
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Controller synthesis for digital signal processors

Öwall, Viktor; Torkelson, Mats

Published in:
[Host publication title missing]

DOI:
10.1109/ISCAS.1991.176729

1991

Link to publication

Citation for published version (APA):
Öwall, V., & Torkelson, M. (1991). Controller synthesis for digital signal processors. In [Host publication title
missing] (pp. 2192-2195) https://doi.org/10.1109/ISCAS.1991.176729

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISCAS.1991.176729
https://portal.research.lu.se/en/publications/ffe12f2d-80d0-471d-96ad-5573d364d4f2
https://doi.org/10.1109/ISCAS.1991.176729

CONTROLLER SYNTHESIS FOR DIGITAL SIGNAL
PRO CESS ORS

Viktor Owall and Mats Torkelson

Department of Applied Electronics, Lund University, Sweden

Abstract

A tool for synthesis of control units in ap-
plication specific digital signal processors is pre-
sented. The tool is a part of a complete design
system by which algorithms unsuitable for stan-
dard processors can be implemented. In appli-
cations with complex control operations the con-
troller is the crucial part. Therefore, it is im-
portant to give the designer flexibility and fast
feedback in the development of the controller.
A hierarchical controller architecture suitable for
frame-based and multi-sample-rate algorithms is
synthesized by the presented tool. Processors
for speech scrambling and digital adjustment of
quadrature modulators have been designed and
fabricated.

1 Introduction
Application Specific Digital Signal Processors (ASDSPs)
require a complex set of signals to control the data flow
through the processor. Various ASDSP architectures re-
quire different sets of control signals and different com-
plexity of the controller [l, 21. Thus, it is important to
have a flexible tool for controller synthesis. The pre-
sented Control Unit Synthesizer (CUS) is aimed a t digi-
tal radio communication systems where frame-based and
multi-sample-rate algorithms are frequently used. There-
fore, our CUS synthesizes controllers which have a hier-
archical architecture especially suitable for these kinds of
algorithms [3].

The CUS synthesizes a controller from a micro pro-
gram and is tightly coupled to a Data Path Compiler
(DPC) [4]. The DPC and the CUS put no restrictions
on the processor architecture which gives the designer
the flexibility to develop an architecture suitable for the
algorithm. Algorithms with conditional statements, sub-
routine calls, conditional subroutine calls, loops, etc., and
processors with mixed algorithms can be implemented
with the CUS.

In order to simulate and debug the micro program a
Register Transfer Level (RTL) simulator has been devel-
oped. The DPC and the CUS together with the RTL
simulator make it possible to design complex ASDSPs in
a short time.

2 System Overview
Because of the tailored architecture of an ASDSP the
CUS has to work closely with the DPC. The DPC gen-
erates data path modules from structural descriptions,
additionally the DPC generates a behavioral description
of the processor. The behavioral description consists of
all micro instructions available for the processor, status
signals, and default levels to control signals.

The algorithm is described in a micro program with
the micro instructions defined by the DPC, memories
(variables and constants) can be declared to be used in
the micro program. Subroutines, case statements, and
variable passing are used in a way similar to high level
programming to make scheduling and simulation easier.
A C program which performs an RTL simulation of the
micro code can be generated from the micro program.
The RTL simulation can be performed both in floating
point representation and on bit level. The RTL simula-
tion allows the designer to debug the micro code without
generation, extraction, and simulation of the chip.

The CUS synthesizes a complete hierarchical control
unit and specifies its interconnections to data paths and
I/O-units. Memory modules with a supporting Address
Processing Unit (APU) are generated by the CUS if such
are declared in the input specification. Partitioning and
complexity of the controller is dependent on the struc-
ture of the micro program. Therefore, the designer can
try various strategies in partitioning of micro code and
memories, and the complexity of the APUs to find a good
solution.

The generated ASDSP is finally extracted and simu-
lated at transistor level before fabrication. The tools have
been modified to enable the use of different cell libraries
and to produce different output formats.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on November 19, 2008 at 03:52 from IEEE Xplore. Restrictions apply.

3 Controller Architecture
The synthesized controller contains one micro code level
and one or many sequencing levels. Each level controls
the next lower level, the data path for the micro code, and
is controlled by the next higher level, an external signal
for the highest level. The number of sequencing levels is
decided by the partitioning of the micro code. The micro
code level is the lowest hierarchical level and consists of
a micro code ROM, a program counter, and a pipeline
register, figure 1.

