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Automatic Tuning of Digital Controllers with
Applications to HVAC Plants*

K. J. ASTROM,t T. HAGGLUND% and A. WALLENBORG

A tuning method based on relay feedback for a general digital controller is
presented and applied to heating, ventilation and air-conditioning plants.

Key Words—Automatic tuning; adaptive control; digital control; air conditioning, ventilation.

Abstract—It has been demonstrated that PID controllers can
be tuned effectively based on an experiment with relay
feedback. This paper describes a tuning method for a general
digital controller based on relay feedback. The control design
method is based on pole placement. An interesting feature is
that the sampling period and the desired closed-loop poles
are determined from the experiment. The method is also
suited for pretuning of adaptive algorithms. The paper
describes the basic ideas, which are illustrated by
simulations. Results from tests on HVAC (heating,
ventilation and air-conditioning) plants are also reported.

1. INTRODUCTION

In sPITE OF many advances in control theory,
simple controllers of the PID type are still used
in the majority of control loops (see Deshpande
and Ash, 1981; McMillan, 1983). Lately there
have been significant efforts to give PID
controllers added capabilities by providing
facilities for automatic tuning, gain scheduling
and adaptation (see Bristol, 1977; Hégglund and
Astrom, 1991). This has drastically simplified the
use of PID controllers and significantly improved
their performance.

One procedure for automatic tuning was
proposed in Astrom and Higglund (1984). It is
based on determination of the ultimate period
and the ultimate gain from a simple experiment
with relay feedback. Several industrial products
based on this idea are now available on the
market (Astrom and Higglund, 1988a,1990).
An attractive feature of relay tuning is that it is
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easy to use. It can be implemented in such a way
that tuning is done simply by pushing a button.

The PID controller does, however, have some
drawbacks. It performs poorly for processes with
long dead-time and it requires unnecessary fast
sampling. It is thus of interest to use other
control algorithms to cope with processes with
time delay and to provide those controllers with
some tuning facility.

In this paper we take a different approach to
single loop control. The key idea is to choose a
general digital control algorithm and to develop
a method for tuning such a controller. By
choosing a digital controller the problem of
finding an appropriate discretization of a
continuous time controller is avoided. The
sampling period is determined with respect to
the process dynamics which means that the
computing power is used economically. The
chosen controller structure admits dead-time
compensation.

2. PULSE TRANSFER FUNCTION IDENTIFICATION

To design digital control laws it is necessary to
know the sampling period and a discrete time
process model. To determine a process model
experimentally, a sampling period is first chosen,
perturbation signals are then introduced and the
process model is finally obtained from some
parameter estimation method (Ljung and
Soderstrom, 1983). In self-tuning control, the
perturbations are generated by conventional
feedback and the parameters are estimated
recursively. The sampling period is a crucial
parameter both in conventional parameter
estimation and in adaptive control. Prior
knowledge about the timescale of the process
and the closed-loop system is required to
determine the sampling period. This fact has for
a long time been a stumbling block for automatic
modeling and adaptive control.
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A tuning method which bypasses the
difficulties discussed above was proposed in
Astrom and Higglund (1984). The idea is that
most plants will exhibit a periodic oscillation
under relay feedback. The amplitude and the
period of the oscillation can then be used to tune
a controller based on conventional design
methods of the Ziegler—Nichols type. The tuning
methods discussed in Astrom and Higglund
(1984) are only based on knowledge of the
amplitude and the period of the oscillation. We
will here show that conventional sampled data
models can be determined using the wave-form
of the oscillation. The parameters can of course
be determined by any standard estimation
method. A significant simplification can, how-
ever, be obtained by exploiting the periodic
nature of the system.

The starting point is that a relay feedback
experiment in stationarity gives periodic input
and output signals as shown in Fig. 1. The period
of the oscillation is approximately the ultimate
period under proportional feedback. This period
can be used as a basis for selecting the sampling
period. It will now be shown how a model can be
fitted to the results of an experiment with relay
feedback.

