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HOW TO SOLVE SINGULAR DISCRETE-TIMERICCATI-EQUATIONSPer Haganderyand Anders HanssonzyDepartment of Automatic Control, LTH, P.O. Box 118, S-221 00 LUND, SwedenPhone: +46 - 46 222 8786, e-mail: Per.Hagander@control.lth.sezInformation Systems Laboratory, Durand 101A, Stanford UniversityStanford, CA 94305-4055, Phone: +1 - 415 723-3024, e-mail: andersh@isl.stanford.eduAbstract: There exists a solution to the discrete time algebraic Riccati equation givingclosed loop eigenvalues inside or on the unit circle, assuming the system is stabilizable.This solution is always unique. Numerical methods, like the sorted generalized Schur formmethod and the Kleinman iteration, often fail in case of zeros on the unit circle or lackof left invertibility. It is here suggested how such singular cases could be made regular byreduction operations on the system matrix pencil [�zI + A;B;C;D]. The solution maybe discontinuous with respect to parameter variation, but the reduction approach seemsnumerically appealing. This is demonstrated using simple illustrative examples. The solutionis the largest symmetrical matrix satisfying a corresponding LMI. To obtain a feasiblesolution for interior-point methods it is also necessary to do a reduction, for some problemseven further than what is described in this paper.Keywords: discrete-time algebraic Riccati equations, linear-quadratic control, maximalsolution, singularity, zeros on unit circle, left-invertibility, discontinuous solution, LMI.1. INTRODUCTIONThe interest in Riccati equations was revived by thetheory of H1-control. Actually it was found that somesingular H2-cases were not fully understood, especiallyin discrete time. A basic reference is Silverman (1976),while books like Kucera (1991) and Bittanti et al. (1990)provide a state-of-the-art survey. Some recent results arefound in Trentelman and Stoorvogel (1995) and Saberiet al. (1996). In Hagander and Hansson (1995) it isdescribed how there may exist optimal LQG-controllerseven if the Riccati-equation based controller results inclosed loop eigenvalues on the unit circle. In the classicalformulation of the Riccati equationS = ATSA +Q1 �ATSB(BT SB +Q2)�1BTSAthe inverse does not exist in case of redundant controlsignals. These two singular cases are numerically di�-� This project was supported by the Swedish Research Council forEngineering Science under contracts 95-759 and 95-838.
cult to solve without special care, and in this paper wegive a summary of some relevant facts and suggestionsfor how to circumvent some of the singularity problems.A general formulation of the Riccati equation coveringsingular cases as well as cross-terms would be to solvefor S and L in( S = ATSA +Q1 � LTGL;G = BTSB + Q2; GL = BTSA +QT12 (1)The equations in (1) can be summarized as8: I 09;T S8: I 09;+8:L I9;T G8:L I9; =8:A B9;T S8:A B9;+ Q (2)where Q = 8>>: Q1 Q12QT12 Q2 9>>;



We here only discuss Riccati equations related toLQG-control and thus require that Q � 0 or Q =[C;D]T [C;D]. Our interest is in symmetric solutionsS � 0 giving closed loop eigenvalues inside or on theunit circle, i.e. j�(A � BL)j � 1. In order to empha-size the relation between the Riccati equation and Schurcomplements { Completion of squares { we may rewrite(1) as8>>: I 0L I9>>;T 8>>:S 00 G9>>;8>>: I 0L I9>>; =8>>:A BC D9>>;T 8>>:S 00 I9>>;8>>:A BC D9>>; (3)The Riccati equation can be used to solve the stationaryLQ-control problem,infL limk!1EJJ = [Cx(k) +Du(k)]T [Cx(k) +Du(k)]x(k + 1) = Ax(k) +Bu(k) + v(k)u(k) = �Lx(k)where x(k) 2 Rn; u(k) 2 Rm. The constant feedbackmatrix L gives a stationary state process x(k) in thelimit. The disturbance v(k) consists of independent ran-dom variables with zero mean value and unit covariance.The in�mal loss is EvTSv = trace S, where S is the so-lution of (1) giving j�(A �BL)j � 1.The system (A;B;C;D) can be described by its systemmatrix, the pencilP (z) = 8>>:�zI +A BC D9>>;The two types of singularity correspond to zeros onthe unit circle and lack of left invertibility. The system(A;B;C;D) is left invertible whenmaxz rank P (z) = m + n (4)and there are no zeros on the unit circle whenrankjzj=1 P (z) = maxz rank P (z) (5)The lack of left-invertibility is most severe, and theRiccati equation solution S is then often discontinuousw.r.t the elements of (A;B;C;D).Example 1x(k + 1) = x(k)=2 + bu(k), and J = x(k)2S = (4=3 if b = 0;1 otherwise

