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Abstract: There exists a solution to the discrete time algebraic Riccati equation giving
closed loop eigenvalues inside or on the unit circle, assuming the system is stabilizable.
This solution is always unique. Numerical methods, like the sorted generalized Schur form
method and the Kleinman iteration, often fail in case of zeros on the unit circle or lack
of left invertibility. It is here suggested how such singular cases could be made regular by
reduction operations on the system matrix pencil [—2I + A, B; C, D]. The solution may
be discontinuous with respect to parameter variation, but the reduction approach seems
numerically appealing. This is demonstrated using simple illustrative examples. The solution
is the largest symmetrical matrix satisfying a corresponding LMI. To obtain a feasible
solution for interior-point methods it is also necessary to do a reduction, for some problems
even further than what is described in this paper.

Keywords: discrete-time algebraic Riccati equations, linear-quadratic control, maximal
solution, singularity, zeros on unit circle, left-invertibility, discontinuous solution, LMI.

1. INTRODUCTION

The interest in Riccati equations was revived by the
theory of Hs,-control. Actually it was found that some
singular Hy-cases were not fully understood, especially
in discrete time. A basic reference is Silverman (1976),
while books like Kucera (1991) and Bittanti et al. (1990)
provide a state-of-the-art survey. Some recent results are
found in Trentelman and Stoorvogel (1995) and Saberi
et al. (1996). In Hagander and Hansson (1995) it is
described how there may exist optimal LQG-controllers
even if the Riccati-equation based controller results in
closed loop eigenvalues on the unit circle. In the classical
formulation of the Riccati equation

S=ATSA+ Q. ATSB(BTSB +Q,) 'BTS4

the inverse does not exist in case of redundant control
signals. These two singular cases are numerically diffi-

* This project was supported by the Swedish Research Council for
Engineering Science under contracts 95-759 and 95-838.

cult to solve without special care, and in this paper we
give a summary of some relevant facts and suggestions
for how to circumvent some of the singularity problems.

A general formulation of the Riccati equation covering
singular cases as well as cross-terms would be to solve
for § and L in

(1)

S=ATSA+Q, - LTGIL,
G=BTSB+Q,, GL=BTSA+Q7,

The equations in (1) can be summarized as

(7o) s(ro)+(r 1) a(rr)-
(4 B]TS[A B)+@ ()

Q- [Ql Q12]

Q,fz QZ



We here only discuss Riccati equations related to
LQG-control and thus require that @ > 0 or @ —
[C, D]T[C, D]. Our interest is in symmetric solutions
S > 0 giving closed loop eigenvalues inside or on the
unit circle, i.e. [A(4 — BL)| < 1. In order to empha-
size the relation between the Riccati equation and Schur
complements — Completion of squares — we may rewrite

HONHRIAIE
ERIRIEAR

The Riccati equation can be used to solve the stationary
L.Q-control problem,

ilif Ilim EJ
7 = [Ca(k) + Du(k)|"[Ca(k) + Du(k)

ok +1) = Az(k) + Bu(k) + v(k)
u(k) = —La(k)

where z(k) € R", u(k) € R™. The constant feedback
matrix L gives a stationary state process z(k) in the
limit. The disturbance v(k) consists of independent ran-
dom variables with zero mean value and unit covariance.
The infimal loss is EvT Sv = trace S, where S is the so-
lution of (1) giving |A(A — BL)| < 1.
The system (A, B, C, D) can be described by its system
matrix, the pencil
—2I+A B
P(z) = [ ]
C D

The two types of singularity correspond to zeros on
the unit circle and lack of left invertibility. The system
(A, B,C, D) is left invertible when

maxrank P(z)

—_m4+n (4)
and there are no zeros on the unit circle when
rank|,|—; P(z) = maxrank P(z) (5)

The lack of left-invertibility is most severe, and the
Riccati equation solution S is then often discontinuous
w.r.t the elements of (4, B, C, D).

ExaMPLE 1

z(k+1) = z(k)/2 + bu(k), and J = 1:(]«:)2
4/3 if 5=0,
s 143 b=
1 otherwise

EXAMPLE 2
zi(k + 1) = ui(k), za(k + 1) =
T = [cz1(k) + z2(k)]? + uz(k)?.

ife=0

4 otherwise

O

In the first example the input is redundant for b = 0 and
rank B < m. In the second example u; is dynamically
redundant together with z; for ¢ = 0. There are other
pertubations of (4, B, C, D) for which the solutions §
are continuous. The following example describes what
happens in case of zeros on the unit circle.