Consider a system with a periodic input signal.
Assume that the system is sampled with a period
corresponding to N samples per period. The
input signal is then given by the values

Ug, Uy, Uy - - o, Un—

(1)

Uy =u; for i=0

where u denotes deviations from the mean value
of the oscillation. Let the steady-state output be

Yor Vi, Y2, + -«
yvei=y; for i=0

» YN-1

@

where y also denotes deviations from the mean
value.

A standard input-output model for a linear
system can be written as

A(q)y (k) = B(q)u(k) &)

where A(q) and B(g) are polynomials in the
forward shift operator. The process dead-time d

Yy Y2

Y
o} o \/
- T T 1
0 10 20 30

Fic. 1. Input and output signals obtained from an
experiment with relay feedback.

is included in the A polynomial. Hence
d=deg A —degB.

The estimation problem is thus to determine the
model (3) from the data (1) and (2). A simple
scheme for doing this was described in Astrém
and Higglund (1988b). The z-transforms of the
signals (1) and (2) are

oz +uzV M Uz

U(Z) ZN_l
_ E@)
V-1
N N—1
VaZ +Va12 + ot Yaen—1Z
Y(Z) - d d+IZd(ZN_ 1) d+N-—1
__D@)
29N -1)°

The particular representation of the z-transform
of the periodic function y is chosen to be causally
compatible with the model (3). It follows from
equation (3) that

B(z)
@)

2@

Y(z)= A(2)

(2) +

where the polynomial Q(z) corresponds to initial
conditions which give the steady-state periodic
output. Introducing the expressions for Y(z) and
U(z) given above we find

D(z) _ _B(z)E(z) +Q(Z)
2@V =1) Y -DA(z) A(z)

or
A(z2)D(z) — 2B(z)E(z) = z(z" = 1)Q(2). (4)

This is a Diophantine equation for determining
the polynomials A, B and Q. It can be solved if
D(z) and E(z) are relatively prime.

Relay feedback oscillations

The special case when the input is a symmetric
square wave oscillation is of particular interest.
It is then sufficient to consider only a half period.
Without loss of generality we can assume that
the relay gives an output with unit amplitude
(see Fig. 1). If n = N/2, the input signal is then
given by

u0=u1="':un—%=—1 )
U, =—u; for i=0.
The output signal is given by
Yos Yis -+ Yn-1
(6)

Yovi=—Y; for = 0.
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The z-transforms of the signals are

2"+ '+ 4z E(2)

U(z)=~

2" +1 IZES
YaZ" ‘1")’(1“2”_1 trt Yara1Z
Y -
(2) z%z" + 1)
__D(z)
zd(z” +1)°

Equation (4) then becomes
A(z)D(z) — z'B(z)E(z) = z/(z" + 1)Q(z2). (7)

Equating coefficients of equal powers of z we
get n +deg A + 1 linear equations to determine
the coefficients in the model. The number of
unknown parameters in the polynomials A, B
and Q is 3deg(A) —2d + 2. To determine these
parameters, it is therefore necessary to have
n=2(deg(A) —d)+1. If n>2(deg(A)—d)+1,
the number of equations is larger than the
number of unknown parameters. It is therefore
suggested to use some kind of minimization
technique to determine the parameters in this
case.

The identification procedure can be sum-
marized as follows:

1. Introduce relay feedback and wait for
steady-state conditions.

2. Determine a suitable sampling period h =
T, /2n such that n=2(deg(A)—d)+1, i.e.
based on the oscillation period 7, and the
mode] complexity.

3. Determine uy, Uy, ..., 4, and yo, yy, ...,
Yu—1. Compute averages over several periods
to compensate for noise.

4. Calculate the process model from (7).

This identification procedure both provides a
suitable sampling period of the controller and
gives information about reasonable choices of
closed-loop poles. This will be further discussed
in the next section.

Example—first-order system with time delay
The identification procedure will now be
applied to a process with the transfer function

e—sL

- K
Gl =K

(8)

i.e. a first-order process with static gain K, time
constant T and time delay L. The corresponding
pulse transfer function is
bz +b,
H(iz)=—F—=
(Z) Zd(Z _ a)
The model has four parameters, the integer d
and the real numbers a, b, and b,. The integer

d must be less than or equal to n. To determine
these parameters it is thus necessary to have at
least three measurements per half period, i.e.
n=3. The following examples show how the
models are obtained using the identification
method described above. The cases d =1, 2 and
3 will be considered separately.

