>). Fundamentally, this is what allows us to calculate derivatives of
arbitrary functions involving the ControlSystems types. Our exposition will make use of the
package ForwardDiff.jl [Revels et al., 2016]. ForwardDiff performs AD using dual numbers,
an AD technique suitable for functions of few parameters, such as a loss function of a few
controller parameters. ForwardDiff was shown by Rackauckas et al. (2018) to be highly
efficient at calculating sensitivities through DE solvers when the number of parameters was
small (<100).

3. Differentiating through the integrator

In order to allow AD through the integrator, care must be taken to tell the integrator what
types to initialize its caches to. In the code below, we store the type of the input in the
variable Tp. When called with an array p of Float64, we will have Tp == Float64. However,
when the function simulate is called by the AD package, p will be of type ForwardDiff.Dual.
We also convert the initial guess x0 and the time span of the integration to this type. In
the code, we further construct a function K that creates a PID-controller from the three
parameters kp,ki,kd. The code assumes that the process 𝑃 is defined somewhere outside
simulate. In the examples provided below, the process

𝑃(𝑠) = 1
(2𝑠 + 1)2(0.5𝑠 + 1)

was used, together with the cost function

𝐽(𝑘𝑝, 𝑘𝑖, 𝑘𝑑) = 1
𝑇𝑓

∫
𝑇𝑓

0
|𝑟(𝑡) − 𝑦(𝑡)|𝑑𝑡 = 1

𝑇𝑓
∫

𝑇𝑓

0
|𝑒(𝑡)|𝑑𝑡

The Simulator type is defined in ControlSystems.jl and provides a simple interface between
ControlSystems types and the solvers from DifferentialEquations.jl. Its second argument is a
function that takes the state and current time and returns the system input.

using ControlSystems

K(kp,ki,kd) = pid(kp=kp, ki=ki, kd=kd)

K(p) = K(p...)

function simulate(p)

C = K(p[1], p[2], p[3]) # Construct PID controller from parameters

L = feedback(P*C) |> ss # Form closed-loop system

s = Simulator(L, (x,t) -> [1]) # Sim. unit step load disturbance

Tp = eltype(p) # Store type of input

x0 = Tp.(zeros(L.nx)) # Initial state of same type as input

tspan = (Tp(0.),Tp(Tf)) # Sim. time span of same type as input

sol = solve(s, x0, tspan) # Simulate the closed-loop system

y = L.C*sol(t) # Output y = C*x

end

function costfun(p)

y = simulate(p)

mean(abs, 1 .- y) # ~ Integrated absolute error IAE

end
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4. Optimizing the cost function
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(b) Gang of four.

Figure 1: Optimization of the cost function without constraints.
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(b) Gang of four

Figure 2: Optimization of the cost function with constraints on maximum sensitivity and
complimentary sensitivity functions, 𝑆 and 𝑇.

4. Optimizing the cost function

In order to optimize the cost function costfun with respect to the parameters p, we use the
library NLopt [Johnson, 2007]. NLopt wants us to supply a function that takes a vector
of parameters and an array used to store the gradient. In Algorithm 1, we define this
function, called f. The gradient is calculated using ForwardDiff.jl. The function runopt calls
the optimizer from NLopt using some reasonable settings.

The results of the optimization are show in Figs. 1a and 1b. As we can see, the step-
response is nice and fast, but if we inspect the gang of four in Fig. 1b, we see that the
sensitivity function 𝑆 has a rather high peak.

In order to obtain a more robust design, we may add constraints on the maximum value
of the sensitivity function, 𝑀𝑆, and the same for the complimentary sensitivity function, 𝑀𝑇.
Thankfully, we can differentiate through the Bode-diagram calculations, making the addition
of these constraints straightforward. In Algorithm 2, we define the function freqdomain that
calculates the Bode diagram of 𝑆 and 𝑇, and the function constraintfun that specifies that
those Bode-diagrams should be below the corresponding threshold for all frequencies.

The optimizer chosen for this task must support nonlinear inequality constraints, the
NLopt-optimizers that support this are :LD_MMA and :LD_SLSQP.1 NLopt further requires a
function c that calculates the Jacobian of the constraints.

The result of the constrained optimization is shown in Figs. 2a and 2b. The step response
is now slightly smoother and the peak in 𝑆 is lower. Success!

1 https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
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4. Optimizing the cost function

In order to keep the example nice and small, we did not include any filters on the
measurements. Adding this filter is straight forward. In Sec. 5 we will describe some tips and
tricks for adding functionality such as constraints in both time and frequency domains.