EXAMPLE 3

z(k + 1) = u(k) + v(k), J = [z(k)— u,(k)]z, giving
the Riccati solution § = 0, L = —1 and A — BL = 1.
The infimal cost is zero, but it is only possible to come
arbitrarily close to the infimum using stabilizing control.

O

2. EXISTENCE AND UNIQUENESS THEOREM

The basic theorems on discrete time algebraic Riccati
equations are now summarized,

THEOREM 1

Assume that the system (A4, B, C, D) is stabilizable and
left invertible. Then there is always a real solution (S, L)
to the Riccati equation (1) with symmetric § > 0 and
|A(A — BL)| < 1. Tt also holds that G > 0, and both §
and L are unique. Furthermore |A(A — BL)| < 1, if and
only if there are no zeros on the unit circle.

Proof: See Appendix. O

REMARK 1

For any real symmetric solution § > 0 and any
corresponding A — BL introduce T' = [T, Ty, T ] with
(A— BLYT =TJ, J =diag(J_, Jy,J+) and

[A(T2)] > 1, |A(Jo)| =1, |A(J4)| < 1. Then

(c-pr) (T T) =0, S(T m)=0

O

REMARK 2

rank|,—; P(z) = m + n. The solution S of
Theorem 1 is differentiable with respect to differentiable
variations in (4, B,C, D). O

Assume

For systems that are not left invertible it is possible
to obtain a corresponding left invertible system by



elimination of redundant inputs that do not influence
the system and modes (stabilized for free) not observable
in the performance index. The reduction is related to the
Silverman structure algorithm, e.g. Silverman (1976).
Two different cases can be distinguished corresponding
to examples 1 and 2 respectively. How to do the
reduction will be further discussed below after a section
on numerical methods. A very general theorem can then
be stated.

THEOREM 2

Assume that (A, B, C, D) is stabilizable. There is always
a real solution (S, L) to the Riccati equation (1) with
symmetric § > 0, such that |[A(4 — BL)| < 1. Here S is
unique, but I may be nonunique. There exists a solution
L with [A(A— BL)| < 1, if and only if there are no zeros

on the unit circle. [l
REMARK 3

The modes eliminated correspond to a subspace, where
S is zero. O

3. THREE NUMERICAL METHODS

The most common methods to solve the discrete-time al-
gebraic Riccati equation are the “Kleinman algorithm”
and the “Generalized Schur-form method”. Recently it
has become popular to apply “Linear Matrix Inequali-
ties” (LMI).

3.1 The Kleinman algorithm

BL;, C; = C — DL;, and then solve L;;1 from (DT D +
BT S;B)L;;1 = DTC+ BT S; A. Start with L such that
A — BLg is stable. From the proof of Theorem 1 in the
Appendix it follows that S; — S, the desired solution.

The convergence is normally very fast, but it is quadratic
only if (5) holds. If the system lacks left invertibility
the nonunique L;,; has to be chosen to be stabilizing
for convergence, but that requires considerable work at
each iteration.

3.2 The Schur-form method

First introduce the pencil

0 —z2I+ A B
Pi(z)=| T+ 2 AT cTc cTp
2zBT DTc DTD

which appears naturally when deriving first order op-
timality conditions for the LQ-problem using Lagrange
multipliers. Then find orthogonal @ and Z such that
QT Pi(2)Z is on ordered generalized real Schur form.

This means that its (1,1)-block has its zeros inside or on
the unit circle. Then solve S and L from

S Z1
I Zy= | Zn
—L Z31

where the right-hand side is the first block-column
of Z. Some matrix algebra shows that (S,L) is the
desired solution of the Riccati equation (1). See e.g.

Laub (1990).

The ordering has to be done with great care in the
singular cases. If (4) does not hold the pencil P;(z)
is also singular, and very special software is required.
Example 1 was possible to solve using a straight-forward
implementation, but Example 2 was not. When the
reordering is required the standard methods fail. The
following theorem suggests that the structure of the
pencil P(z) should be used when operating on P;(z).