Example 1. Time delay d =1. Consider the
process model

y+ 1) =ay(t)+bu(t)+bu(t—1) (9)

which corresponds to sampling the model (8)
with a time-delay L less than one sampling
period. In this case we have

A(z)=z(z—a)
B(z)=b,z +b,.
For n =3, equation (7) becomes
2(z = a)()12° + y,2° — yoz) + z(byz + by)
(P + 2%+ 2)=2(2> + 1)(goz + q.).
It follows that g, =0, since the left-hand side
lacks first-order terms. The equation can
therefore be reduced to
(z = a)(312° + y,2 — yp)
+(b1z +by) (2% + 2 +1) = qo(2% + 1).
Equating coefficients of equal powers of z gives
four equations to determine the unknowns a, b,,

b, and g,. These equations have a solution if
i Fy,. It is given by

Yot ¥
g =ty
=X
) Yo YIH Vit Yoyt Yoyat vy
=
2()’1 “)’2) (10)
b Yo YI VI Yoy — Yoy — Vi)
=
2()’1 =¥2)
VI Yot ey~ iy
qo= .
2()’1 —}’2)

Example 2. Time delay d=2. Consider a
first-order system where the time delay L is
between one and two sampling intervals. The
sampled model of such a system is

yt+ 1) =ay(t) +byu(t— 1)+ bu(r — 2). (11

If we observe that this case is the same as
shifting the output one sampling interval to the
right in Example 1, we find that the result is
obtained from the previous case by making the
cyclic permutation

Yo=>yi, »i—=y, and y,— —y,.
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If y, # —y,, parameter a is e.g. given by
a=0"2 (12)
Yoty
Example 3. Time delay d=3. Consider a
first-order system where the time delay L is
between two and three sampling intervals. The
sampled model of such a system is

y(t+1)=ay(t) + bu(t —2) + bou(t —3). (13)

If we observe that equation (13) is obtained from
(11) by shifting the output one sampling interval
to the right we find that the result is obtained
from Example 2 by making cyclic permutation

Yo=Y, y1—>Yy2 and  y;— —y,.
If y, # y;, parameter a is e.g. given by

a= 1= _ (14)
Yo— Nt
Three different models were obtained above.
They correspond to the cases that the dead-time
L of the process is in the ranges

0=L<4T,
tT, =L <3T,
iT, = L <3iT,

where T, is the period of the limit cycle. Notice
that we cannot have L>T,/2, ie. that the
dead-time cannot be longer than half the
oscillation period. Also notice that

aaa =-1

where a’ is the a coefficient obtained for d =1i.
This means that at least one of the numbers a' is
negative. Such a model cannot correspond to a
system with the transfer function (8). In a
specific situation we thus only have to consider
two values of d.

The identification procedure can of course also
be applied to systems of higher order. It is then
necessary to use more measurements per
sampling period. With the accuracy that is
normally obtained in practical situations, it is not
realistic to consider models having very high
order. In Appendix Al, the identification
procedure is applied to a second-order process
with time delay.

3. CONTROL DESIGN

A general linear control algorithm for a
system with measured signal y and set point y,,
can be described by the difference equation

u() +ru(@t =1+ - +rui—k)
=toysp(t) Tyt — 1)+ -+ + b, Ysp(t —m)
—soy(@) —si(t—=1) — - —sy(t=1)

where u is the control variable and the sampling
period h has been chosen as the time unit. In
shorthand notation this equation can be
described by

R(q)u(t) = T(q)ys(t) = S(q)y ()

where R, S and T are polynomials in the forward
shift operator g. Since integral action is required
in most process control applications the polyno-
mial R(g) must have ¢ —1=A as a factor. The
control law then becomes

R(@)Au(t) = T(q)ysp(t) = S(q)y(®).  (15)

Equation (15) will therefore be the standard
form that we will use.