Algorithm 1 Optimizing the cost function using NLopt.

using ControlSystems, NLopt, ForwardDiff

p = [0.1, 0.1, 0.1] # Initial guess [kp, ki, kd]

K(kp,ki,kd) = pid(kp=kp, ki=ki, kd=kd)

K(p) = K(p...)

function simulate(p)

C = K(p[1], p[2], p[3]) # Construct PID controller from parameters

L = feedback(P*C) |> ss # Form closed-loop system

s = Simulator(L, (x,t) -> [1]) # Sim. unit step load disturbance

Tp = eltype(p) # Store type of input

x0 = Tp.(zeros(L.nx)) # Initial state of same type as input

tspan = (Tp(0.),Tp(Tf)) # Sim. time span of same type as input

sol = solve(s, x0, tspan) # Simulate the closed-loop system

y = L.C*sol(t) # Output y = C*x

end

function costfun(p)

y = simulate(p)

mean(abs, 1 .- y) # ~ Integrated absolute error IAE

end

f_cfg = ForwardDiff.GradientConfig(costfun, p)

function f(p::Vector, grad::Vector)

if length(grad) > 0

grad .= ForwardDiff.gradient(costfun,p,f_cfg)

end

costfun(p)

end

function runopt(p; f_tol = 1e-5, x_tol = 1e-3)

opt = Opt(:LD_AUGLAG, 3)

lower_bounds!(opt, 1e-6ones(3))

xtol_rel!(opt, x_tol)

ftol_rel!(opt, f_tol)

min_objective!(opt, f)

NLopt.optimize(opt, p)[2]

end

p = runopt(p, x_tol=1e-6)

y = simulate(p)

plot(t,y', show=false)

4.1 Initial guess
The problem of optimizing the parameters of a PID controller like above is nonconvex, and
there is no guarantee that a good solution will be found. As a consequence of this, a good
initial guess is required. A global optimization method can be used to provide an initial guess
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4.1 Initial guess

Algorithm 2 Optimizing the cost function with constraints. The function c calculates the
constraints and their Jacobian using ForwardDiff.jl.

Ω = exp10.(LinRange(-1,2,150))

p0 = [0.1,0.1,0.1]

function freqdomain(p)

C = K(p[1], p[2], p[3])

S = 1/(1+P*C) # Sensitivity fun

T = tf(1.) - S # Comp. Sensitivity fun

Sw = vec(bode(S,Ω)[1]) # Freq. domain constraints

Tw = vec(bode(T,Ω)[1]) # Freq. domain constraints

Sw,Tw

end

Ms = 1.2 # Maximum sensitivity

Mt = 1.5 # Maximum comp. sensitivity

function constraintfun(p)

Sw,Tw = freqdomain(p)

[maximum(Sw)-Ms; maximum(Tw)-Mt]

end

g_cfg = ForwardDiff.JacobianConfig(constraintfun, p)

function c(result, p::Vector, jac)

if length(jac) > 0

jac .= ForwardDiff.jacobian(constraintfun,p,g_cfg)'

end

result .= constraintfun(p)

end

function runopt(p; f_tol = 1e-5, x_tol = 1e-3, c_tol = 1e-8)

opt = Opt(:LD_SLSQP, 3)

lower_bounds!(opt, 1e-6ones(3))

xtol_rel!(opt, x_tol)

ftol_rel!(opt, f_tol)

min_objective!(opt, f)

inequality_constraint!(opt, c, c_tol*ones(2))

NLopt.optimize(opt, p)[2]

end

p = runopt(p, x_tol=1e-6)

y = simulate(p)

Sw,Tw = freqdomain(p)

plot(t,y', layout=2, show=false)

plot!(Ω, [Sw Tw] , lab=["Sw" "Tw"], subplot=2, xscale=:log10, yscale=:log10)

plot!([Ω[1],Ω[end]], [Ms,Ms], c=:black, l=:dash, subplot=2, lab="Ms")

plot!([Ω[1],Ω[end]], [Mt,Mt], c=:purple, l=:dash, subplot=2, lab="Mt", ylims=(0.01,3))
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6. Notes

if no candidate is previously available. The optimization method SAMIN from Optim.jl2 is a
suitable choice for this. SAMIN does not handle arbitrary nonlinear constraints and such
constraints must thus be encoded in the cost-function. This encoding can easily be done
using indicator functions, since SAMIN does not require the cost function to be smooth.

5. You may want to..

Most Julia code can be differentiated using AD. Some exceptions include when Julia call out
to BLAS or LAPACK, and no generic methods written in Julia are defined. Examples of
this are FFT and matrix factorizations. The solution to this problem is to either manually
define the Jacobian of the function, or to define a generic fallback method written in Julia.