THEOREM J 0
For any |z| = 1, N(Ps2(2)) = R( [ v ] ), where R(Y) =

N(P(2)) and

0 —zI+ A B
Py(z) = —2 i1+ AT cTc cTp
BT DTc DTD

Proof: Utilize the structure

o= (5): o= )

M N* M*M

and rank N = n by stabilizability. O

3.3 The LMI-method

Solve

max trace P
P>0

A BY"(P 0y (A B P 0
> (6)

C D 0 I C D 0 0
The optimizing P is equal to S, the desired solution of
the Riccati equation. An algebraic proof is given in the

Appendix. There is also an immediate relation between
the LMI-problem and the LQ-problem.

The most common method to solve LMI-problems is
using interior point methods. Unfortunately there are
sometimes no feasible interior point to the LMI-problem.
This is the case in all three examples. Some insight is
provided by the proofs in the Appendix.



4. REDUCTION ALGORITHMS

For systems that are not left invertible it is possible to
obtain a corresponding left invertible system by elimi-
nation of redundant inputs:

1. Elimination of inputs until

B
] has full rank.
D

2. Elimation of the modes and inputs of the maximal
controllability subspace from free inputs.

We describe two alternative reduction methods. In
the first one the states and inputs removed represent
the exact non-uniqueness of the original problem. The
second one is easier to implement, and it may result in
a larger reduction than necessary.

4.1 Algorithm 1

First introduce a stabilizing feedback and input/output
transformations giving

_ T

gr A By B, 0 0
U1

21 0 I 0 0 0
= ’u,2

29 Cy 0 0 0 0
]

z3 Cg D1 D2 0 I
Ugq

where A is stable and [B1, Bs] has full column rank.
Here g denotes the forward shift operator. Now u3 can
be arbitrary, so it is eliminated. The inputs u; and uq4
can be chosen uniquely to make z; = 0 and 23 = 0.
By state coordinate changes, state feedback and wu,
transformations it is found that

[zI—|—A Bz]

C, 0
—2zI + A 0 0 Bi1 0
A —2I + Aap 0 0 0
Azq Aszg —zI+A33 0 Bz
Cn 0 0 0 0

where ~ denotes strong equivalence, and where
[A33, Baz] corresponds to the maximal controllabil-
ity subspace in the nullspace of C3. The corresponding
control signals have to be stabilizing, but they are oth-
erwise arbitrary and can be removed together with the
corresponding states. It follows that the rank loss in
P(z) equals the number of eliminated arbitrary inputs,
i.e. the rank deficiency of [B; D] plus the rank loss in
[-2zI + A3z3, Bsz], i.e. the number of columns in Bss.
After the reduction the remaining system satisfies the
left-invertibility condition (4).

4.2 Algorithm 2

First make the input transformation

()= (5 )

If rank P;(0) = n + my, solve the problem using

X
Theorem 1. Otherwise derive its nullspace basis [ 7 ] .

There exists L with —LX = U, since X is full rank.
Thus
[ A— B L

| x=0
C—-D.L

and the X-modes are unobservable in C — D{L and
can be removed. The procedure is repeated until
rank P;(0) =n + m;.

4.3 Almost singular pencils

For a system that is only marginally left invertible
very large feedback-L’s may be needed to obtain the
optimal S, as seen in examples 1 and 2. In a practical
situation we would like not to utilize such control
signals. The reduction should thus be performed also
for marginally left invertible system. Actually these
ideas are compatible with numerical methods for the
transformation of a pencil to Kronecker canonical form
using reducing subspaces.

5. RECOMMENDATIONS

In this paper we have reviewed some results about the
discrete-time Riccati-equation with implications on the
way numerical Riccati-solvers should be implemented.
We suggest that before using a standard Riccati-solver,
such as the one in the Matlab Control System Toolbox,
the problem should be reduced using e.g. the nullspace
of P(0). It should be stressed that this is definitely
not the only reduction that has to be done in order to
use interior point methods for LMI:s. For the Schur-
form method and the Kleinman method it may be
sufficient, but we believe that reducing also the parts
corresponding to the nullspace of P(z) for |z| = 1 would
be a good idea. It remains to find a good algorithm that
implements this reduction, but it would definitely yield
a more robust Riccati-solution procedure.



6. REFERENCES

Bittanti, S., A. Laub, and J. Willems, Eds. (1990): The
Riccati Equation. Springer-Verlag, Berlin.

Hagander, P. and A. Hansson (1995): “Existence of discrete-
time LQG-controllers.” Systems & Control Letters, 26,
pp. 231-238.