The parameter estimation procedure pre-
sented in the previous section gives information
that is very useful to assess the control problem
and to select a suitable controller. An estimate
of the ratio of the apparent dead-time to the
apparent time constant can be obtained from the
model. This makes it possible to choose a
suitable sampling interval and to judge the
difficulty of the control problem. The experiment
with relay feedback also gives the ultimate
frequency w, which is a good indication of the
closed-loop bandwidth that can be achieved. The
estimation procedure also gives an approxima-
tion of the process dynamics in terms of a
low-order pulse transfer function.

When a process model of the form (3) is
available there are many design methods that
can be used to obtain a control law. A pole
placement design where natural frequency @ and
relative damping { of the dominant poles are
specified is one alternative. The design para-
meters can be chosen automatically. Parameter §
can be fixed and frequency w can be chosen as
o = w, for systems with low-order dynamics.
For systems with a large pole excess this value of
w is, however, too large. In those cases where @
is reduced we may also consider a new
experiment at a lower frequency. Otherwise, the
input signal is not ideal for thle parameter
estimation (Astrom and Wittenmark, 1990).

There are many ways to carry out the design.
Since the model is obtained in terms of a rational
function it is convenient to use polynomial
methods. We will now show how such a method
can be applied to the system in Examples 1, 2
and 3.

Example 4. Consider the system (9) obtained in
Example 1, i.e.

A(z)=z(z —a)
B(z)=b,z +b,.

Assume that the desired behavior of the
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closed-loop system is described by a reference
model with the pulse transfer function
B.(2)/An(z), where

An(z)=2"+piz +p;
B.(z) =BB(z)
and f is chosen so that B (z)/A,(z) has unit
static gain. The polynomial A4, (z) is chosen so
that
p1=—2e " cos ((wh V1 — £?)

p2 — e—Zth.

This corresponds to a second-order response
with relative damping { and frequency w. The
observer polynomial must also be given to obtain
a complete specification see (Astrom and
Wittenmark, 1990). For simplicity we choose a
dead-beat observer of the same degree as the
polynomial A(z). The observer polynomial is
thus
Ay(z) = 298 = 22,

Using the controller (15), the closed-loop
transfer function becomes

B(2)T(z)
A(z)(z = DR(2) + B(2)S(2)

Comparing this with the desired closed-loop
transfer function

Ao(2)Bu(z) _ Ao(2)BB(2)
Ao(2)Am(z)  Ao(2)Am(2)

gives the following Diophantine equation to
determine the polynomials R, and S

A(z)(z = DRy(2) + B(2)S8(2) = AoAn(2)-

The polynomial T is determined from the
condition that the closed-loop transfer function
should be equal to one for z = 1. This gives

T(1) = S(1).

It is straightforward to find the following
minimal degree solution

R(z)=z+n
S(z)=s0z" + 5,2
T(z)=tyz?

where
_ 1 (A1)  An(a)
T ( B(1) “B(a) )
__a (A1) An(a)
R ( B1) B() )
b,
n=-—s
a

The control law is then given by

u(t) =toysp — Soy(t) =8, y(t — h)
+ (1 = r)u(t = h) + riu(t — 2h).

The design procedure applied to the process
models obtained in Examples 2 and 3 is given in
Appendix A2. Notice that the complexity of the
controllers obtained depends on the delay
structure of the system. A dead-beat observer is
used in all the examples. A more robust design is
obtained by choosing observer poles that are
removed from the origin, e.g. to z=0.2
(Lennartson, 1987).

4. MODEL VALIDATION

In all modeling schemes it is necessary to
validate the model obtained. In the schemes
discussed in Section 2 it is necessary to
determine that the model order used is
reasonable. It is also necessary to choose among
models obtained for different values of d. This
means in general to choose among n different
process models. One effective way to do this is
to calculate the waveform in several intermedi-
ate points and compare this with measurements.
This is illustrated by an example.

Example 5. Model validation. To illustrate the
valuation procedure we will show the results
when the identification procedure is applied to a
process with the transfer function

—4s
G@E)=——73.
(<) (s +1)*
The results of a relay experiment with the
process is shown in Fig. 1. The relay amplitude
was 1 and the hysteresis level 0.1. With six
samples per period we get

(16)

yo=0.106
yl - 0.782
v, =0.956.

The reason why y, is slightly greater than the
hysteresis level (0.1) is due to the sampling.
Since n =3, three first-order process models are
obtained. The model parameters are given in
Table 1.