5.1 Differentiate through FFT
FFT can easily be differentiated by implementing the FFT in Julia. A Julia implementation
exists in FastTransforms.jl3 and it can be used for AD by lifting the type restrictions in the
method definitions (by removing T<:BigFloat).

5.2 Differentiate through Eigenvalue factorization
Eigen calculations are used in many places in ControlSystems.jl, examples include calculation
of poles, frequency-response calculations for state-space systems etc. Julia calls LAPACK
to perform these calculations and it is thus not possible to differentiate through these by
default. A native Julia implementations of eigvals exists in GenericLinearAlgebra.jl4 (this
package was used above to allow the function pole to calculate the poles of the system when
the transfer function contained coefficients of the special type Measurement).

5.3 Add time-domain constraints
This is straightforward, just make constraintfun depend on the solution.

5.4 Add filters
A filter is easily added anywhere. As an example, this adds a filter with adjustable bandwidth
on the output

C = K(p[1], p[2], p[3])

ω = p[4]

Cf = C*tf(1, [1, 2ζω, ω^2])

6. Notes

The code published in this report is released under the MIT license5 and was written
for Julia v1.0 and ConstrolSystems.jl v0.5. A notebook with the full code is available at
https://github.com/JuliaControl/ControlExamples.jl/blob/master/autotuning.ipynb

2 http://julianlsolvers.github.io/Optim.jl/stable/#algo/samin/
3 https://github.com/MikaelSlevinsky/FastTransforms.jl/blob/master/src/fftBigFloat.jl
4 https://github.com/JuliaLinearAlgebra/GenericLinearAlgebra.jl
5 It means you may use it however you want without restrictions.

10

https://github.com/JuliaControl/ControlExamples.jl/blob/master/autotuning.ipynb
http://julianlsolvers.github.io/Optim.jl/stable/#algo/samin/
https://github.com/MikaelSlevinsky/FastTransforms.jl/blob/master/src/fftBigFloat.jl
https://github.com/JuliaLinearAlgebra/GenericLinearAlgebra.jl


References

References

Bagge Carlson, F. and M. Fält (2016). ControlSystems.jl : a control systems toolbox for julia.
eng. url: https://github.com/JuliaControl/ControlSystems.jl.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: a fresh approach to
numerical computing”. SIAM Review 59:1, pp. 65–98.

Giordano, M. (2016). Uncertainty propagation with functionally correlated quantities. eprint:
arXiv:1610.08716. url: https://github.com/JuliaPhysics/Measurements.jl.

Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal,
and V. Shah (2018). Fashionable modelling with flux. eprint: arXiv:1811.01457.

Johnson, S. (2007). The NLopt nonlinear-optimization package. url: https://github.com/

JuliaOpt/NLopt.jl.
Rackauckas, C. and Q. Nie (2017). “Differentialequations.jl - a performant and feature-rich

ecosystem for solving differential equations in julia”. SIAM Review 5:1, p. 15. doi: http:
//doi.org/10.5334/jors.151. url: https://github.com/JuliaDiffEq/DifferentialEquations.
jl.

Rackauckas, C., Y. Ma, V. Dixit, X. Guo, M. Innes, J. Revels, J. Nyberg, and V. Ivaturi
(2018). A comparison of automatic differentiation and continuous sensitivity analysis for
derivatives of differential equation solutions. eprint: arXiv:1812.01892.

Revels, J., T. Besard, V. Churavy, B. D. Sutter, and J. P. Vielma (2018). Dynamic automatic
differentiation of GPU broadcast kernels. eprint: arXiv:1810.08297.

Revels, J., M. Lubin, and T. Papamarkou (2016). Forward-mode automatic differentiation in
julia. eprint: arXiv:1607.07892. url: https://github.com/JuliaDiff/ForwardDiff.jl/.

11

https://github.com/JuliaControl/ControlSystems.jl
arXiv:1610.08716
https://github.com/JuliaPhysics/Measurements.jl
arXiv:1811.01457
https://github.com/JuliaOpt/NLopt.jl
https://github.com/JuliaOpt/NLopt.jl
https://doi.org/http://doi.org/10.5334/jors.151
https://doi.org/http://doi.org/10.5334/jors.151
https://github.com/JuliaDiffEq/DifferentialEquations.jl
https://github.com/JuliaDiffEq/DifferentialEquations.jl
arXiv:1812.01892
arXiv:1810.08297
arXiv:1607.07892
https://github.com/JuliaDiff/ForwardDiff.jl/

	Introduction
	ControlSystems.jl
	Differentiating through the integrator
	Optimizing the cost function
	You may want to..
	Notes
	References