Example 2x1(k + 1) = u1(k), x2(k + 1) = 2x2(k) + u2(k), andJ = [cx1(k) + x2(k)]2 + u2(k)2.S = 8>>: c2 cc s229>>; ; s22 = (2 +p5 if c = 04 otherwiseIn the �rst example the input is redundant for b = 0 andrank B < m. In the second example u1 is dynamicallyredundant together with x1 for c = 0. There are otherpertubations of (A;B;C;D) for which the solutions Sare continuous. The following example describes whathappens in case of zeros on the unit circle.Example 3x(k + 1) = u(k) + v(k), J = [x(k) � u(k)]2, givingthe Riccati solution S = 0, L = �1 and A � BL = 1.The in�mal cost is zero, but it is only possible to comearbitrarily close to the in�mumusing stabilizing control.2. EXISTENCE AND UNIQUENESS THEOREMThe basic theorems on discrete time algebraic Riccatiequations are now summarized,Theorem 1Assume that the system (A;B;C;D) is stabilizable andleft invertible. Then there is always a real solution (S; L)to the Riccati equation (1) with symmetric S � 0 andj�(A � BL)j � 1. It also holds that G > 0, and both Sand L are unique. Furthermore j�(A�BL)j < 1, if andonly if there are no zeros on the unit circle.Proof: See Appendix.Remark 1For any real symmetric solution S � 0 and anycorresponding A � BL introduce T = [T�; T0; T+] with(A �BL)T = TJ , J = diag(J�; J0; J+) andj�(J�)j > 1, j�(J0)j = 1, j�(J+)j < 1. Then(C �DL)8: T� T09; = 0; S8:T� T09; = 0Remark 2Assume rankjzj=1 P (z) = m + n. The solution S ofTheorem 1 is di�erentiable with respect to di�erentiablevariations in (A;B;C;D).For systems that are not left invertible it is possibleto obtain a corresponding left invertible system by



elimination of redundant inputs that do not inuencethe system and modes (stabilized for free) not observablein the performance index. The reduction is related to theSilverman structure algorithm, e.g. Silverman (1976).Two di�erent cases can be distinguished correspondingto examples 1 and 2 respectively. How to do thereduction will be further discussed below after a sectionon numerical methods. A very general theorem can thenbe stated.Theorem 2Assume that (A;B;C;D) is stabilizable. There is alwaysa real solution (S; L) to the Riccati equation (1) withsymmetric S � 0, such that j�(A�BL)j � 1. Here S isunique, but L may be nonunique. There exists a solutionL with j�(A�BL)j < 1, if and only if there are no zeroson the unit circle.Remark 3The modes eliminated correspond to a subspace, whereS is zero.3. THREE NUMERICAL METHODSThe most commonmethods to solve the discrete-time al-gebraic Riccati equation are the \Kleinman algorithm"and the \Generalized Schur-form method". Recently ithas become popular to apply \Linear Matrix Inequali-ties" (LMI).3.1 The Kleinman algorithmSolve Si from Si = ATi SiAi + CTi Ci; Ai = A �BLi; Ci = C �DLi, and then solve Li+1 from (DTD+BTSiB)Li+1 = DTC+BTSiA. Start with L0 such thatA� BL0 is stable. From the proof of Theorem 1 in theAppendix it follows that Si ! S, the desired solution.The convergence is normally very fast, but it is quadraticonly if (5) holds. If the system lacks left invertibilitythe nonunique Li+1 has to be chosen to be stabilizingfor convergence, but that requires considerable work ateach iteration.3.2 The Schur-form methodFirst introduce the pencilP1(z) = 8>>>>>>>: 0 �zI +A B�I + zAT CTC CTDzBT DTC DTD9>>>>>>>;which appears naturally when deriving �rst order op-timality conditions for the LQ-problem using Lagrangemultipliers. Then �nd orthogonal Q and Z such thatQTP1(z)Z is on ordered generalized real Schur form.