The model for d=1 can immediately be
excluded since the parameter a is negative. For

TABLE 1. PARAMETERS OF MODELS HAVING DIFFERENT

DELAY
d a b, by K T L
-6.11  —359 216

0.636 0.128 0586 2.0 43 3.6
0.257 0.554 0202 1.0 14 47

(OSSR
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the other two models, corresponding continuous
time models with the structure

e—sL

1+sT

G@E)=K (17)

have been computed from the equations

(biths

1—a

__h

" Ina
ab,+ b,
L=hd+TIn——=
"+ b,

where h=1.94 is the sampling period. The
numerical values are given in Table 1.

Figure 2 shows the process output obtained
from the relay feedback experiment together
with the outputs obtained from the continuous
time models corresponding to d =2 and d =3.
All outputs will of course coincide at the
sampling instants. There are, however, sig-
nificant deviations between the sampling
instants.

From Fig. 2 it is obvious that the model
corresponding to time delay d =3 gives the best
fit to the measured data. The integral of the
absolute errors (IAE) between the model and
the measured data is 2.4 times larger for the
model with d =2 than for the model with d = 3.

The model (17) is simpler than the transfer
functions (16). The dead-time L is overestimated
and the two lags of 1sec in (16) are replaced by
a single lag of 1.4sec. Notice that the sums of
the dead-times and the lags are quite close, 6.0
for (16) and (6.1) for (17).

In Fig. 3 we show the Nyquist curve of the
continuous time model (16), and the estimated
continuous time model (17) with d =3. Notice

-1 L

T T 1

0 10 20 30

F1G. 2. The process input and output obtained from the relay

feedback experiment together with the outputs obtained

from the continuous time models corresponding to d =2 and

d =3. (The model corresponding to d =3 is the one closest
to the process output.)

FiG. 3. Comparison of the estimated transfer function (solid
line) and the true transfer function (dashed line).

the remarkably good agreement, particularly
below the ultimate frequency. This is the
frequency range of importance for design of
simple controllers.

The controller becomes

Au(®) + riAu(t —1) +- - - + nAu(t — k)

= toYsplt) — Soy(t) — s, y(t — 1) (18)

where
to=S8o0+ 5

to have the correct steady state. This controller
can be interpreted as a PI controller with
dead-time compensation. If the wundamped
closed-loop frequency is chosen to correspond to
the period of the relay oscillation and if the
relative damping is specified to { =0.707, the
controller parameters are

S()=0.925 r2=0665
s;=-0.232 r=0.182
r = 0.553.

Figure 4 shows how the closed-loop system

Process output and set point

v

T T T T )
0 20 40 60 80 100
Controt signal

0 2 40 60 %0 100
FIG. 4. Response of the closed-loop system obtained when

the design procedure is applied to a system with the transfer
function G(s)=e"*/(s + 1)
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HX
HC

FIG. 5. Schematic diagram of air-handling unit with supply

air temperature control. HX=rotary heat exchanger,

HC=heating coil, TT = temperature transducer, and u =
control signal to valve actuator.

responds to step changes in setpoint and load.
The controller gives good performance both with
respect to setpoint changes and load disturbance
rejection.

5. APPLICATIONS TO HVAC PLANTS

During the last decade, there has been a
breakthrough in digital control and modern
computer-based building management systems
for supervision, monitoring and control of
HVAC (heating, ventilation and air condition-
ing) plants (Wallenborg, 1991). With these tools,
it is much easier to evaluate the control
performance than before. Therefore, in the
future it can be expected that more emphasis will
be put on control performance in HVAC system
specifications. Consequently, more effort must
be put into controller tuning in order to fulfill
the increased demands. Both time and money
can thus be saved in the commissioning

procedure by introducing controllers with auto-
matic tuning facilities.

The new algorithm has been successfully
tested on a number of different HVAC plants
(Wallenborg, 1991). We will present here two
examples: control of supply air temperature and
of air duct pressure. Some of the practical issues
that were considered during the tests will also be
presented.