Kucera, V. (1991): Analysis and Design of Discrete Linear
Control Systems. Prentice-Hall, New York.

Laub, A. (1990): “Invariant subspace methods for the nu-
merical solution of Riccati equations.” In Bittanti et al.,

Eds., The Riccati Equation, pp. 14-47. Springer-Verlag,
Berlin.

Saberi, A., P. Sannuti, and B. Chen (1996): H, Optimal
Control. Prentice Hall, New York.

Silverman, L. (1976): “Discrete Riccati equations.” In Leon-
des, Ed., Control and Dynamic Systems, volume 12,
pp- 313-386. Academic Press, New York.

Trentelman, H. L. and A. A. Stoorvogel (1995): “Sampled-
data and discrete-time Hs optimal control.” SIAM .J
Control and Optimization, 33, pp. 834—862.

7. APPENDIX
LEMMA 1
Assume § > 0 satisfies S = ATSA + Q,Q > 0. Then
Q # 0, only if A has an eigenvalue [A| < 1.

Proof: Assume first that A has a complete set of
eigenvectors. There is then for @ # 0 an eigenvector
z with 2*Qz > 0, and z*Sz = |[A|?2*Sz 4+ z*Qz then
requires |A| < 1. For defective 4 the proof is extended
using generalized eigenvectors. |

Remark 1 now follows using stabilizability and

TTST = JTT7STJ + T (C — DL)*(C — DL)T

7.1 Proof of Theorem 1

A straight-forward proof, cf. Kucera (1991), can be
made using the Kleinman recursion

A;=A-BL;, C;=C-DIL; (7a)
S; = ATs A, + CTC; (7b)
G:=D"D+ B"S;B (7¢)
GiLi,1 = DTC + BTS;A (7d)

for ¢ = 0,1,... with initial value Ly such that A is
stable. Tt will first be shown that the sequence of L; is
well defined, and then the question about convergence
will be investigated. Assume that A; is stable. Then
there exists a unique S; > 0 that solves (7b), since it

is a Lyapunov-equation, and there exists an L;y; that
solves (7d), since

A BY" (S 0y (A B
>0
C D 0 I C D) —
If it can be concluded that A;,; is stable, it thus
follows by induction that A; is stable for all 7z > 0.
Assume that A4;;; is not stable. Then there exist A

and z such that |A\| > 1 and A4y 1z — zA. Now use
A,; = (L, — L,+1)TG,(L, — L,;+1) in (7) to obtain

S = A?+151:t41:+1 + C',;T;_1C'11+1 + A (8)
and
(1— 2P)z" Sz = m*Cg_"JCHlm +z" Az

From |A] > 1 and S; > 0 follows that z*A;z = 0.
Thus Ljz = L;y1z provided G; > 0, and hence the
contradiction that A is also an eigenvalue of A4;. To show

that G; > 0, rewrite (7) and (8) as

I oY " (S -A; 0 I 0
[L11+1 I] [ 0 G] [L11+1 I] B
[A B]T [5 0] [A B] ®
C D 0 I C D
Let ¥(z) = (2I — A)*lB, and let H(z) = C¥(z) + D.
Notice that A¥(z) + B = —2¥(z). Thus by multiplying

v
(9) by [ gz) ] from the right and its adjoint from the

left the following equality is obtained

H*(2)H(z) + T*(2)A;¥(2) =
[T+ Liy1®(2)]"Gi[I + Liy1¥(2)]  (10)

Now the condition (4) implies that rank H(z) = m for
some z, which by (10) and A; > 0 implies that G; > 0.
Thus it is proven that the sequence of L; is well defined
and A; is stable for all 2 > 0.

It will now be shown that the sequence S; converges
to some limit S. Further manipulations show that the
following Lyapunov-equation holds

S;i— Siy1 = A?+1(S,: — Sip1)Ai + A (11)
Since A;,1 is stable and since A; > 0 it follows that
S; — S;4+1 > 0. Thus it holds that 0 < S;; < S;, which
implies that S; — S > 0. The equation (7c¢) implies that
G, —-G=DTD+ BT.S'B, and there exists L such that
GL = DTC + BTSA, since

(e 2) (03 (e 0)=



Further A?_H(S,;
both matrices are positive semidefinite. Thus it is proven
that the limit S solves the algebraic Riccati equation (1).
Similarly to (10) it also holds that

— Sit1)Ai11 — 0 and A; — 0, since

H*(2)H(z) = [I + LU()]"G[I + LU(z)]  (12)

Now the rank condition (4) implies that G > 0, and
hence L is a unique solution. The sequence L; therefore
converges to L, and since the eigenvalues of A; are inside
the unit circle, it follows that in the limit the eigenvalues
of A, = A — BL are inside or on the unit circle.