I Micro Code ROM I

Block

EOB

Figure 1: The micro code level.

The micro code ROM generates control signals which
control the data flow through the data paths and control
signals to the APU. The code is partitioned into blocks
of micro instructions of arbitrary length (subroutines).
Micro instructions in a block are executed in sequential
order, controlled by a program counter, where each time
slot is one clock cycle. The sequencing of blocks is con-
trolled by the next higher level ROM. Pipeline registers
are implemented between all levels in the controller to
avoid clock cycle overhead on out-of-block transitions. At
the end of each block an End Of Block (EOB) signal is
set that resets the program counter and loads a new block
address into the pipeline register. This EOB signal also
increments the program counter on the next higher level.

It is possible to select different micro operations or
memory locations with a case statement. Case state-
ments use Boolean conditions evaluated from status sig-
nals in a Decision Finite State Machine (DFSM). Status
signals can be both data path signals, and external sig-
nals from I/O-units. The evaluation of conditions is co~i-
trolled from the micro code ROM, a condition should not
be used before it has been evaluated.

The next hierarchical levels describe the sequencing of
blocks. Each level is divided into blocks and each block
into time slots as in the micro code ROM. In the sequenc-
ing levels, however, a time slot is not one clock cycle but
one block in the next underlying level. Thus a time slot
in higher levels is not a fixed number of clock cycles but of
arbitrary length decided by the designer. All sequencing
levels in the controller are implemented in the same

h
way and is controlled by a counter and by the next

higher level, the same way as for the micro code ROM.
The counter sequences through the block addresses for

the next lower level. The counter is incremented when an
EOB signal is received from the next lower level and reset
with the EOB signal from the same level. An example
with micro code and two sequencing levels is shown in
figure 2.

'T Status 1

Figure 2 : Architecture for a three level controller.

The highest level is controlled by an external Start of
Sequence (SOS) signal. At the end of a program sequence
the controller will examine the SOS signal. If SOS is set
the micro code will be executed once more, otherwise the
controller will send default signals to the data path and
wait for SOS to be set.

The DFSM is connected to all levels in the controller
architecture. Thus, it is possible to use the case statement
for making decisions on every level in the hierarchy. On
the micro code level case statements are used to choose
different sets of micro operations and on higher levels
to choose what block address to send to the lower level.
Synchronization between different modules in a processor
is taken care of by the DFSM.

The controller is partitioned into small modules in
order to make the controller faster and make it easier to
get a denser floorplan. To avoid one large micro code
ROM it can be partitioned into smaller modules to be
placed close to the controlled module.

Communication between processors is very important
in larger systems. The described system supports both
communication between processors on the same chip and
communication with external processors. Co-processors
can be synchronized to each other using the DFSM and
to a host processor using the SOS signal. Future work
will be to further investigate implementation of parallel
processors and parallel controllers and how to synchronize
these.

2193

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on November 19, 2008 at 03:52 from IEEE Xplore. Restrictions apply.

4 Memories and Address
Processing Unit

Memories, RAMS and ROMs, with an Address Processing
Unit (APU) can be generated optionally. The CUS gen-
erates description files of declared memories to a memory
generator and routing descriptions for the DPC. Output
of the memories can be connected to any bus at any data
path. If large memories are needed in a design the CUS
is prepared for handling external memories.

The address ROM is separated from the micro code
ROM and can be controlled from more than one of the
hierarchical levels. Thus, it is possible to execute the
same micro code several times with different memory lo-
cations. Otherwise the micro code must be duplicated
and the size of the micro code ROM will increase. The
DFSM can be connected to the address ROM as well and
case statements can be used to choose different memory
locations when the micro code is executed.

1 1

a X r

Address

Figure 3: Memories with APU.

The APU can be implemented in two ways. Either
with a single address ROM or with an address ROM and
a co-processor. In applications with few memory refer-
ences an address ROM without a co-processor is sufficient
(RAM in figure 3).

If more memory references are used the size of the
address ROM will increase. The co-processor implemen-
tation will then significantly reduce the size of the address
ROM. A memory address, either from the address ROM
or from another module, is stored in a register and is used
to compute following memory locations. A co-processor
can support many memories or one co-processor can be
implemented for each memory.