Control of supply air temperature

The first example is taken from an air-
handling unit where outdoor air is heated before
being distributed to the interior of a building.
The air is heated in two stages. First, the
incoming fresh air is preheated by a rotating heat
exchanger that recovers excess heat energy from
the return air before it leaves the building. Then
the supply air is heated to the desired
temperature with a heating coil, i.e. a water-to-
air heat exchanger. Figure 5 shows a schematic
diagram of the process. The control signal is the
position of the actuator for the valve that
controls the hot water supply to the heating coil.
The measured process output is the supply air
temperature beyond the heating coil and the fan.

Figure 6 shows results of a tuning experiment.
The upper graph shows the measured supply air
temperature, 7(°C), and the lower graph shows
the control valve actuator position, u(%). The
relay amplitude is automatically adjusted to
obtain a desired limit cycle amplitude.

Figure 7 shows the step response of the
closed-loop system with controller parameters
obtained from the tuning experiment in Fig. 6.
The graphs show the setpoint (dashed line), the
measured supply air temperature, T(°C), and
the control valve actuator position, u(%). The

24 . Supply Air Temp. .
g 23r |
o
[}
=
~
21 3 L . L
: 10 20 25 30
t [min]
100 . Valve ?osmon
80+ 1
S ]
TR T N P ————
201+ |
0 L ] )

20 25 30

F1G. 6. Tuning experiment on air-handling unit with supply air temperature control.
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Supply Air Temp.

24 T

T [degC}

21 L 3

100 T

15 20 25 30

t [min]

80+

u [%]

20+

0

40k .

5 10

15 20 25 30

Fi6. 7. Closed-loop supply air temperature step response with controller parameters from the tuning
experiment in Fig. 6.

step response is well behaved without overshoot.
This type of response is the most requested in
HVAC systems.

Control of air duct pressure

In the second example, the autotuner is used
for control of supply air duct pressure. Figure 8
shows a schematic diagram of the process. The
static pressure in the main duct is controlled by
adjusting the inlet guide vanes (pitch control) at
the fan entry. The control signal is the position
of the guide vane actuator (0-100%). The
process output is the static air pressure,
measured with a pressure sensor located
downstream of the fan.

Figure 9 shows a tuning experiment performed
on the main duct pressure control loop. The
graphs show the measured static pressure, p
(Pa), and the guide van actuator position, u (%).
The wave forms of both the measured duct
pressure and the control signal during the tuning

HX

HC Fan

'—’@ { )

PT

FiG. 8. Schematic diagram of air-handling unit with main

duct static air pressure control. HX = rotary heat exchanger,

HC = heating coil, PT = pressure transducer, and u = control
signal to inlet guide vanes.

experiment are distorted due to the rather slow
sampling interval (10 sec) of the trend-logging
program.

In this experiment it was more difficult to
obtain a stable oscillation because the selected
value of the oscillation amplitude, 10 Pa, is quite
small compared with normal  pressure
disturbances.

Figure 10 shows the step response of the
closed-loop system with controller parameters
obtained from the tuning experiment in Fig. 9.
The graphs show the pressure setpoint (dashed
line), the measured duct static pressure and the
guide vane actuator position. The step responses
are also well behaved here, with only a minor
overshoot.

Practical issues

Several practical problems were encountered
and solved during the tests on different HVAC
plants. Some of these will now be discussed.

Bias adjustment. In order to counteract load
disturbances during the tuning procedure and to
ensure a symmetric oscillation, a bias signal may
be added to the relay output. The offset level
should correspond to the mean value of the relay
output control signal. It may be calculated
on-line during the tuning procedure as

b=d tpos - tneg
tpos + tneg

where b is the bias level, d is the relay
amplitude, £, is the length of the positive half
period, and f,, is the length of the negative haif
period. For further details, see Hang and
Astrom (1988).

Automatic relay amplitude adjustment. In some
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FiG. 9. Tuning experiment on air-handling unit with static air pressure control.

applications, it may be desired to keep the
fluctuations in the measured signal within certain
limits, so that the tuning procedure can be
carried out without disturbing the process too
much. This can be achieved by adjusting the
relay amplitude on-line during the tuning
procedure. A simple algorithm for automatic
adjustment of the relay amplitude is

Gret
dnew =d
a

where a. is the desired amplitude setpoint. This
adjustment rule is actually equivalent to an
integrating controller.