This means that its (1,1)-block has its zeros inside or onthe unit circle. Then solve S and L from8>>>>>>>: SI�L9>>>>>>>;Z21 = 8>>>>>>>:Z11Z21Z319>>>>>>>;where the right-hand side is the �rst block-columnof Z. Some matrix algebra shows that (S; L) is thedesired solution of the Riccati equation (1). See e.g.Laub (1990).The ordering has to be done with great care in thesingular cases. If (4) does not hold the pencil P1(z)is also singular, and very special software is required.Example 1 was possible to solve using a straight-forwardimplementation, but Example 2 was not. When thereordering is required the standard methods fail. Thefollowing theorem suggests that the structure of thepencil P (z) should be used when operating on P1(z).Theorem 3For any jzj = 1, N (P2(z)) = R(8>>: 0Y 9>>;), where R(Y ) =N (P (z)) andP2(z) = 8>>>>>>>: 0 �zI + A B�z�1I +AT CTC CTDBT DTC DTD9>>>>>>>;Proof: Utilize the structureP (z) = 8>>: NM 9>>; ; P2(z) = 8>>: 0 NN� M�M 9>>;and rank N = n by stabilizability.3.3 The LMI-methodSolve maxP�0 traceP8>>:A BC D9>>;T 8>>:P 00 I9>>;8>>:A BC D9>>; � 8>>:P 00 09>>; (6)The optimizing P is equal to S, the desired solution ofthe Riccati equation. An algebraic proof is given in theAppendix. There is also an immediate relation betweenthe LMI-problem and the LQ-problem.The most common method to solve LMI-problems isusing interior point methods. Unfortunately there aresometimes no feasible interior point to the LMI-problem.This is the case in all three examples. Some insight isprovided by the proofs in the Appendix.



4. REDUCTION ALGORITHMSFor systems that are not left invertible it is possible toobtain a corresponding left invertible system by elimi-nation of redundant inputs:1. Elimination of inputs until 8>>:BD9>>; has full rank.2. Elimation of the modes and inputs of the maximalcontrollability subspace from free inputs.We describe two alternative reduction methods. Inthe �rst one the states and inputs removed representthe exact non-uniqueness of the original problem. Thesecond one is easier to implement, and it may result ina larger reduction than necessary.4.1 Algorithm 1First introduce a stabilizing feedback and input/outputtransformations giving8>>>>>>>>>>>: qxz1z2z39>>>>>>>>>>>; = 8>>>>>>>>>>>: �A B1 B2 0 00 I 0 0 0C2 0 0 0 0C3 D1 D2 0 I9>>>>>>>>>>>;8>>>>>>>>>>>>>>>>: xu1u2u3u49>>>>>>>>>>>>>>>>;where �A is stable and [B1; B2] has full column rank.Here q denotes the forward shift operator. Now u3 canbe arbitrary, so it is eliminated. The inputs u1 and u4can be chosen uniquely to make z1 = 0 and z3 = 0.By state coordinate changes, state feedback and u2transformations it is found that8>>:�zI + �A B2C2 0 9>>; �8>>>>>>>>>>>:�zI +A11 0 0 B11 0A21 �zI + A22 0 0 0A31 A32 �zI +A33 0 B32C21 0 0 0 0 9>>>>>>>>>>>;where � denotes strong equivalence, and where[A33; B32] corresponds to the maximal controllabil-ity subspace in the nullspace of C2. The correspondingcontrol signals have to be stabilizing, but they are oth-erwise arbitrary and can be removed together with thecorresponding states. It follows that the rank loss inP (z) equals the number of eliminated arbitrary inputs,i.e. the rank de�ciency of [B;D] plus the rank loss in[�zI + A33; B32], i.e. the number of columns in B32.After the reduction the remaining system satis�es theleft-invertibility condition (4).