Different memories in the same processor can use vari-
ous strategies for the APU and different complexity of the
co-processor. The complexity of the co-processor, num-
ber of registers and number of inputs to the multiplexers,
is synthesized depending on the application.

5 Application examples
The tools have been used to design a speech scrambler
chip for mobile telephones and a chip for digital adjust-
ment of quadrature modulators.

In the scrambler the speech is split into four frequency
bands which are transposed and mirrored before trans-
mission. The algorithm requires four 6th order IIR filters
at the input, followed by a down sampler, a multiplexer
and an up-sampler. The same filters are used a t the out-
put to add the different bands together, figure 4. One
data path is used for all of the filters.

Status

Figure 4: Principle of the speech scrambler.

Multiplexing and mirroring are controlled by external
signals connected to the DFSM. The multiplexing is han-
dled by the APU to a data storage module. Depending
on the state of the DFSM different data will be sent to
the output filters. The chip size is 7x6 mm in a two mi-
cron technology and contains about 20 000 transistors ,
figure 5.

Figure 5: Die photo of speech scrambler chip.

2194

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on November 19, 2008 at 03:52 from IEEE Xplore. Restrictions apply.

The other application is a post-processor to a wave-
form generator, either a DSP or a look-up table ROM.
The designed processor compensates for imbalances in
Radio Frequency (RF) quadrature modulators for digital
communication [5] . Traditional methods for correction of
these errors usually involve improving the R F section. An
alternative method applies corrections to the baseband
signal, either digital or analog. The designed digital chip
should be placed between the waveform generator and
the digital to analog converters, figure 6.

Wave-

Gene-
rator

ROM

'r Q

Figure 6: Correction of quadrature modulators.

The controller handles not only the sequencing of the
data flow but also the communication with the host DSP.
This interface communication is performed by the DFShl
of the controller and the start of sequence signal.

The algorithm requires only four micro instructions
on the designed micro chip. A corresponding implemeri-
tation on a TMS320C25 processor requires more than 20
instructions for the same function. The chip size is 6x6
mm in a two micron technology and contains about 1s 000
transistors , figure 7.

6 Conclusions
The Control Unit Synthesizer is a part of a complete de-
sign system for application specific digital signal proces-
sors. Synthesis of a control unit is based on micro instruc-
tions generated for each processor module and includes
no use of predefined functional blocks. Complexity and
partitioning of the controller is dependent on the struc-
ture of the micro program.

The Control Unit Synthesizer has been developed for
synthesis of controllers to arbitrary digital signal proces-
sor architectures. Our applications are targeted a t digital
radio communication algorithms and therefore a hierar-
chical controller architecture suitable for frame-based and
multi-sample-rate algorithms has been used. A complete
controller and its interconnections with the data path is
synthesized with specified memories and an address pro-
cessing unit. The Control Unit Synthesizer can be applied
to different cell libraries and can easily be modified to a
cell library including basic digital building blocks.

Work is presently performed a t adapting the Control
Unit Synthesizer to a C scheduler [6] and to further in-
vestigate parallelism on chip.

The design of two very different applications proves
thc flexibility and the usefulness of the developed tools.

References
[l] Khalid Azim. Application of Silicon Compilation

Techniques to a Robot Controller. PhD thesis, Uni-
versity of California, Berkeley, Sep 1988.

[a] J . Rabaey, H. De Man, J. VanHoof, G . Goosens, and
F. Catthoor. Silicon Compilation, chapter 8. Addison-
Wesley, 1988.

[3] hlats Torkelson. Design of application spe-
cific digital signal processors. Technical Report
LUTEDX/(TETE-l004)/1-158(1990), June 1990.

[4] L. Brange and M. Torkelson. A Basic CAD-tool for
module generation. In ESSCIRC'89, 1989.

[5] hl. Faulkner, T. Mattsson, and W. Yates. Adaptive
In 40:th ZEEE Linearisat,ion Using Pre-Distortion.

Vehicular Technology Conference, 1990.

[6] Kenneth E. Rimey. A Compiler for Application-
Specific Signal Processors. PhD thesis, University of
California, Berkeley, Sep 1989.

Figure 7 : Die photo of correction chip.

2195

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on November 19, 2008 at 03:52 from IEEE Xplore. Restrictions apply.