It normally takes a few periods before a steady
state oscillation is obtained after a change in
relay amplitude. It is therefore recommendable

Duct pressure
T T

to either low-pass filter d,.., or to apply the
adjustment rule at such a low rate that steady
state is obtained after each adjustment.

Pretune control design. In complex plants with
many control loops, e.g. large HVAC systems, it
may be cumbersome to use manual control to
bring the plant to normal steady-state operating
conditions suitable for the tuning procedure. The
autotuner should therefore be provided with
some initial parameter values which allow one to
close the loops before the first tuning procedure
has been carried out. Quite often PI control
parameters are available which at least stabilize
the loops, even if the control performance is
poor. These parameters can be used to initialize
the autotuner, e.g. in the following way.

Consider a discrete time PI controller with
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FiG. 10. Closed-loop static air pressure step response with controller parameters from the tuning experiment in Fig. 9.
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proportional gain K, integral time T;, and the
sampling interval h. The discrete time relation
between the control error e and the output u of
the PT controller is given by

K(qg—(1—-h/T))
g-—1 ¢

Comparing this with the general discrete time
controller

R(q)u(t) = T(q)ysp(1) — S(q)y(©)
gives the following controller polynomials:
R(g)=q—1
S(q)=Kq—K(1-h/T)
T(q)=Kq—KQ-h/T).

u(t) = (t).

These formulae can be used in a pretune design
mode to select initial values for the control
parameters.

6. CONCLUSIONS

This paper proposes a simple method for
tuning digital control laws directly. It is believed
that this method is superior to the techniques
based on continuous time PID algorithms for the
following reasons: these are fewer approxima-
tions involved, because a discrete time model is
fitted directly; information about the full
wave-form is used, not only amplitude and
frequency; it is easy to include an adjustment of
the response rate in the system simply by letting
the operator choose { and w; the algorithm can
cope with systems having time delays, and also
allows adaptive prefiltering.

Extensive simulations have shown that the
method works very well for low-order systems
with time delay. This can of course be expected.
For systems with a large pole excess, the direct
approach does not work so well. There are
several reasons for this. The output signal is
almost sinusoidal which means that only two
parameters can be determined. It is, however,
possible to arrange the relay experiment so that
the steady state gain can also be determined.
The model (17) can then be determined also in
this case.

These are some key design issues that require
further investigation. A major issue is the model
complexity required. It is our guess that the
simple model used in the examples will be
sufficient for many applications. It is a good idea
to introduce some observer dynamics. These
may be chosen as a function of the noise level. A
design based on predictive control may also be
considered.

The algorithm is also ideally suited for

initialization of adaptive controllers. In this case
the initialization is executed under tight feed-
back conditions. The algorithm gives initial
parameter estimates as well as estimates of
sampling periods and an estimate of the
achievable bandwidth.

The algorithm has been tested on several
HVAC plants with good results. Two examples
are reported in this paper.
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APPENDIX Al: IDENTIFICATION PROCEDURE
EXAMPLE

The identification procedure presented in Section 2 is here
illustrated for a second-order process with time delay.
Consider the process model

1 byz>+b,z+b,

Y(Z):;" 2 +az+a, (AL

which corresponds to sampling of a second-order system with
a time delay. The model has five parameters. To determine
there it is thus necessary to have n=5. For n=35 the
equation (7) becomes

2422 +a,z + a))D(z) — 29 (byz" + bz + b,)E(2)
=z + Doz’ + g1z +q2). (A1)

The factor z¢ can be cancelled in the equation. For d =1,
D(z) becomes

D(z)= (32" +y,2* + 3327 + y,2° = yy2).
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For other values of d, D(z) can easily be obtained by cyclic
substitutions of y; in the same way as in Examples 1-3. The
polynomial E(z) is the same for all values of d

EG@)==(+z*+2*+2%+2).