4.2 Algorithm 2First make the input transformation8>>:BD9>>;W = 8>>:B1 0D1 09>>;where rank8>>:BD9>>; = rank8>>:B1D19>>; = m1, andP1(z) = 8>>:�zI +A B1C D19>>;If rank P1(0) = n + m1, solve the problem usingTheorem 1. Otherwise derive its nullspace basis 8>>:XU 9>>;.There exists L with �LX = U , since X is full rank.Thus 8>>:A� B1LC �D1L9>>;X = 0and the X-modes are unobservable in C � D1L andcan be removed. The procedure is repeated untilrank Pj(0) = n +mj .4.3 Almost singular pencilsFor a system that is only marginally left invertiblevery large feedback-L's may be needed to obtain theoptimal S, as seen in examples 1 and 2. In a practicalsituation we would like not to utilize such controlsignals. The reduction should thus be performed alsofor marginally left invertible system. Actually theseideas are compatible with numerical methods for thetransformation of a pencil to Kronecker canonical formusing reducing subspaces.5. RECOMMENDATIONSIn this paper we have reviewed some results about thediscrete-time Riccati-equation with implications on theway numerical Riccati-solvers should be implemented.We suggest that before using a standard Riccati-solver,such as the one in the Matlab Control System Toolbox,the problem should be reduced using e.g. the nullspaceof P (0). It should be stressed that this is de�nitelynot the only reduction that has to be done in order touse interior point methods for LMI:s. For the Schur-form method and the Kleinman method it may besu�cient, but we believe that reducing also the partscorresponding to the nullspace of P (z) for jzj = 1 wouldbe a good idea. It remains to �nd a good algorithm thatimplements this reduction, but it would de�nitely yielda more robust Riccati-solution procedure.



6. REFERENCESBittanti, S., A. Laub, and J. Willems, Eds. (1990): TheRiccati Equation. Springer-Verlag, Berlin.Hagander, P. and A. Hansson (1995): \Existence of discrete-time LQG-controllers." Systems & Control Letters, 26,pp. 231{238.Kucera, V. (1991): Analysis and Design of Discrete LinearControl Systems. Prentice-Hall, New York.Laub, A. (1990): \Invariant subspace methods for the nu-merical solution of Riccati equations." In Bittanti et al.,Eds., The Riccati Equation, pp. 14{47. Springer-Verlag,Berlin.Saberi, A., P. Sannuti, and B. Chen (1996): H2 OptimalControl. Prentice Hall, New York.Silverman, L. (1976): \Discrete Riccati equations." In Leon-des, Ed., Control and Dynamic Systems, volume 12,pp. 313{386. Academic Press, New York.Trentelman, H. L. and A. A. Stoorvogel (1995): \Sampled-data and discrete-time H2 optimal control." SIAM JControl and Optimization, 33, pp. 834{862.7. APPENDIXLemma 1Assume S � 0 satis�es S = ATSA + Q;Q � 0. ThenQ 6= 0, only if A has an eigenvalue j�j < 1.Proof: Assume �rst that A has a complete set ofeigenvectors. There is then