Now the right-hand side of (12) looses rank on the unit
circle when z is a closed loop eigenvalue on the unit
circle, since G > 0 and

[ZIL+ ! T+ I(l)\Il(z) ] B

[zI—|—Ac B] [I 0] [I \Il(z)]

0 I L I 0 I
Similarly the left-hand side looses rank on the unit circle
when P(z) does, since

—2I+4 0 ][I \Il(z)]

P(z) = [ ¢ HE=)lo I

Tt can here be assumed that A is stable, since an initial
stabilizing feedback Lq just corresponds to multiplying

0
the Riccati equation (3) by T ] from the right

i
and its transpose from the left. It is thus proven that L
is stabilizing if and only if rank|,—; P(2) = n+ m.

To show the uniqueness of S consider two solutions S
and S; with corresponding closed loop matrices A; —

A — BL; and Ay = A — BL,. Then it holds that
AT(S) — 82)A1 =51 — S,

Let Thv = [Tho, Tiy] and Th = [Tao, Toy] be spectrum-
splitting transformations with

A1T1 = T1 diag(]lo, J1+)
A2T2 = Tz dia.g(]z(), J2+)

where J14 and J4 are the blocks with eigenvalues inside
the unit circle. It then holds that for & — oo

(81— S2)Tiy = (A47)%(S1 — S2)Tuy Jiy — 0
Ty (S1— S2) = (J3 ) FTH (S1 — S2)AY — 0

Furthermore 51719 = 0 and 53733 — 0 by Remark 1, so
51 = 52.

7.2 Some LMI results
LEMMA 2

Assume |A(A)| = 1 and [4, B] controllable. The only
P > 0 satisfying the LMI (6) with C =0is P = 0.

Proof: P satisfies (6) with C = 0, so thereisan Ry > 0
such that ATPA = LTGL+P+R,,G=B"PB+DTD,
and GL = BT PA, or

P=a4aTpa '1 R,
GM =GLA '=BTpP
Ro,= A TR A"+ MTGM

Thus R; = 0 by Lemma 1, so GM = BTP = 0. From
the controllability there is Ly with A — BLg stable, so
A"TP=PA=P(A— BL) gives P = 0. O

THEOREM 4

For any P > 0 satisfying the LMI (6) it holds that P <
S, where S is the unique solution of the Riccati equation
(1) allowing closed loop eigenvalues |A(4 — BL)| < 1.
Furthermore P = S satisfies the LMI (6), so S is its
maximal solution.

Proof: Use A, = A — BL to rewrite (6) as

[C - DL,D]*[C — DL, D]
+ [4., BT P[A,, B] > diag(P,0) (13)

The (1,1)-block of (13) means that there exits A > 0
such that

(C - DL)*(C -~ DL)+ ATPA. =P+ A (14)

With A, [Xy, Xo] = [X4, Xo] diag(44, 4p) it holds as
in Remark 1 that (C — DL)X, = 0 and SX, = 0 giving

AT PyAy = Py + Ay
A,(I)‘P()+A+ = P()+ —|— A0+

where XTPXo = Py, XTAXy = Ao, XTPX, = Py,
and XTAX, = Agy. Tt first follows that Ag = 0
and thus Agy = 0. Then Py, = 0 by stability of
A, . Subtracting (14) from the Riccati equation (C —
DL)T(C —~ DL)+ ATSA, = S gives AT (S, — P{)A  +
Ay =S, — Py, where XTPX, = P,, XTSX, = S,
and X_{AX+ = A4. Now S5y — P, > 0 by stability of
A, . It only remains to show that Py = 0. From (13) it
follows that

[0, D]T[Oi D] =+ [0, B+]TP+ [0, B+] =+
[AO,BO]TPO[A()’BO] > [I, O]TPO[L 0] (15)

B
where [X, Xo] [ B+ ] = B. Now P, = 0 by controlla-

0
bility of [40, Bo] and Lemma 2. O