The parameter ¢, must be zero, since both D(z) and E(z)
lack zero-order terms. The equation (A1.2) can thus be
reduced to

(2 +a,z+a)D(z) = (boz* + bz + b)E(2)
= (2" + 1)(qoz” +q,2). (Al1.3)
The equation can be solved for all five values of 4. Ford =1,

the seven unknown parameters are obtained from the
following set of equations:

bo—qu=—y,

bo+b +ya —q,=-y,

by+by+by+y,a,+ya,=—y,

by+ b +by+ysa,+y,a,=—y,
bo+by+byt+ya +ya,=y,
by+by—yea, +ysa,~qy=0
by—yoar—q,=0.

These equations have the solution

a1 =[Yoy1 = Yoy2 + Y1¥4a= y2¥3 +¥5 = y3yul/N
a=[=YoY2+ Yo¥s = Y2Ya+ ¥5=ysya+ YIlIN
bo=[ya(yo(=y1 +y2) = y1(y3+ y4)

+ (¥t ya—ys)

+y3(=y3 +2y4)) + i (n1(y3 = ya)

=202 = Y3 =y —yi—y3)

+ 922394 = Y2 = (3 — yayat+ ¥ + yDI2N
by =1y —y) =y =y = Ya)

~Y¥3=2¥0) = ¥3 Y4~ ¥3)

=0V yz =¥yt y3—208) — yaya)

+ 12002~y + Y3+ 3 — 53—y

+ys(—y3ys t+ Y%) - }’i]/ZN
by =[ya(o(=y2+ y3) + y1(¥1 = Y2 = ¥2) + ¥a(32 ~ ¥4)

+ 1303 = ) + YD) + 0131 e + 3 =2y5+ ya)

+y3(y3 = ya) = ¥3)

+ 2232 = y3 = ya) + y3(y3 + 2y4)) = y31/2N
N==y ys+yy, +Y§_)’2Y3 _Y2Y4+)’§-

Since the dead-time cannot be longer than half the period,
parameter d takes values from one to five corresponding to
the following situations:

To reduce the number of cases to be considered, we can
proceed iteratively starting with models of lower order.
APPENEIX A2: DESIGN PROCEDURE EXAMPLE

The design procedure presented in Section 3 is here
applied to the process models obtained in Examples 2 and 3.

Process model obtained in Example 2
Consider first the system (11) obtained in Example 2, i.e.
A@E@)=z%z —a)
B(z)=b,z +b,.

AUTO 29:5-M

The system is of third order. Choosing the desired
closed-loop characteristic polynomial as

An(Z)Am(Z) = Z4(Zz-'—plz +p2)

we find that polynomials R, and § satisfy the Doophantine
equation

A(z)(z - DR\(2) + B(2)S(z) =z*(z* + p,z + p,).
The minimal degree solution becomes
R(z)=z*+rz+ r
S(z) =s5,2" +5,2°

where

1 (A1) LA
s“‘1—a<3(1) a B(a))

a (M —a Am(a))

a—1\ B(1) B(a)
b
r —;Zs,
, 1+ar —é—ls _b s
i a 2 1 0

The control law is then given by
ult) = to Y, = 5oy(t) =5, y(t —h) + (1~ ry)u(t — h)
+(r; — r)u(t —2h) + ru(t — 3h)
where
th=5g+5,

to obtain the correct steady state.

Process model obtained in Example 3

Consider the fourth-order system (13) obtained in
Example 3, i.e.
A(2)=2*z—a)
B(z)=b,z +b,.
closed-loop  characteristic

Choosing  the following

polynomial:
Ay(2)An(z) =25z +p,z + po)
R, and § satisfy the following Diophantine equation:
A(2)(z = DR (2) + B(2)S(2) =z%z* + p,z + p,).
The minimal degree solution is given by
R(2)=2+rz*+nrz+n

S(z)=s542%+5,2°

h
where o=l (Al ERO)
°*“1-a\'B1) ? B(a)
-4 (Am(l)_azAm(a))
""a-1\BQ) B(a)
b
s —;2.5‘1
1+a b, b,
h= a G—;SI—ISO
(1+a 1 b
r|=—a~)r2—;r3—71s0.

The control law is then given by
u()=toys, = soy () — s, y(t = h)+ (L —r)u(t — h)
+ (ry — r)ut = 2h) + (r, — RYu(t — 3h) + ru(t — 4h)

where
thy=8g+58,

to obtain the correct steady state.