for Q 6= 0 an eigenvectorx with x�Qx > 0, and x�Sx = j�j2x�Sx + x�Qx thenrequires j�j < 1. For defective A the proof is extendedusing generalized eigenvectors.Remark 1 now follows using stabilizability andTTST = JTTTSTJ + TT (C �DL)T (C �DL)T7.1 Proof of Theorem 1A straight-forward proof, cf. Kucera (1991), can bemade using the Kleinman recursionAi = A �BLi; Ci = C �DLi (7a)Si = ATi SiAi + CTi Ci (7b)Gi = DTD +BTSiB (7c)GiLi+1 = DTC +BTSiA (7d)for i = 0; 1; : : : with initial value L0 such that A0 isstable. It will �rst be shown that the sequence of Li iswell de�ned, and then the question about convergencewill be investigated. Assume that Ai is stable. Thenthere exists a unique Si � 0 that solves (7b), since it

is a Lyapunov-equation, and there exists an Li+1 thatsolves (7d), since8>>:A BC D9>>;T 8>>:Si 00 I9>>;8>>:A BC D9>>; � 0If it can be concluded that Ai+1 is stable, it thusfollows by induction that Ai is stable for all i � 0.Assume that Ai+1 is not stable. Then there exist �and x such that j�j � 1 and Ai+1x = x�. Now use�i = (Li � Li+1)TGi(Li � Li+1) in (7) to obtainSi = ATi+1SiAi+1 + CTi+1Ci+1 +�i (8)and (1� j�j2)x�Six = x�CTi+1Ci+1x+ x��ixFrom j�j � 1 and Si � 0 follows that x��ix = 0.Thus Lix = Li+1x provided Gi > 0, and hence thecontradiction that � is also an eigenvalue of Ai. To showthat Gi > 0, rewrite (7) and (8) as8>>: I 0Li+1 I9>>;T 8>>:Si ��i 00 Gi9>>;8>>: I 0Li+1 I9>>; =8>>:A BC D9>>;T 8>>:Si 00 I9>>;8>>:A BC D9>>; (9)Let 	(z) = (zI � A)�1B, and let H(z) = C	(z) +D.Notice that A	(z) +B = �z	(z). Thus by multiplying(9) by 8>>:	(z)I 9>>; from the right and its adjoint from theleft the following equality is obtainedH�(z)H(z) + 	�(z)�i	(z) =[I + Li+1	(z)]�Gi[I + Li+1	(z)] (10)Now the condition (4) implies that rank H(z) = m forsome z, which by (10) and �i � 0 implies that Gi > 0.Thus it is proven that the sequence of Li is well de�nedand Ai is stable for all i � 0.It will now be shown that the sequence Si convergesto some limit S. Further manipulations show that thefollowing Lyapunov-equation holdsSi � Si+1 = ATi+1(Si � Si+1)Ai+1 +�i (11)Since Ai+1 is stable and since �i � 0 it follows thatSi � Si+1 � 0. Thus it holds that 0 � Si+1 � Si, whichimplies that Si ! S � 0. The equation (7c) implies thatGi ! G = DTD +BTSB, and there exists L such thatGL = DTC + BTSA, since8>>:A BC D9>>;T 8>>:S 00 I9>>;8>>:A BC D9>>; � 0



Further ATi+1(Si � Si+1)Ai+1 ! 0 and �i ! 0, sinceboth matrices are positive semide�nite. Thus it is proventhat the limitS solves the algebraic Riccati equation (1).Similarly to (10) it also holds thatH�(z)H(z) = [I + L	(z)]�G[I + L	(z)] (12)Now the rank condition (4) implies that G > 0, andhence L is a unique solution. The sequence Li thereforeconverges to L, and since the eigenvalues of Ai are insidethe unit circle, it follows that in the limit the eigenvaluesof Ac = A� BL are inside or on the unit circle.Now the right-hand side of (12) looses rank on the unitcircle when z is a closed loop eigenvalue on the unitcircle, since G > 0 and8>>:�zI + A 0L I + L	(z)9>>; =8>>:�zI +Ac B0 I 9>>;8>>: I 0L I9>>;8>>: I 	(z)0 I 9>>;Similarly the left-hand side looses rank on the unit circlewhen P (z) does, sinceP (z) = 8>>:�zI + A 0C H(z)9>>;8>>: I �	(z)0 I 9>>;It can here be assumed that A is stable, since an initialstabilizing feedback L0 just corresponds to multiplyingthe Riccati equation (3) by 8>>: I 0�L0 I9>>; from the rightand its transpose from the left. It is thus proven that Lis stabilizing if and only if rankjzj=1P (z) = n+m.To show the uniqueness of S consider two solutions S1and S2 with corresponding closed loop matrices A1 =A� BL1 and A2 = A� BL2. Then it holds thatAT2 (S1 � S2)A1 = S1 � S2Let T1 = [T10; T1+] and T1 = [T20; T2+] be spectrum-splitting transformations withA1T1 = T1 diag(J10; J1+)A2T2 = T2 diag(J20; J2+)where J1+ and J2+ are the blocks with eigenvalues insidethe unit circle. It then holds that for k!1(S1 � S2)T1+ = (AT2 )k(S1 � S2)T1+Jk1+ ! 0TT2+(S1 � S2) = (JT2+)kTT2+(S1 � S2)Ak1 ! 0Furthermore S1T10 = 0 and S2T20 = 0 by Remark 1, soS1 = S2.

7.2 Some LMI resultsLemma 2Assume j�(A)j = 1 and [A;B] controllable. The onlyP � 0 satisfying the LMI (6) with C = 0 is P = 0.Proof: P satis�es (6) with C = 0, so there is an R1 � 0such that ATPA = LTGL+P+R1,G = BTPB+DTD,and GL = BTPA, or8><>: P = A�TPA�1 +R2GM = GLA�1 = BTPR2 = A�TR1A�1 +MTGMThus R2 = 0 by Lemma 1, so GM = BTP = 0. Fromthe controllability there is L0 with A � BL0 stable, soA�TP = PA = P (A� BL0) gives P = 0.Theorem 4For any P � 0 satisfying the LMI (6) it holds that P �S, where S is the unique solution of the Riccati equation(1) allowing closed loop eigenvalues j�(A � BL)j � 1.Furthermore P = S satis�es the LMI (6), so S is itsmaximal solution.Proof: Use Ac = A �BL to rewrite (6) as[C �DL;D]T [C �DL;D]+ [Ac; B]TP [Ac; B] � diag(P; 0) (13)The (1,1)-block of (13) means that there exits � � 0such that(C �DL)T (C �DL) + ATc PAc = P +� (14)With Ac [X+; X0] = [X+; X0] diag(A+; A0) it holds asin Remark 1 that (C �DL)X0 = 0 and SX0 = 0 givingAT0 P0A0 = P0 +�0AT0 P0+A+ = P0+ +�0+where XT0 PX0 = P0, XT0 �X0 = �0, XT0 PX+ = P0+,and XT0 �X+ = �0+. It �rst follows that �0 = 0and thus �0+ = 0. Then P0+ = 0 by stability ofA+. Subtracting (14) from the Riccati equation (C �DL)T (C �DL) +ATc SAc = S gives AT+(S+ �P+)A+ +�+ = S+ � P+, where XT+PX+ = P+, XT+SX+ = S+,and XT+�X+ = �+. Now S+ � P+ � 0 by stability ofA+. It only remains to show that P0 = 0. From (13) itfollows that[0; D]T [0; D] + [0; B+]TP+[0; B+] +[A0; B0]TP0[A0; B0] � [I; 0]TP0[I; 0] (15)where [X+; X0]8>>:B+B0 9>>; = B. Now P0 = 0 by controlla-bility of [A0; B0] and Lemma 2.


